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Abstract: Seaweed polysaccharides are versatile both in their functions in seaweed physiology and
in their practical applications in society. However, their content and quality vary greatly. This
review discusses the main factors that influence the yield and quality of polysaccharides, specifically
carrageenans and agars (sulfated galactans) found in red algae species (Rhodophyta). In addition, its
historical, current, and emerging applications are also discussed. Carrageenan has been influenced
mainly by photosynthetically active radiation (PAR) and nitrogen, while its relationship with temper-
ature has not yet been replicated by recent studies. Agar’s seasonal trend has also been found to be
more ambiguous than stated before, with light, temperature, nutrients, and pH being influencing
factors. In this review, it is also shown that, depending on the compound type, seaweed polysaccha-
rides are influenced by very different key factors, which can be crucial in seaweed aquaculture to
promote a high yield and quality of polysaccharides. Additionally, factors like the extraction method
and storage of polysaccharides also influence the yield and quality of these compounds. This review
also highlights the drawbacks and inadequacy inherent from the conventional (or current) extraction
technology approaches.

Keywords: polysaccharide; red algae; yield and quality; extraction technology

1. Introduction

Under the sea surface, providing a significant part of the world’s oxygen and forming
habitats teeming with life, seaweeds grow abundantly. Seaweeds are photoautotrophic
multicellular organisms (mainly marine, with some species that live in freshwater) belong-
ing to the domain Eukarya and the kingdoms Plantae (green and red algae) and Chromista
(brown algae). Seaweeds are divided into three phyla according to their pigment composi-
tion and chemical content [1,2]: green (Chlorophyta), brown (Ochrophyta, Phaeophyceae),
and red (Rhodophyta). They are widely distributed geographically, from tropical to polar
regions, with ecoregions ranging from intertidal to submerged zones that are still exposed
to sunlight [3]. Seaweeds’ chemical content diversity results from their distribution, which
translates into a diversity of environments. In response to harsh environmental stresses,
seaweeds synthesize unique polysaccharides, long-chain polymers made up of simple
sugars that are chained together with glycosidic bonds. These polysaccharides have several
functions, such as protection against waves and desiccation, the maintenance of ionic
equilibrium, structure for the cell walls, and food reserves [4,5].
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Polysaccharide content and quality in seaweeds vary greatly with seasons and are
influenced by many different biotic and abiotic factors [6–8]. The body of knowledge
about factors influencing the polysaccharides in seaweeds varies between the type of
polysaccharide; but even for the well-studied ones, conclusions are far from consistent
between studies and species. Some reviews exist for the responses of carrageenan [6,9]
and agar [8,10], but the great variation in the results of recent studies demonstrates the
relevance of a new review for the responses of these polysaccharides in seaweeds.

Abdul Khalil et al. [11] noted that one of the drawbacks of the current phycocolloid
production (derived from red seaweed) is the difficulty of controlling and optimizing the
yield of agar and carrageenan. Moreover, viable large-scale production benefits from stan-
dardized products, as argued for high-value bioactive products derived from seaweeds [12].
Cultivation methods are potentially adjustable to improve polysaccharide content [12].
The control over environmental factors in order to do this can easily be provided in on-
shore aquaculture [13]. Offshore and nearshore cultivation can be adjusted by selecting
locations with both suitable environmental conditions [12] and cultivation techniques [14].
Additionally, knowledge about the seasonality of polysaccharides might also inform the
optimal moment of harvest. In addition to practical purposes, understanding the influence
of various factors on polysaccharides in seaweeds could be scientifically relevant in our
precise understanding of the responses of seaweeds to global warming [15]. All in all,
knowledge is needed about the influence of nutrients, carbon metabolism [16], and other
influential factors [6,8].

Therefore, the aim of this review is to discuss the main factors that influence the
quantity and quality of agar and carrageenan in red algae species (Rhodophyta). Addi-
tionally, the chemical structure of these polysaccharides will be emphasized, alongside
their historical, current, and emerging applications. Factors like the extraction method and
storage of polysaccharides also influence the yield and quality of these compounds, so
some highlights of the drawbacks and inadequacy inherent from the conventional (or cur-
rent) extraction technology will be stated. Finally, abiotic and biotic factors that affect live
seaweeds and are relevant for its cultivation are discussed comprehensively in this review.

2. Red Seaweed Polysaccharides: Agar and Carrageenan

Humans have used seaweeds for hundreds of years as a food source [17]. Although up
to 40% of seaweed production is directly for food, a significant proportion of global seaweed
is produced with the aim of deriving polysaccharides [18]. Four widely used seaweed
polysaccharides are carrageenan, agar, alginate, and fucoidan [19]. The first three are the
main phycocolloids, seaweed-derived (‘phyco’) substances, that can form gels or viscous
dispersions with water (‘colloid’) [11,20]. Because of this property, they are commonly
used in both the food and pharmaceutical industries, and they represent by far the largest
market share of all seaweed polysaccharides [21,22]. The seaweed polysaccharide market is
expected to keep on increasing significantly for all four of the above polysaccharides [21]. A
telling illustration of this is the boom of Indonesia’s seaweed industry in recent years, which
almost exclusively consists of carrageenan-producing seaweeds (carrageenophytes) [13,21].

2.1. Chemical Composition

Seaweed polysaccharides are complex sugars present in many types of seaweed.
These types of polysaccharides are noteworthy for their unique chemical composition
and functional capabilities, which have uses in food, medicines, and biotechnology. Sea-
weed contains several forms of polysaccharides, including agar, carrageenan, alginate,
fucoidan, and laminarin. Here is a breakdown of the chemical makeup of these essential
polysaccharides.

2.1.1. Agar

Agar (Figure 1) is a polysaccharide mainly found in red algae families such as Gracilar-
iaceae and Gelidiaceae. The main components of agar are agarose and a charged fraction
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called agaropectin [23]. These two polysaccharides have the same monomers, but different
structures. The first one is a linear polymer consisting of alternating β-D-galactose and
3,6-anhydro-L-galactose units linked by glycosidic bonds, and it is the fraction that mostly
determines the gelling properties of agar. The second agar component, agaropectin, is a
heterogeneous agarose consisting of the same repeating units in which some 3,6-anhydro-
L-galactose rings are replaced by L-galactose-6-sulphate or by methoxy or pyruvate groups,
consequently reducing the polymer gelling properties. Due to its components, agar is a
hydrophilic colloid that can form reversible gels after being cooled from a hot aqueous
solution [24,25].
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2.1.2. Carrageenan

Carrageenan, a polysaccharide only present in red algae, consists of D-galactose and
3,6-anhydo-D-galactose and can reach up to 30–50% of their dry weight [26] in species
like Chondrus crispus (Figure 2) [27] and Mastocarpus stellatus (Figure 3) [28]. The chemical
structure of carrageenan is very heterogeneous.
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According to the number and position of sulfate substitutions, as well as the location
of 3,6-anhydro bridge in α-1,4-linked galactose residues, the carrageenan polysaccharides
can be divided into kappa (κ-), iota (ι-) and lambda (λ-) type carrageenans (Figure 4) [29],
although there have been reports of other types like xi, mu, and theta [30]. Carrageenan
provides anion-hosting positions for enhanced gel structure because of its double helix



Mar. Drugs 2024, 22, 432 4 of 29

arrangement. The different fractions differ in the ions they accept, with κ-carrageenan usu-
ally accepting monovalent ions (like K+) and ι-carrageenan commonly accepting divalent
ions (such as Ca2+).
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2.2. Historical Background

Seaweeds have been used by humans in the food industry and in medicine for over
six centuries, but only relatively recently have natural compounds from them been isolated,
identified, and studied [31]. Agar was the first phycocolloid that was extracted, with records
of extraction from Mino Tarozaemon in Japan that date back to the late 1650s or early 1660s.
In those records, the compound was designated as ‘kanten’ [32]. Nowadays, agar is mostly
extracted from seaweeds belonging to the two genera, Gelidium (Figure 5) and Gracilaria
(Figure 6) [33], and due to its thermal reversibility, is primarily used for its thickening
properties and serves as a plant-based alternative to animal-origin gelatine [34,35].
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Another polysaccharide that is a key ingredient for the food industry is ‘carrageen,’
as it was first called, which was discovered by the British pharmacist Stanford in 1862,
who extracted it from the Irish Moss (Chondrus crispus). The name was later changed to
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carrageenan so as to comply with the ‘-an’ suffix for the names of polysaccharides [36]. Car-
rageenan has been used in Ireland since 400 AD as a gelatine and as a home remedy to cure
coughs and colds, and it is known to have been used in China since around 600 BC [37,38],
being introduced to the industry in the early 1930s. The modern carrageenan industry
dates from the 1940s, after carrageenan being chosen as a stabilizer for the suspension of
cocoa in milk chocolate [29].

3. Seaweed Polysaccharides’ Current Industrial Applications

Seaweed polysaccharides offer a wide variety of uses due to their distinct functional
characteristics. These numerous uses illustrate the value of seaweed polysaccharides in a
variety of sectors, owing to their functional qualities such as gelling, thickening, stabilizing,
and bioactivity. Although, there are only four major industries (food, pharmaceutical,
cosmetic, and agricultural) using a large amount of the agar and carrageenan extracted by
the phycocolloid extraction industry.

3.1. Food Industry

Agar was the first hydrocolloid, with a European registration number of E406, ap-
proved as GRAS (Generally Recognized as Safe) by the Food and Drug Administration
(FDA), which employed it as additive in the food industry [39]. About 80% of the agar
produced globally is used for food applications [40]. In Asian countries, agar is a popular
component of jellies, wherein seaweeds undergo boiling, with some flavour added and
cooling to formed jellies. It has been reported that agar applications are based on their func-
tional qualities such as gel strength. Low-quality agar is used basically in food products,
while some may extend to industry applications for paper sizing, coating, adhesives, textile
printing/dyeing, casting, and impression [11]. Despite being listed as a permitted food
additive, agar (E406) is only used in a restricted number of food items. It is believed that
around 90% of marketed agar is intended for the food sector [41].

Carrageenan is often applied in dairy products and within the baking industry due to
its excellent functional properties. In addition to its properties of binding milk molecules,
it also retains water, through which it stabilizes processed meat products. Furthermore,
the common use as a jellifying agent is also applied to carrageenan [34,42]. However, it
should be noted that its gel-forming abilities depend on the type of carrageenan used, with
iota and kappa carrageenan forming a gel in the presence of potassium or calcium [37].
Carrageenans are employed in a variety of food and beverage recipes to provide thickness,
stability, and gelling. These phycocolloids are also used for immobilizing biocatalysts,
in toothpaste as a stabilizer, in air freshener gels, in pet food, and in meat products [41].
The new applications of carrageenan in the food industry include its use as a protective
coating on fresh-cut packaged food, wherein carrageenan acts as a gas barrier, changing
the cut surfaces of the fruit and reducing respiration, which consequently slows down the
discolorations and maintains texture throughout the shelf life [11,33].

3.2. Pharmaceutical and Medicine Industry

In addition to their use in the food industry, algal polysaccharides are commonly used
in the pharmaceutical industry and the medical sector, where they are also often used
because of their jellifying, stabilizing, and thickening properties, as well as the aforemen-
tioned bioactivities [43]. Phycocolloids can be used as ‘functional foods,’ which have health
benefits and can prevent chronic diseases [44]. The bio-nanostructures of algal polysaccha-
rides have become a relevant addition to the food industry [45]. Their application is mainly
health focused and includes supplements and prebiotics [45,46]. Algal polysaccharides
provide antibacterial [47], antimicrobial [48], and antiviral properties [49]. Their medical
applications are vast, with algal polysaccharides displaying cancer- and tumor-preventive,
anti-inflammatory, and antioxidant properties [50,51]. They are commonly used in drug de-
livery and disinfection [30,35], while less commonly, they are used as dissolving bandages
and in tissue engineering [35,48]. The various polysaccharides also have some specific uses.
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Agar is known to decrease blood glucose, which is important for people with hypergly-
caemia, and prevents the aggregation of red blood cells. It also has the ability of absorbing
ultraviolet radiation [44]. It is also used to produce pharmaceutical-grade growth media
for laboratory purposes. Agar is normally used for culture medium because it is not easy to
metabolize, is non-digestible, and has good gel firmness, elasticity, clarity, and stability [11].
This kind of agar, usually referred to as medium-quality agar, can be used to obtain mono-
clonal antibodies, interferons, steroids, and alkaloids, plus act as a bulking agent, laxative,
suppository, capsule, tablet, and anticoagulant in medicinal/pharmaceutical fields [11,52].
Meanwhile, the most highly purified agar, usually obtained from a fraction of agar called
agarose, is used for separation in molecular biology (electrophoresis, immune diffusion,
and gel chromatography) [11,52].

Carrageenan possesses several pharmaceutical properties, such as anticoagulant, an-
tithrombotic, antiviral, antitumor, and cholesterol-lowering effects, as well as immunomod-
ulatory and antioxidant activities [11,52]. The application of carrageenan in the pharmaceu-
tical field was mostly based on these pharmaceutical aspects. Carrageenan is used in the
production of tetracyclines, a very important group of antibiotics: With its ability to form
a gel, it is used as an immobilizer of Streptomyces aureofaciens, the bacteria used for those
antibiotics [37]. However, carrageenan can also be used in the production of D-aspartic acid
for semi-synthetic antibiotics [37,53]. Moreover, carrageenan has been proven to inhibit the
attachment of viruses such as the human papillomavirus, dengue virus, influenza A, and
herpes virus [11,52].

3.3. Cosmetic Industry

Consumers are increasingly substituting seaweed-based cosmetics for synthetic equiv-
alents. These seaweed-based products often comprise pure components or extracts of
several substances. Furthermore, seaweed chemicals have crucial properties for cosmetic
use, such as minimal cytotoxicity and allergen concentration. However, seaweeds’ bio-
chemical profiles can vary, and extraction procedures might result in the loss of certain
biomolecules. Macroalgal hydrocolloids, also known as phycocolloids, are the most im-
portant polysaccharides for industrial commercialization. Phycocolloids are structural
polysaccharides found in seaweed that often produce colloidal solutions, which are tran-
sitional phases between solutions and suspensions. As a result, polysaccharides may be
employed in a variety of sectors, including cosmetics, as thickening, gelling, and stabilizing
agents for suspensions and emulsions [54].

Pharmacy and cosmetics consume 20% of total carrageenan output. Carrageenan is
found in the formulations of many everyday cosmetic goods, including toothpastes, hair
wash products, lotions, medications, sun blocks, shaving creams, deodorant sticks, sprays,
and foams [32,55–57]. Their ability to form hydrogels enables them to be employed in
a variety of applications, including antiviral, antibacterial, and even pathophysiological
processes such as hyperlipidemia management [54]. Agar can be used as an emulsifier
and stabilizer in creams, as well as to manage the moisture content in cosmetic products
such as hand lotions and liquid soap, deodorants, foundation, exfoliant, cleanser, shaving
cream, face moisturizer/lotion, and acne and anti-aging treatments [32,58]. Agar can
endure high temperatures (up to 250 ◦C) and preserve its properties even near boiling-
point temperatures, making it excellent for its application in jellied confections because the
components may be treated at high temperatures and subsequently cooled down [54].

3.4. Agriculture Industry

Seaweed polysaccharides are utilized as a functional component in traditional fertil-
izers to help retain water and nutrients in soils. Their principal use in agriculture is as
a soil conditioner. They are natural materials that can absorb massive volumes of water
(super-absorbents) at up to hundreds of times their own weight. In agriculture, these
polysaccharides are frequently referred to as moisture-holding hydrogels, which improve
soil water retention, a critical soil characteristic. Agricultural researchers created super-
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absorbents to improve soil’s abiotic characteristics. They promote water retention, water
use efficiency, soil permeability, infiltration rates, plant performance, and soil aeration.
Furthermore, they can reduce irrigation frequency and compaction shift, limit erosion and
water drainage, and reduce fertilizer solubility rates [59].

Carrageenans and their oligomers, derived from diverse red seaweeds, are a rich
source of bioactive compounds that activate plant defense systems and provide resistance
to abiotic and biotic stressors. This can be accomplished by regulating a variety of physio-
logical and biochemical processes. Carrageenans also regulate a variety of plant metabolic
processes, including cell division, purine and pyrimidine synthesis, nitrogen and sulfur
absorption, and photosynthesis. On the other hand, while numerous studies have been con-
ducted on the bioactivities of agarophytes, there has been little research on the bioactivities
of agar, particularly its influence on plants [59].

Thus, the red seaweed polysaccharides have widespread industrial applications nowa-
days (Table 1). And before introducing the polysaccharides in new industries and usages,
there is the need to produce more seaweed with high polysaccharide yield, but with quality
secured. Thus, it is important to understand the drivers for seaweed polysaccharide pro-
duction. Other uses are being developed and applied, for example, in paper sizing, coating,
adhesives, textile printing/dyeing, casting, and impression.

Table 1. Résumé of the red seaweed polysaccharides’ industrial applications.

Industry Polysaccharide Main Applications Specific Uses

Food Industry

Agar
- Food additive (E406, GRAS
approved) - Low-quality agar in food products

- Popular in jellies - High-quality agar in limited food items

Carrageenan

- Food additive (E407, GRAS
approved) - Common use as a jellifying agent

- Processed meat products
stabilization - Binds milk molecules, retains water

- Protective coating on fresh-cut
packaged food

- Gas barrier, reduces respiration, slows
discoloration, and maintains texture in packaged
foods

Pharmaceutical
Agar

- Pharmaceutical-grade growth media
- Decreases blood glucose, prevents red blood cell
aggregation- Acts as bulking agents in laxatives,
suppositories, capsules, tablets, and anticoagulants

- Drug delivery systems - Production and encapsulation of monoclonal
antibodies, interferons, steroids, and alkaloids

- Functional foods with health
benefits

- Decreases blood glucose, prevents red blood cell
aggregation

- Medical analysis
- Highly purified agar (agarose) used in molecular
biology (electrophoresis, immune diffusion, gel
chromatography)

Carrageenan - Pharmaceutical drugs and agents

- Tetracycline production (immobilizes bacteria for
antibiotic production)- Produces D-aspartic acid
for semi-synthetic antibiotics- Inhibits viruses like
human papillomavirus, dengue, influenza A, and
herpes virus

- Functional foods with health
benefits

- Cholesterol-lowering effects, immunomodulatory
activity, and antioxidant activities

Cosmetic
Agar - Structural ingredient

- Used in creams, hand lotions, liquid soap,
deodorants, foundation, exfoliant, cleanser,
shaving cream, face moisturizer/lotion, acne and
anti-aging treatments

Carrageenan - Structural ingredient
- Applications include toothpastes, hair wash
products, lotions, medications, sun blocks, shaving
creams, deodorant sticks, sprays, and foams
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Table 1. Cont.

Industry Polysaccharide Main Applications Specific Uses

Agriculture
Agar - Structural ingredient

- Acts as moisture-holding hydrogel, reducing
irrigation frequency, improving soil aeration, and
limiting erosion- Soil conditioner, improves water
retention, soil permeability, and plant performance

Carrageenan - Functional ingredient - Regulates plant metabolic processes, including
purine and pyrimidine synthesis, nitrogen and
sulphur absorption- Activates plant defense systems,
provides resistance to abiotic and biotic stressors

- Regulates physiological and
biochemical processes in plants
(e.g., cell division, photosynthesis)

Polysaccharide production, notably from red seaweeds, is influenced by a variety of
variables, including economic, environmental, technical, and consumer demands [60]. The
growing consumer preference for natural and clean-label products is boosting demand
for seaweed-derived polysaccharides such as agar and carrageenan. Polysaccharides are
useful for controlled drug delivery systems, wound dressings, and tissue engineering
due to their biocompatibility, non-toxicity, and gel-forming properties. The designation
of polysaccharides as GRAS (Generally Recognized as Safe) by food and drug regulatory
agencies such as the FDA expands their usage in a variety of sectors, promoting more
manufacturing. Countries with extensive seaweed resources are increasing polysaccharide
production to fulfill global demand, particularly in areas with a high consumption of natural
and health-promoting components. Seaweed farming is considered more sustainable than
land-based agriculture since it uses fewer resources. This sustainability issue is driving
increased investment in seaweed polysaccharide synthesis [13].

4. Drivers of Polysaccharide Production

Seaweed polysaccharides have been highlighted as a sustainable resource for the
future, resulting in an increased demand for their utilization and, subsequently, produc-
tion. The global need for significant amounts of seaweed will increase in the next years;
nevertheless, there is still an ongoing cultivation system optimization required to meet this
expanding demand, as well as to ensure sustainable seaweed production and processing.
There is a need to grow and collect more seaweed in order to meet the increased demand
for seaweeds and seaweed-based goods. The scarcity of farmed seaweed poses a significant
threat to wild seaweed populations owing to commercial overexploitation, raising serious
marine environmental problems [13]. Thus, for the seaweed polysaccharide industry, it is
very important to maintain the quality, but obtain higher yields of the polysaccharides. For
this, there is a need to study the seaweed metabolism and reaction to abiotic and biotic
factors, and to increase the polysaccharide yield without losing quality value or increasing
the economic costs beyond effectiveness.

Many environmental and biological variables affect the formation of seaweed polysac-
charides. Knowing and improving these dynamics might help increase seaweed polysac-
charide output to satisfy rising global demand while maintaining sustainability and en-
vironmental protection. A variety of environmental and biological factors determine the
amount, quality, and content of the seaweed polysaccharides produced.

Due to the direct effect of environmental extrinsic variables, seaweed polysaccharides
can be synthesized in large quantities and/or at excellent quality. Extrinsic influences on
seaweed phenolic compound quality and quantity include seaweed geolocation, ecological
characterization, season, biotic factors (herbivory or direct competition with other benthic
organisms), and abiotic factors (salinity, pH, light incidence, temperature, and water
nutrient composition). However, inherent drivers in seaweed DNA and codifications
have a significant influence, perhaps limiting natural polysaccharide synthesis. There
are significant variances in the polysaccharides generated by red seaweeds, including
their natural amount and innate bioactivities. This explains why various outcomes might
be obtained using the same abiotic and biotic factors. Thus, it is necessary to conduct
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preliminary investigations on seaweed farms for polysaccharide extraction in order for the
farms to be economically sustainable and viable [61–63]. However, there is scarce literature
on this important theme.

4.1. Abiotic Factors

Light has a critical role in photosynthesis (carbon sequestration for energetic com-
pounds), influencing seaweed growth and metabolism. The intensity and quality of light
can influence the formation of polysaccharides such as agar, carrageenan, and alginate.
Seaweed grows at different depths that receive variable levels of light, which influences
the amount and kind of polysaccharides produced. Red seaweed flourish in lower light
circumstances than green and brown seaweed. Temperature affects seaweed’s metabolic
rate and polysaccharide production. The optimal temperature varies by species, although
higher temperatures usually enhance growth rates until stress reduces polysaccharide
output. Seasonal temperature variations can cause oscillations in polysaccharide content,
with certain species generating more during cooler seasons [64–66].

These nutrients are needed for seaweed development. Nutrient-rich waters often
encourage faster development rates and can alter polysaccharide compositions. However,
extra nutrition might cause alterations in the polysaccharide structure. Iron, magnesium,
and potassium are also required for the enzymatic activities involved in polysaccharide
production. Variations in salinity can cause osmotic stress in seaweed, altering metabolism
and polysaccharide formation. High salt levels often enhance the formation of some
polysaccharides, such as alginate, as a defensive measure. The kind and number of polysac-
charides produced by different seaweed species vary depending on their salinity tolerance.
The mechanical motion of water, or water flow, influences nutrient availability and gas
exchange, both of which are necessary for seaweed growth and polysaccharide production.
Moderate water flow is normally favourable, but excessive circumstances might result in
physical damage and reduced polysaccharide output. High turbidity can decrease light
penetration, affecting photosynthesis and, hence, polysaccharide formation [64–66].

4.2. Biotic Factors

Different seaweed species, and even different strains of the same species, have distinct
genetic makeup that influences the kind and quantity of polysaccharides produced. Thus,
the same seaweed in one location can have distinct input from identical abiotic factors.
The stage of the seaweed’s life cycle (i.e., juvenile vs. mature) can alter polysaccharide
content, with some stages producing more. Polysaccharide production requires specialized
enzymes, which are influenced by both genetic and environmental influences. The activity
of these enzymes varies, influencing the amount and structure of the polysaccharides
generated [64–67].

Herbivory and pathogen assaults can also cause polysaccharide synthesis as a defen-
sive strategy. The content of these polysaccharides can vary to improve their protective
properties. Microbial populations on the seaweed’s surface can impact polysaccharide
synthesis [64–67].

4.3. Red Seaweed Polysaccharide Studies in Polysaccharide Production
4.3.1. Carrageenan

Carrageenan is a sulphated galactan found in the cell walls of various red algae
and is thought to give structure to seaweeds, contribute to ionic equilibrium, and protect
against desiccation [6]. Véliz et al. [6] conducted a meta-analysis of factors influencing
the carrageenan content of Gigartinales seaweeds, based on the carrageenan yields of
63 field research papers and a database of the values of several environmental variables.
However, since then, several new studies have been published [15,31,68,69]. Moreover, the
meta-analysis did not allow for the consideration of potentially influential factors like wave-
action, desiccation and pH, or data from experimental studies. To fill in the knowledge
gaps, these subjects will be reviewed here. Genus and ecoregion were the most important
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predicting factors for carrageenan content [6], which shows the influence of phylogeny and
the particular circumstances caused by their direct environment. Furthermore, it underlines
that differences in chemical content can be caused by the local adaptation or acclimatization
of seaweeds [12]. In addition to genus and ecoregion, the factors were ranked starting with
photosynthetically active radiation (PAR), followed by nitrate, temperature, phosphate,
depth, salinity, extraction method, family, season, and life cycle phase [6]. Notably, season
was ranked among the least important predictors, as was life cycle phase [6], although the
type of carrageenan (kappa, iota, or lambda) in Gigartinaceae and Phyllophoraceae was, in
fact, found to be dependent on life stages [70].

Effect of Photosynthetically Active Radiation (PAR)

Photosynthetically active radiation (PAR) was found to be the most influential en-
vironmental factor on the carrageenan content of Gigartinales seaweeds collected in the
field [6]. PAR is one of the main factors determining photosynthesis in macroalgae, and
this, in turn, determines the amount of carbon available for carrageenan biosynthesis [6].
Thus, it is not surprising that several studies have found a positive relation between PAR
and carrageenan content in various species of seaweeds [6,71,72]. However, in several other
studies, high PAR values coincided with lower carrageenan yield [6,31,73,74], where there
is photoinhibition. These seemingly opposing findings can be explained by the fact that not
only light, but also nutrient availability determines what type of carbohydrate production
is favoured [6,16]. In an experiment on Solieria chordalis (Figure 7), Fournet et al. [75] found
that floridean starch, produced during high-light and low-nutrient conditions, was likely
converted into carrageenan during high-light, nutrient-enriched conditions (150 µmol L−1

nitrate, 7 µmol L−1 phosphate) (cultivation method: filtered seawater with 0 to 49 µmol
NO3

− and 0 ± 1 to 0 ± 8 µmol PO4 per liter). With weekly additions of nitrate (NaNO2
−)

and phosphate (Na2HPO4.2H2O), seawater was changed once a week. Cool-white, fluores-
cent lights were used to give an irradiation of 50 µmol photons m−2 s−1 (400–700 nm) and
a photoperiod of 16:8 (light/dark). In addition to interactions with nutrient enrichment,
another interaction was observed between light and life cycle phase in an experiment expos-
ing Mazzaella laminarioides to various light treatments by Navarro et al. (cultivation method:
Provasoli-enriched saltwater [20 mL L−1; 31 PSU] was kept in a temperature-controlled
chamber at 9 ± 1 ◦C and artificially irradiated with 55 µmol photons m2 s−1 PAR, supplied
by Philips TLT 20W/54 daylight fluorescent tubes, on a 12–12 h light–dark cycle) [76].
Tetrasporophytes decreased in carrageenan yield under high-light conditions, whereas
gametophytes increased carrageenan content in the treatments with UV light, suggesting a
protective function of carrageenan in the gametophytes of this seaweed species.
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Effect of Light

The influence of light on carrageenan quality seems unclear. Wakibia et al. [72] found
gel strength from Kappaphycus alvarezii (Figure 8) to coincide with high photon fluency
rates. In contrast, Kravchenko et al. [31] found a positive relation between PAR and
the number of sulphate groups in carrageenan in Gymnogongrus flabelliformis (formerly
Ahnfeltiopsis flabelliformis) (no cultivation, wild sampling and analysis), with a high amount
of sulphate commonly associated with lower gel strength [72]. However, the link between
sulphate and gel strength is still controversial, and gel strength is likely increased by more
factors like molecule length and 3,6-anhydrogalactose content [72].
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From the 1970s onwards, the high impact of nitrogen availability on phycocolloid
content in seaweeds has gained a lot of attention [77]. The subsequent concept of the ‘Neish
effect’ describes that the carrageenan content of seaweeds in nitrogen-enriched seawater
tends to be lower than in unenriched waters [77]. Nutrient addition to starved seaweeds is
found to reduce carrageenan content in many studies, and likewise, carrageenan content is
often found to be higher with low or no enrichment [77,78]. This is generally thought to be
caused by the predominance of protein synthesis during the active growth of seaweeds,
whereas the focus shifts to polysaccharide synthesis during N-limitation [79].

Additionally, since a low dry weight sometimes coincides with periods of active
growth, the above can explain why carrageenan content sometimes follows the biomass
dynamics in seaweeds [31,74]. However, the opposite of the Neish effect is also fre-
quently observed, with carrageenan content being higher in nutrient-rich waters [6,73,75,80].
Chopin et al. [77] note that a slight degree of nitrogen enrichment yields the highest car-
rageenan content in Agardhiella subulata. In addition, Wakibia et al. [72] stress that often
inorganic carbon supply is also limiting in seaweeds, making both high growth rate and
high carrageenan content possible with an abundance of both nitrogen and carbon.

Besides, analogous to the Neish effect, a ‘P effect’ has also been found for
phosphorus [77,81], although phosphate had a slightly lower variable importance in the
meta-analysis by Veliz et al. [6]. With temperature influencing virtually every aspect of sea-
weed functioning [16], it is expected that temperature also influences carrageenan content in
seaweeds. In multiple studies, the high carrageenan content of Gigartinales coincides with the
warm season, which has been linked to higher rates of photosynthesis and growth [6,71,82].
However, fast growth is not always clearly linked to high carrageenan yields, as shown by
the build-up of carrageenan content in various Eucheuma species and Chondus crispus from
summer to winter, coinciding with a stagnated growth [79,83]. In various other species and cli-
mate zones (from warm to cold), high carrageenan yields, and sometimes carrageenan quality,
have been linked to colder temperatures and seasons [6,15,31,74,78,84]. Maybe, in addition to
phylogenetic differences, these opposed trends could be unified by potential interactions with
nitrogen availability. In addition, in a laboratory experiment subjecting the tropical species
Kappaphycus alvarezii to various temperature treatments, carrageenan yield, quality, and vis-
cosity were all negatively impacted by temperatures higher than ambient [15]. Since these
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effects were accompanied by a reduction in several parameters indicating seaweed health,
this experiment might first and foremost demonstrate an upper limit in temperature tolerance,
which predicts risks for carrageenan production due to global warming [15]. Salinity is among
the less important predictor variables in the meta-analysis of Véliz et al. [6]. In line with this,
the literature about salinity is ambiguous. The negative charge of sulphated polysaccharides
is hypothesized to play a role in maintaining the ionic equilibrium in seaweeds [4].

Effect of Other Abiotic Factors

Following this, Hypnea musciformis (Figure 9) carrageenan yield and viscosity increases
in a field study are thought to be driven by a higher temperature and salinity [85]. Although
salinity increased carrageenan viscosity in Kappaphycus alvarezii, it decreased yield [86].
Even more contrasting is a field study on Hypnea flagelliformis, which was seen to yield
higher carrageenan quantities at lower salinities [84]. Depth was another variable with
some predictive power for carrageenan content in the meta-analysis of Véliz et al. (2017),
which might be viewed as a product of the effects of desiccation, temperature, light,
and other abiotic factors. However, both for Kappaphycus striatus (“var. sacol”) and for
Kappaphycus alvarezii, no effect of depth could be established on carrageenan yield or
quality [87,88]. A more recent field experiment on Kappaphycus alvarezii growing at depths
of 0.2, 1, 2, 3, 4, and 5 m confirms this, even though growth rates varied with depth (offshore
farming, floating raft cultivation system) [68]. On the other hand, carrageenan viscosity
in Kappaphycus alvarezii was lower at a depth of 5 m compared to 2 m depth in a field
cultivation experiment, and 64% of the variation in viscosity could be explained by the
values of other multiple abiotic factors differing between depths [69].

Mar. Drugs 2024, 22, x  13 of 31 
 

 

 
Figure 9. Hypnea musciformis. 

In the meta-analysis of Véliz et al. [6], exposure to wave-action and water movement 
is often considered to influence carrageenan content. Carrageenan content and viscosity 
are thought to increase flexibility in seaweeds and function as structural components as 
protection against wave-action and water movement [71,72,85,89]. This has led several 
authors to hypothesize wave-action as a driver for the dynamics of carrageenan quantity 
and quality they observed [71,72,85,89]. However, water motion also influences the 
nutrient and carbon supply for seaweeds [16,72], which in turn, can influence 
polysaccharide content. Additionally, desiccation is also thought to increase carrageenan 
production [71,85]. By retaining water, carrageenan can help seaweeds survive periods of 
desiccation from emersion [71,85]. 

4.3.2. Agar 
The other sulfated galactan commonly found in the cell wall of various red algae is 

agar. It is thought to protect algae against desiccation, temperature, extreme salinity, pH, 
and pathogens, in addition to maintaining their ionic equilibrium [4,5]. A lot of the 
research on agar in seaweeds has focused on optimizing extraction methods, as reviewed 
by Abdul Khalil et al. [11]. Even so, environmental influences on agar content have been 
studied extensively, too. Trends in this have revealed that agar content is mainly higher 
in summer, under hypo- and hyper-salinity and light deprivation, while it is lower with 
nitrogen enrichment and epiphytic growth [5]. An earlier review of the factors influencing 
agar yield and quality was written by Lee et al. [8]. However, several new studies have 
been published, which will be discussed here, alongside the main points of the study by 
Lee et al. [8]. 

Effect of Seasonal Changes of Environmental Conditions 
Seasonal changes of environmental conditions influence agar content in seaweeds [8]. 

Most papers on the subject observe a higher agar content in summer than in winter at 
temperate latitudes and a higher content in the rainy season than in the dry season at 
tropical latitudes [8]. The occasionally different observations on this subject are 
hypothesized to be due to methodological differences, regional effects like habitats and 
environmental variables, and genetic differences [8,90]. 

Several recent studies (wild sampling) are inconsistent with the general seasonal 
trend as presented by Lee et al. [8]. Gracilariopsis persica in Iran [91] and Gracilaria salicornia 
in Kenya [92] yielded constant agar quantities between months. Gelidium spinosum 

Figure 9. Hypnea musciformis.

In the meta-analysis of Véliz et al. [6], exposure to wave-action and water movement
is often considered to influence carrageenan content. Carrageenan content and viscosity
are thought to increase flexibility in seaweeds and function as structural components as
protection against wave-action and water movement [71,72,85,89]. This has led several
authors to hypothesize wave-action as a driver for the dynamics of carrageenan quantity
and quality they observed [71,72,85,89]. However, water motion also influences the nutrient
and carbon supply for seaweeds [16,72], which in turn, can influence polysaccharide
content. Additionally, desiccation is also thought to increase carrageenan production [71,85].
By retaining water, carrageenan can help seaweeds survive periods of desiccation from
emersion [71,85].
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4.3.2. Agar

The other sulfated galactan commonly found in the cell wall of various red algae
is agar. It is thought to protect algae against desiccation, temperature, extreme salinity,
pH, and pathogens, in addition to maintaining their ionic equilibrium [4,5]. A lot of the
research on agar in seaweeds has focused on optimizing extraction methods, as reviewed
by Abdul Khalil et al. [11]. Even so, environmental influences on agar content have been
studied extensively, too. Trends in this have revealed that agar content is mainly higher
in summer, under hypo- and hyper-salinity and light deprivation, while it is lower with
nitrogen enrichment and epiphytic growth [5]. An earlier review of the factors influencing
agar yield and quality was written by Lee et al. [8]. However, several new studies have
been published, which will be discussed here, alongside the main points of the study by
Lee et al. [8].

Effect of Seasonal Changes of Environmental Conditions

Seasonal changes of environmental conditions influence agar content in seaweeds [8].
Most papers on the subject observe a higher agar content in summer than in winter at
temperate latitudes and a higher content in the rainy season than in the dry season at tropi-
cal latitudes [8]. The occasionally different observations on this subject are hypothesized
to be due to methodological differences, regional effects like habitats and environmental
variables, and genetic differences [8,90].

Several recent studies (wild sampling) are inconsistent with the general seasonal trend
as presented by Lee et al. [8]. Gracilariopsis persica in Iran [91] and Gracilaria salicornia in
Kenya [92] yielded constant agar quantities between months. Gelidium spinosum (formerly
Gelidium latifolium) (Figure 10) did not show statistical differences in agar content between
seasons either, but varied in several gel quality characteristics, with, for example, gel
strength being the lowest in winter and increasing throughout the year [90]. In contrast,
the agar quality of Gracilaria vermiculophylla (formerly Agarophyton vermiculophyllum) was
the highest in summer (September) and the lowest in December [93]. However, in various
Hypnea species in Pakistan, agar yields were the highest in winter, with quality also varying
seasonally [94]. Gracilaria bursa-pastoris in Tunisia had the highest yield in spring [95].
Additionally, the adelpho-parasite is thought to influence the seasonal trends of agar from
Gracilaria salicornia in Thailand [96].
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Effect of Salinity

Salinities lower than 10 ppt and higher than 40 ppt are thought to increase agar yield
and slightly lower gel strength [8]. Possibly, the initial amount of floridean starch de-
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termines the influence of salinity on agar content, explaining differences between some
findings [8]. In a systematic and extensive experiment on the optimal ranges of abiotic
factors for Gracilaria gracilis cultivation, salinity interacted with ammonium and light
in its effect on agar yield (cultivation method: white-light, fluorescent lamps [Philips
Actinic BL, TL 15W, Poland] at 7 µmol photons m−2 s−1 under a 12:12 light/dark pho-
toperiod with different salinities [24, 32, and 40 PSU] were obtained by mixing natural
seawater [salinity = 42 PSU, 180 mg L−1 dissolved inorganic carbon, or DIC], pH = 7.9,
NH4

+ = 1 µmol L−1, NO3
− = 16 µmol L−1, PO4

3− = 10 µmol L−1 with tap water; germa-
nium dioxide [1 mL L−1] was injected to control diatom development) [97]. Low salinity in
combination with low light yielded more agar, which was hypothesized to be due to the
degradation of floridean starch under these circumstances [97]. However, in its interaction
with ammonium, high salinity and low ammonium levels yielded more agar [97]. Since
the latter was a more drastic effect, optimal agar yield was found to coincide with a high
salinity [97]. High salinity has also been related to increased agar gel strength and gelling
temperature and decreased melting temperature in Gracilaria debilis [98]. The seaweed
species and the impact of other abiotic and biotic factors can differentiate the results of
the studies; thus, this is why it is important to conduct seaweed cultivation assays for
polysaccharide extraction, to better manage and control the polysaccharide.

Effect of Light Deprivation

Light deprivation results in higher agar contents in Gracilaria and Gracilariopsis species,
whereas high-light conditions increase starch content [8], a compound that can be converted
to agar. Gel strength is enhanced, and L-galactose-6-sulphate content is lowered under low-
light conditions, an effect that is enhanced at high temperatures [99]. Additionally, altered
salinities, in combination with light deprivation, are thought to increase the degradation of
Floridean starch and, thus, yield higher agar quantities [8]. Affirming this, in the experiment
into the optimal growth conditions of Gracilaria gracilis by Fethi and Ghedifa [97], agar
production was the highest with high salinity and low light.

However, in another factorial experiment on Gracilaria corticata, no significant effect of
irradiance on agar yield was found [100]. Moreover, in the field, alongside a geographical
gradient in Chilean Gelidium lingulatum, there was no correlation between daily photosyn-
thetically active radiation (PAR) and agar content (wild sampling) [101]. This might be due
to potential interactions with light and other factors such as salinity, as found by Fethi and
Ghedifa [97].

The relation between light conditions and agar yield can also be investigated based
on depth, which causes lower light conditions. In the Chinese Gracilariopsis lemaneiformis
(formerly Gracilaria lemaneiformis), greater depth resulted in higher agar content [102], which
is in line with the effect of light-deprivation experiments [8]. However, Gracilaria gracilis in
Tunisia was found to yield more agar with a higher melting temperature at 0.5 m depth,
although gel strength and gelling temperature were higher at 2.5 m [103]. Besides depth, a
high sedimentation level also creates lower light conditions, which reduces photosynthesis
and, thus, reduces the agar yield when compared to no sediment [8,104].

Effect of Temperature

Temperature is possibly one of the main drivers of the seasonal changes of agar
content, as the agar yield increases throughout the summer (correlated with water tem-
perature) [8]. Gel strength is sometimes found to follow this trend, but also might be
lowered by temperatures higher or lower than ambient [8]; moreover, agar yields de-
crease with high temperatures during summer or rapid growth [8], suggesting that some
upper-temperature optimum exists. This might explain the fact that the agar yield was
higher in Gracilariopsis persica at temperatures of 17.45–22.5 ◦C, whereas it was lower at
higher temperatures [91]. However, alongside a large geographical gradient of daily
sea surface temperature (SST) in Chile, no correlation with agar yield was found in
Gelidium lingulatum [101]. Moreover, in a factorial experiment on Gracilaria corticata, temper-
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ature did not significantly affect agar yield [100]. Nevertheless, some gel quality parameters
have been found to be influenced by temperature: Gracilaria debilis gel strength is positively
correlated with SST [98], and in Gelidium spinosum, viscosity and gelling temperature are
thought to be influenced by water temperature [90].

Effect of Nitrogen Availability

Generally, nitrogen availability (of either the environment or seaweed tissue) has
an inverse relationship with agar content in Gracilaria and Gelidium species [8]. In In
Proceedings of the Gracilaria tenuistipitata var. liui, this inverse relationship with dissolved
organic nitrogen (DIN) is also found, with gel strength positively correlating to DIN; re-
markably, in Gracilaria fisheri, the exact opposite relation was found [105]. The negative
correlation between agar and nitrogen availability is probably due to seaweeds favouring
protein synthesis during high nitrogen conditions [8]. Generally, there seems to be an
inverse relation between agar yield and nitrogen, which has been observed in several
studies [90,98,106]. In accordance with this, gel strength and melting temperature were
generally found to be higher with high nitrogen availability [8]. More recently, affirming
the above, the gel strength of Gracilaria debilis agar was also found to be positively influ-
enced by nitrogen levels, whereas nitrite had a negative effect on agar yield [98]. In the
agarophyte Gracilariopsis lemaneiformis, nitrogen deficiency did not cause a difference in the
regulation of a molecular marker for agar content (UDP-glucose pyro-phosphorylase), but
after four days of nitrogen recovery, this marker was upregulated drastically, coinciding
with an increased soluble polysaccharide content [107]. Seasonal agar fluctuations in a
field study on Gracilaria salicornia were also explained by DIN fluctuations [108]. In the
optimum-ranges experiment by Fethi and Ghedifa [97], ammonium interacted with salinity,
with high salinity and ammonium starvation yielding higher agar contents. However, this
trend was not the same for nitrate, which highlights that seaweeds tend to use different ni-
trogen sources differently [16,97]. Moreover, it highlights the interactions between nitrogen
availability and other abiotic factors. Additionally, ammonium phosphate was found to
increase agar yield in Gracilaria corticata [100]. The influence of phosphate concentrations
on agar content has not been studied extensively. Lee et al. [8] note a decreased gel strength
at lower phosphate concentrations. Orthophosphate (PO4

3−) concentration was strongly
correlated to agar yield in one locality of a field study of Gracilaria bursa-pastoris in Tunisia,
and gel strength in two localities [95].

Effect of Sulphate and pH Concentration

The effect of low sulfate concentrations depends on the length of treatment, with three
weeks of deprivation reducing agar content, but five days slightly increasing agar yield and
gel strength [8]. Additionally, sulfate content in the agar of G. salicornia was found to be
reduced after sulfate deprivation, but not in Gracilaria changii [109]. Besides that, it appears
that the literature on this subject remains scarce. At the time of the review by Lee et al. [8],
the influence of pH on agar production in seaweeds was still unknown. Fortunately, now
its influence has been studied in an experiment with Gracilaria changii [110], establishing
that both lower (6.61) and higher (9.30) pH values than normal (8.04) increase agar yield.
This might be in order to protect the seaweeds from the stress deviations in pH cause [110].
Additionally, gel strength was weaker after a treatment with a pH of 9.30 than the other
treatments, but gelling temperature was lower after a treatment with pH 6.61 [110].

Effect of Wave Exposure/Water Movement

Wave exposure might also increase agar content, as hypothesized for Pterocladiella capillacea
(formerly Pterocladia capillacea) (Figure 11) in a field study [111]. However, this trend was not
confirmed by a study investigating the tube-net cultivation method for Gracilaria dura [106].
Different diameters of the tube-nets were found to induce different levels of water move-
ment, which resulted in different growth rates, but had no influence on agar quantity or
quality [106].
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Effect of Life Stage and Epiphytes/Epibionts

Lastly, agar yield is also influenced by biotic factors. The life stage is thought to have an
influence on agar content and quality, but this is mostly specific for different species [8]. Ad-
ditionally, epiphytes and epibionts may lower agar content in Pterocladiella capillacea [112].

The results presented by Inácio et al. [113] and Mendes et al. [114] support the impor-
tance of the cultivation of Gracilaria gracilis in aquaculture systems at estuarine adjacent
terrains, maintaining the nutritional quality of the algae when compared to wild specimens
obtained at coastal marine zones, thus promoting an eco-sustainable way to cultivate
seaweed for nutritious food purposes and promote global food security.

4.4. Additional Considerations

Elucidating the effects of separate environmental factors on polysaccharide quantity
and quality is not straightforward. Besides the fact that correlations in field studies do not
necessarily indicate causal relations, the matters are further complicated by interactions be-
tween various factors. For example, nitrogen uptake, which is thought to have an influence
on the content of some polysaccharides, not only is determined by the concentrations of
different nitrogen sources, but also interacts with water motion, light conditions, temper-
ature, carbon dioxide sources, probably salinity, and desiccation [16]. Moreover, besides
differences between species, age classes within the same species also display different
nutrient uptake rates [16]. In accordance with this, the dynamics of polysaccharide yield
in the seaweed studied by Tasende et al. [71] was best explained by interactions between
multiple environmental factors. All in all, to truly understand the drivers of polysaccha-
ride production, extensive factorial experiments are needed for different seaweeds and
sometimes life stages; for an example, see the study by Fethi and Ghedifa [97].

External factors have great importance for polysaccharide production; however, stud-
ies have found that the same factor can have distinct results and react differently with
other factors. Thus, it is important to note that to obtain the high yields of polysaccharide
with the same quality, it needs to be practical work, with the targeted seaweed in the
specific location, so that there will not be a theoretical common factor relation adjusted for
the seaweed’s polysaccharide production. This is similar to seaweed phenolic compound
production, wherein the high salinity in Australia and Portugal has an inverse effect on
the phenolic compound production [61]. Moreover, as demonstrated above, the results
and inputs from the studies can be due to different cultivation methods and whether they
involved lab scale, inshore, or offshore cultivation. Also, the nutrients in the studies are
mostly different, and in wild and field sampling, there is no control over some important
variables. Thus, these variations can give inverse inputs to studies involving assays on the
same effects.
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However, wild and field sampling can have a bigger role in understanding the real
behaviour of the seaweeds in that location, which is very important for seaweed farming.

5. Extraction Technologies and Safety Measures for Phycocolloid Production

Phycocolloids including agar, carrageenan, and alginate are derived from seaweed
using a variety of methods. Ensuring safety during extraction is critical for protecting
workers and the environment while also producing high-quality, safe goods. By utilizing
these extraction methods, along with security measures, phycocolloid extraction may be
performed effectively and safely, assuring high-quality goods while also protecting workers
and the environment.

5.1. Industrial Extraction Methods

The industry’s traditional method of phycocolloid production involves a multi-stage
processing procedure that includes a few key phases like cleaning/washing, pre-treatment,
solid/liquid separation (extraction), precipitation, filtration, drying, and milling [11,42].
The existing methods require high chemical, water, and energy consumption, as well
as control of waste generated throughout the whole process, which is less environmen-
tally friendly and cost ineffective [11]. Taking all this into consideration, green extraction
methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction
(MAE), enzyme-assisted extraction (EAE), supercritical fluid extraction (SFE), and pres-
surized solvent extraction (PSE), reactive extrusion and photo-bleaching methods are
believed to help reduce the chemical usage and improve the extraction yield and quality of
seaweed-derived polymers.

5.1.1. Agar

The agar extraction process in the industry requires a high consumption of solvent and
produces a large quantity of waste disposal, being a time-consuming process that applies
conventional heating that uses hot water during several hours. Acid pre-hydrolysis has
been commonly employed for the chemical liquefaction of agarose [115]. The generation
of effluents with environmental impact if not properly treated is another disadvantage
of alkali treatment. A more eco-friendly alternative to improve the gel strength of agar
could be enzymatic treatment; however, the cost could not make the process commercially
competitive compared to alkaline treatment [116]. Processes based on combined heat
and ultrasound treatments would enable the reduction of the amount of time and energy
needed [11]. Microwave-assisted extraction (MAE) allows the reduction of the required
time to a very short period for agar extraction in conventional processes, consuming less
energy and solvent volume and reducing waste disposal requirements [42].

5.1.2. Carrageenan

The original method of producing the commercial carrageenans is based on washing
to remove impurities, such as sand, epiphytes, and salt, and extracting the carrageenan in a
hot aqueous solution, neutral or alkaline, then filtrating, recovering it from the solution
by alcohol precipitation, recovering the precipitate, drying, and milling. Depending on
the extraction method, carrageenan can be classified into two distinct grades known as
semi-refined carrageenan (SRC) and refined carrageenan (RC) [117]. In the original method,
in the late 1970s and early 1980s, the carrageenan was extracted from the seaweed into
an aqueous solution. Carrageenan is frequently extracted from the seaweed by alkali
treatment, and the result is referred to as SRC at this point in the process [118]. Additional
treatments, such as filtering and purifying procedures, are necessary to eliminate residual
components such as cellulosic materials, yielding RC [117]. Other options can reduce the
time, energy demand, and consumption of water, chemicals, and solvents. Among the
novel extraction techniques to enhance the extraction efficiency are pressurized solvent
extraction and microwave-, ultrasonic-, and enzyme-assisted extractions [42]. Microwave-
assisted extraction offers a reduction in time and energy consumption, thus enhancing
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the process efficiency [42]. The ultrasound-assisted processes, both alkaline and aqueous,
shorten extraction times compared to the conventional method, avoiding the degradation
of labile compounds and showing a slight variation in sulfate and viscosity.

5.2. Industrial Safety Measures

Since polysaccharides present varied compositions, which can be attributed to the
extraction process or to abiotic and biotic factors, there is a need to use chemical and
biochemical methods to guarantee their quality.

Chromatography is a physical method of separation in which the components of a
mixture are separated by their distribution between two phases; one of these phases, in the
form of a porous bed, bulk liquid, layer, or film, is generally immobile (stationary phase),
while the other is a fluid (mobile phase) that percolates through or over the stationary
phase [119]. Chromatography follows a wide range of techniques that can be applied in a
sequential way to isolate with an excellent rate and high efficiency in the characterization of
seaweed quality; however, these techniques are often costly [120]. Nevertheless, there are
other methods of chromatography, such as high-performance anion exchange chromatog-
raphy (HPAEC), that can be used to quantify and characterise seaweed polysaccharide
fraction [121], which is the most difficult to analyse by liquid extracts due to its viscous
properties [122]. This method uses a strong anion exchange to separate the fractions by pH
and the acidic nature of the seaweed polysaccharides (seaweed carbohydrates) [123].

Spectroscopy techniques use infrared light frequencies to analyse light absorbance
by the sample and vibration by chemical bonds. Fourier transform infrared spectroscopy
(FTIR) is a useful technique with low cost compared to other techniques (e.g., NMR, X-
ray, chromatography) analysing the chemical bonds of dried samples, in opposition to the
above techniques, which require a liquid extract solution form [29]. This technique can be
used to see the polysaccharide, pigment and phenolic fractions, compound oxidation, and
microplastic in the seaweed before commercialization [22,124–126]. The FTIR technique
cost is established according to the technician and the equipment, being cheaper and easier
to operate when compared to chromatography; however, the biochemical quantification
and quality analysis are not so good. However, accoupled techniques can provide an
enhancement of seaweed quality [127]. Pereira and respective team [20,29] employed FTIR–
ATR (attenuated total reflectance) spectroscopy, which allowed the determination of the
composition of different phycocolloids by analysing dried ground seaweed, without having
to prepare tablets of KBr [29]. Therefore, FTIR–ATR can be, and is, applied to differentiate
the agar and carrageenan quality by the seaweed polysaccharide extraction industry (the
analysis is between the extraction sample and sample reference). Also, FTIR spectroscopy
is the most efficient and ecologically benign technology for analyzing biomass. The three
primary uses are identification, quality control, and structural elucidation. The IR technique
is utilized in industrial sectors to quickly detect significant properties in order to approve
chemicals such as phycocolloids and active ingredients for pharmaceutical medications. In
this specific case, the FTIR spectra are applied to differentiate between agar-producing and
carrageenan-producing seaweeds [128–130].

All types of chemical analysis have advantages and disadvantages when it comes to
certifying seaweed quality. The currently used techniques are not the most appropriate
ones, with some using methods applied to plants (ignoring the mandatory heavy metal
checks). There is still a need for the development and improvement of these techniques
(which is a challenging due to the complexity of seaweed composition) without imposing
high costs on the seaweed companies. Thus, more work is needed at the legislative level
for seaweed food quality control checks due to the chemical variability in seaweeds and
their compound complexity [17].

5.3. Technical Characteristics of Agar and Carrageenan

Agar and carrageenans are frequently utilized in food, medicines, and biotechnology
because of their unusual gelling, thickening, and stabilizing qualities. Their technical
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features need to be analysed and approved for consideration as polysaccharides by CAS
and other national and international agencies, to be applied in the industry with safety
and security.

5.3.1. Agar

Agar powder either is odourless or has a faint odour. Unground agar is typically
found in packages of thin, membranous, agglutinated strands, as well as sliced, flaked, or
granular forms. It can vary from light yellowish-orange to yellowish-grey to pale yellow,
or it can be colourless. When wet, it is tougher and forms a jelly type; when dry, the agar
is very fragile. Agar powder presents a white/yellowish-white or light golden colour.
Agar powder looks more transparent when seen under a microscope in water. Powdered
agar in chloral hydrate solution appears even more transparent than in water, more or less
granular, striated, and angular, and occasionally contains diatom frustules [131].

Agar is insoluble in cold water and soluble in hot water. Its purity level is considered
by ash content (food-grade ash below 6.5%); insoluble matter; detection of starch, lipids,
and proteins; water absorption capacity; and viscosity [131].

Thus, there are several techniques similar to other polymers’ biochemical and physical–
chemical characterization and certification methods, for example, glucans and xanthan
gums [132].

5.3.2. Carrageenan

Carrageenan powder is normally a yellowish to colourless, coarse to fine powder
that is practically odorless. To be considered carrageenans (by food agencies worldwide),
carrageenans need to have galactose, anhydro-galactose, and sulphates. If one of the
molecules is not identified in the sample, it is not considered carrageenan. It is only soluble
in hot water and not soluble in alcohol solution above 1.5% [133].

For the food purity rate of carrageenan, it is considered that the most important factors
are the viscosity level (5 mPa·s [1.5% solution at 75 ◦C]); sulphation content (between
15% and 40% carrageenan DW); ash yield (between 15% and 40% carrageenan DW); low
molecular-weight carrageenan content (molecular weight fraction below 50 kDa, where
over 5% is considered a poligeenan [a non-approved polymer for the food industry]);
detection of starch, lipid, and protein levels below 5% (between them all); and high water
absorption capacity [133]. Thus, there are several methods similar to other polymers’
biochemical and physical–chemical characterization methods [132].

This has led to RD units and industry which wants to innovate and exploit new red
seaweed polysaccharide extractions with more eco-friendly processes and purification
techniques. Thus, the results of this continuous research need to demonstrate that the
polymers have high purity according to CAS and international conventions [62,134]. That
is essential to certify the quality of the compound to be further exploited.

5.4. RD of Polysacharide Extraction Methods

Although the phycocolloid extraction industry has implemented certified methods,
these methods are labour-intensive, have medium to low extraction rates, use substantial
amounts of chemicals, water, and energy, and generate waste during the process, making
them less environmentally and economically efficient. Given all of this, numerous green
extraction techniques are emerging to decrease chemical use while enhancing the extraction
yield and quality of seaweed-derived polymers. However, they need to pass the tests and
the requirements for industrial polysaccharide commercial samples, and only after this
can they be applied to the industry. However, most of the studies are not conceived for
industrial scale; even with the results, this is another important factor of the economic
feasibility of the extraction process [17,135,136].

These new techniques include microwave-assisted extraction (MAE), ultrasound-
assisted extraction (UAE), enzymatic-assisted extraction (EAE), and green solvent extrac-
tion, which includes subcritical water extraction (SWE), ionic liquid extraction, supercritical
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fluid extraction (SFE), and other methods like reactive extrusion and photo-bleaching.
There is less information accessible due to the several distinct methods that are currently in
use. Currently, MAE and UAE procedures are low-cost and have been effectively used in
large-scale commercial chemical extractions [11,135,137,138].

Also, polysaccharides have a variable composition, which can be related to the extrac-
tion process or to abiotic and biotic factors, thus many procedures must be used to describe
them and ensure their quality. Finding new, effective, and environmentally acceptable
extraction technologies for commercial scale is critical. Hydrocolloids, like carrageenan and
agar, are often processed inefficiently using significant amounts of chemicals; nevertheless,
there are innovative and equally acceptable alternatives to meet industrial productivity
demands [135].

As a result, while researching novel species and cultivation and extraction procedures
for obtaining carrageenan and agar for industry approval, it is critical to investigate the
identification and purity of the material to ensure its safety and approval by regulatory
requirements. Mendes [135] demonstrated that different species strains (K. alvarezii) can
influence the right method to extract carrageenan, which can be approved for food applica-
tion. Thus, the effect of different extraction procedures on the kind of extracted carrageenan
was very clean.

6. Industrial Innovation: Emerging Applications of Seaweed Polysaccharides

The phycocolloid industry is now increasing at a faster pace than the world GDP,
at 6% per year. While phycocolloids have historically been employed as food additives
in the food and beverage sector, which accounts for more than 70% of their worldwide
market value, their usage in personal care, cosmetics, and the medical and pharmaceutical
industries is likely to grow the quickest [139].

With emerging knowledge and technological advancement, the applications of algal
polysaccharides now start to stretch beyond the common applications discussed above.
Here, applications that are still being studied or are new to the industries will be discussed.
Firstly, the antiviral activity of several seaweed polysaccharides has inspired an exploration
of their potential in battling the global COVID-19 disease [49]. Algal polysaccharides are
argued to help to prevent the attachment, adsorption, and replication of the virus [49].
Moreover, their safety, biodegradability, and biocompatibility, alongside their cheap pro-
duction costs, potentially give them advantages over plant-based compounds [49]. Also,
another advantage of the red seaweed polysaccharides over the plant-based compounds is
their inherent bioactivity potential. As previously stated, certain polysaccharides, such as
agar and carrageenan, exhibit a variety of biological activities; nevertheless, their biological
activity differs based on their molecular weight, sulphation level, and the number of sulfate
esters groups present in the polymer theta [30,140]. Furthermore, various seaweed species
generate chemically diverse polysaccharides, which might potentially be influenced by the
extraction process used. Carrageenophytes often possess a larger concentration of sulfate
groups than agarophytes [141]. Nonetheless, carrageenan’s molecular structure is quite
diverse, with the most economically important carrageenan iota, lambda, and kappa [37].
So, what distinguishes these distinct forms of carrageenan is primarily their sulfate ester
concentration and their location in the molecule [142].

6.1. Pharmaceutical Applications

Moreover, the nanoparticles of seaweed polysaccharides have attracted attention for
several other therapeutical applications. Drug delivery, insulin delivery, and bioactivities
against fungal infection, tuberculosis, and cancer are some of the applications that are being
explored [48].

Carrageenan has sparked widespread attention, and its use in pharmaceutical for-
mulations is on the rise. It has been included in respected pharmacopoeias such as the
United States Pharmacopeia 35-National Formulary 30 S1 (USP35-NF30 S1), the British
Pharmacopoeia 2012 (BP2012), and the European Pharmacopoeia 7.0 (EP7.0), suggesting its
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potential as a pharmaceutical excipient and a bright future. Carrageenan has been shown
to have antiviral and antibacterial characteristics, as well as anticoagulant, anti-diabetic,
and antioxidant action. There is a rising interest in combining carrageenan with natural
polymers such as chitosan, starch, cellulose, chitin, and alginate to develop biodegradable
materials with desirable properties for use in biomedical applications. These combina-
tions have demonstrated tremendous potential in a variety of biological applications,
including drug delivery and tissue engineering [143–145]. Carrageenans’ outstanding
bio-functionality and rheological properties, including cost-effectiveness, biological com-
patibility, biodegradability, and flexibility, make them ideal functional compounds for a
wide range of biomedical applications, from developing nanostructure-based intelligent
drug delivery systems to 3D bioprinting in tissue engineering and wound healing [139].

Agar is increasingly preferred over synthetic polymers and is being investigated as an
alternative raw material for therapeutic purposes. It is very desirable in the pharmaceutical
industry because of its remarkable intrinsic properties, notably the strong gel it produces.
Agar has been exploited in the creation of injectable and phase-changeable composite
hydrogels for cancer treatment using chemotherapy and photothermal therapy. These
composite hydrogels can efficiently load and release chemotherapeutics and antibiotics.
Additionally, an agar-based nanocomposite film has been shown to effectively suppress the
development of Listeria monocytogenes. The usage of agar and polysaccharide mixes is also
becoming common. In pharmaceuticals, agar is used primarily to gel, stabilize, and thicken.
Furthermore, it is often used for purgation and as a surgical assistance. Researchers have
worked hard to develop agar-based products such as composite hydrogels, nanocomposite
films, and other materials with specialized applications in pharmacology [143,146].

6.2. Food Packaging

Additionally, food packaging is important for the preservation, protection, and con-
venience of food products, but is often not done sustainably. However, polysaccharide
membranes can work as a barrier against oxygen and carbon dioxide, making them a
promising candidate for food packaging [147]. Moreover, they are edible and biodegrad-
able, so the environment is not impacted whether people eat the packaging or not. However,
they do not work as a barrier for water or water vapor due to their hydrophilic properties,
which can become a problem for durability and change the organoleptic characteristics
of the product [147]. A method to mitigate the risks of spoiled food is intelligent food
packaging. This concept focuses on the observance and control of changes in the food or in
the food packaging. It is done using biosensors of hydrogel made from polysaccharides to
measure those parameters [148].

For example, it was demonstrated that the spoilage of fish could be slowed by using
a partly agarose-based hydrogel [149]. Another utility with polysaccharides is making
biostimulants for plant growth. In a study in which polysaccharide extract was given to
growing plants, all the evaluated parameters (total plant size, leaf growth, and weight)
were further developed in the plants with the treatment [150,151].

Seaweed polysaccharides’ adaptability allows for a wide range of unique uses across
many sectors. As research and development continue, the usage of these sustainable
and bioactive molecules is anticipated to grow, resulting in novel solutions in health care,
environmental sustainability, and beyond. However, these novel applications are still
in their early stages, with R&D for the methods in its initial steps and with significant
restrictions and difficulties to overcome in the immediate future. Furthermore, the cost-
effectiveness analysis of scaling-up still needs to be applied, to check if it is possible to be
applied at the industrial scale.

7. Future Road for Red Seaweed Polysaccharide Exploitation

Considering the actual blue and circular economic paradigm of the economy, there is a
new goal in the agar and carrageenan extraction industries, with the possibility to scale-up
and develop green extractions and recover techniques. This concept of a circular economy is
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focused on the biorefinery concept, which involves the integration of biomass into the pro-
duction of various value-added products/compounds (according to the biomass quality),
reducing the total waste at the industrial level [152,153]. Also, the biorefinery conceptu-
alization is based on a multi-solution strategy, obtaining low-volume, high-value-added
products and vice versa, ending the cycle. The cascade valorization strategy (including the
selective, sequential extraction of value-added chemicals), paired with the generation of
biofuels or soil amendments, may be considered within the biorefinery idea [153].

Thus, red seaweed has interesting compounds that can be exploited before polysac-
charide extraction. After meeting safety requirements, several high-value pigments and
bioactive compounds are employed in the biomedical and food industries [153]. Although
commercial extraction methods for some pigments (e.g., fucoxanthin and phycoerythrin)
have previously been created, industrial extraction methods are still being developed [17].
If biorefinery is used from the start, the seaweed biomass can be explored with greater
value, reducing pre-treatments (which are currently used to clean the polysaccharides at
the industrial level) and manufacturing costs [154].

The final waste from the biorefinery concept mainly includes ashes and minerals,
which can be applied to nourish the soil for agriculture [153], thus creating a near zero-
waste industry. However, this is still in its initial steps, although with good results already
having been demonstrated at a small scale [154].

However, although there is currently a paucity of knowledge regarding the biochem-
ical variety of seaweed polysaccharides produced by cultivated seaweeds, we need to
exploit the seaweeds to obtain a good yield with good quality, as well as the seaweed’s
mechanisms of action for certain functions, which can be different in different locations. All
investigations on this fail to address the relationship between seaweed polysaccharide with
particular abiotic and biotic components and the yield, structure, and molecular length of
basic monomers of agar and carrageenan. Due to the industry, the polysaccharide quality
is very important.

8. Conclusions

Carrageenan content and quality are affected by several environmental factors. The
impact of photosynthetically active radiation (PAR) is likely determined by its interaction
with nutrient availability, where high light in combination with low nutrients yields high
carrageenan content. Additionally, the effect of light sometimes interacts with the seaweed’s
life stage, and carrageenan gel strength might be positively affected by light intensity.

Several factors can influence polysaccharide production in seaweeds, as demonstrated
in Table 2.

Table 2. Factors that can influence the polysaccharide production on seaweeds.

Factor Effect on Carrageenan Effect on Agar

Nitrogen (high concentrations) Inverse relationship with carrageenan
content (Neish effect)

Inverse relationship with agar content; higher
nitrogen availability may increase gel strength

Phosphorus Probably inverse relationship with
carrageenan content

Phosphate may increase gel strength and
possibly yield

Temperature Detrimental effects above thermal
tolerance on quantity and quality Generally positive relation with agar content up

Salinity No clear pattern Positive effect of both high and low salinities,
although not unanimous

Depth No significant effect on content Effect on agar remains unresolved
Water Motion (Wave Action) Possible influence on carrageenan content Inconclusive effects on agar content

Carbon Sources may enhance carrageenan content under
nitrogen enrichment Not specifically mentioned

pH Not specifically mentioned Not specifically mentioned
Sulphate Deprivation Not specifically mentioned May reduce agar content
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Without a doubt, the exact influences of many factors on polysaccharides in seaweeds
remain unclear. Not only are there differences in polysaccharide dynamics between species
and life stages; interacting factors further obscure the situation. Another point to consider is
that for polysaccharide production, a balance must be found between high seaweed growth
and high polysaccharide quality and quantity. All in all, more factorial experiments are
needed for different species and sometimes life stages. However, the knowledge gathered
above represents a step towards understanding polysaccharide production in seaweeds. It
may inform aquaculture and harvesting methods when obtaining seaweed polysaccharides,
which have been hindered by inconsistent yields and difficulty in optimization. The range
of current and developing applications for seaweed polysaccharides and the abundance of
research on the matter show the relevance of these interesting compounds for both science
and society.
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