Exploring Marine-Derived Compounds: In Silico Discovery of Selective Ketohexokinase (KHK) Inhibitors for Metabolic Disease Therapy
Abstract
:1. Introduction
2. Results
2.1. High-Quality Protein Structure Evaluation
2.2. Docking Studies
2.3. Computational Analysis of the Five Hits Binding to KHK
2.4. Binding Free Energies Analysis
2.5. Molecular Dynamics Simulation of 1 and 2 Binding to the KHK Target
2.6. Shape Similarity Prediction
2.7. Alanine Scanning Analysis
2.8. ADMET and Drug-Likeness
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Retrieval of Ketohexokinase-c Crystal Structure, Protein Reliability, and Preparation for Docking Analysis
4.3. Binding Site Determination and Docking Validation
4.4. Non-Covalent Docking Screening (Semi-Rigid Docking)
4.5. Induced Fit Docking (Flexible Docking)
4.6. Molecular Mechanics-Based Re-Scoring
4.7. Molecular Dynamics Simulation Studies
4.8. Shape-Based Screen
4.9. In Silico Site-Directed Mutagenesis
4.10. ADMET Properties and Drug-Likeness Predictions
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, R.J.; Sanchez-Lozada, L.G.; Andrews, P.; Lanaspa, M.A. Perspective: A Historical and Scientific Perspective of Sugar and Its Relation with Obesity and Diabetes. Adv. Nutr. 2017, 8, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, G.; Mapanga, R.F.; Essop, M.F. Frequent Sugar-Sweetened Beverage Consumption and the Onset of Cardiometabolic Diseases: Cause for Concern? J. Endocr. Soc. 2017, 1, 1372–1385. [Google Scholar] [CrossRef] [PubMed]
- Assy, N.; Nasser, G.; Kamayse, I.; Nseir, W.; Beniashvili, Z.; Djibre, A.; Grosovski, M. Soft Drink Consumption Linked with Fatty Liver in the Absence of Traditional Risk Factors. Can. J. Gastroenterol. 2008, 22, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Abdelmalek, M.F.; Suzuki, A.; Guy, C.; Unalp-Arida, A.; Colvin, R.; Johnson, R.J.; Diehl, A.M. Nonalcoholic Steatohepatitis Clinical Research, N. Increased Fructose Consumption Is Associated with Fibrosis Severity in Patients with Nonalcoholic Fatty Liver Disease. Hepatology 2010, 51, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Sievenpiper, J.L. Controversies about Sugars: Results from Systematic Reviews and Meta-analyses on Obesity, Cardiometabolic Disease and Diabetes. Eur. J. Nutr. 2016, 55, 25–43. [Google Scholar] [CrossRef]
- Bernstein, A.M.; de Koning, L.; Flint, A.J.; Rexrode, K.M.; Willett, W.C. Soda Consumption and the Risk of Stroke in Men and Women. Am. J. Clin. Nutr. 2012, 95, 1190–1199. [Google Scholar] [CrossRef]
- Hu, F.B.; Malik, V.S. Sugar-Sweetened Beverages and Risk of Obesity and Type 2 Diabetes: Epidemiologic Evidence. Physiol. Behav. 2010, 100, 47–54. [Google Scholar] [CrossRef]
- Diggle, C.P.; Shires, M.; Leitch, D.; Brooke, D.; Carr, I.M.; Markham, A.F.; Hayward, B.E.; Asipu, A.; Bonthron, D.T. Ketohexokinase: Expression and Localization of the Principal Fructose-Metabolizing Enzyme. J. Histochem. Cytochem. 2009, 57, 763–774. [Google Scholar] [CrossRef]
- Ishimoto, T.; Lanaspa, M.A.; Le, M.T.; Garcia, G.E.; Diggle, C.P.; Maclean, P.S.; Jackman, M.R.; Asipu, A.; Roncal-Jimenez, C.A.; Kosugi, T.; et al. Opposing Effects of Fructokinase C and A Isoforms on Fructose-Induced Metabolic Syndrome in Mice. Proc. Natl. Acad. Sci. USA 2012, 109, 4320–4325. [Google Scholar] [CrossRef]
- Bonthron, D.T.; Brady, N.; Donaldson, I.A.; Steinmann, B. Molecular Basis of Essential Fructosuria: Molecular Cloning and Mutational Analysis of Human Ketohexokinase (Fructokinase). Hum. Mol. Genet. 1994, 3, 1627–1631. [Google Scholar] [CrossRef]
- Bawden, S.J.; Stephenson, M.C.; Ciampi, E.; Hunter, K.; Marciani, L.; Macdonald, I.A.; Aithal, G.P.; Morris, P.G.; Gowland, P.A. Investigating the Effects of an Oral Fructose Challenge on Hepatic ATP Reserves in Healthy Volunteers: A (31)P MRS Study. Clin. Nutr. 2016, 35, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Herman, M.A.; Samuel, V.T. The Sweet Path to Metabolic Demise: Fructose and Lipid Synthesis. Trends. Endocrinol. Metab. 2016, 27, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Tappy, L.; Le, K.A. Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef] [PubMed]
- Kyriazis, G.A.; Soundarapandian, M.M.; Tyrberg, B. Sweet Taste Receptor Signaling in Beta Cells Mediates Fructose-Induced Potentiation of Glucose-Stimulated Insulin Secretion. Proc. Natl. Acad. Sci. USA 2012, 109, E524–E532. [Google Scholar] [CrossRef] [PubMed]
- Zawalich, W.S. Intermediary Metabolism and Insulin Secretion from Isolated Rat Islets of Langerhans. Diabetes 1979, 28, 252–262. [Google Scholar] [CrossRef]
- Zawalich, W.S.; Rognstad, R.; Pagliara, A.S.; Matschinsky, F.M. A Comparison of the Utilization Rates and Hormone-Releasing Actions of Glucose, Mannose, and Fructose in Isolated Pancreatic Islets. J. Biol. Chem. 1977, 252, 8519–8523. [Google Scholar] [CrossRef]
- Esler, W.P.; Bence, K.K. Metabolic Targets in Nonalcoholic Fatty Liver Disease. Cell Mol. Gastroenterol. Hepatol. 2019, 8, 247–267. [Google Scholar] [CrossRef]
- Mohan, A. WHO Recommends Reducing Intake of ‘Free Sugars’ by Adults and Children. Natl. Med. J. India. 2015, 28, 165. [Google Scholar]
- Vos, M.B. Nutrition, Nonalcoholic Fatty Liver Disease and the Microbiome: Recent Progress in the Field. Curr. Opin. Lipidol. 2014, 25, 61–66. [Google Scholar] [CrossRef]
- Bork, P.; Sander, C.; Valencia, A. Convergent Evolution of Similar Enzymatic Function on Different Protein Folds: The Hexokinase, Ribokinase, and Galactokinase Families of Sugar Kinases. Protein. Sci. 1993, 2, 31–40. [Google Scholar] [CrossRef]
- Bais, R.; James, H.M.; Rofe, A.M.; Conyers, R.A. The Purification and Properties of Human Liver Ketohexokinase. A Role for Ketohexokinase and Fructose-Bisphosphate Aldolase in the Metabolic Production of Oxalate from Xylitol. Biochem. J. 1985, 230, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Trinh, C.H.; Asipu, A.; Bonthron, D.T.; Phillips, S.E. Structures of Alternatively Spliced Isoforms of Human Ketohexokinase. Acta. Crystallogr. D Biol. Crystallogr. 2009, 65, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, A.C.; Abad, M.C.; Zhang, X.; Tounge, B.A.; Lewandowski, F.A.; Struble, G.T.; Sun, W.; Sui, Z.; Kuo, L.C. Electron Density Guided Fragment-Based Lead Discovery of Ketohexokinase Inhibitors. J. Med. Chem. 2010, 53, 7979–7991. [Google Scholar] [CrossRef] [PubMed]
- Sigrell, J.A.; Cameron, A.D.; Jones, T.A.; Mowbray, S.L. Structure of Escherichia Coli Ribokinase in Complex with Ribose and Dinucleotide Determined to 1.8 A Resolution: Insights into a New Family of Kinase Structures. Structure 1998, 6, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Maryanoff, B.E.; O’neill, J.C.; McComsey, D.F.; Yabut, S.C.; Luci, D.K.; Jordan, A.D., Jr.; Masucci, J.A.; Jones, W.J.; Abad, M.C.; Gibbs, A.C.; et al. Inhibitors of Ketohexokinase: Discovery of Pyrimidinopyrimidines with Specific Substitution that Complements the ATP-Binding Site. ACS Med. Chem. Lett. 2011, 2, 538–543. [Google Scholar] [CrossRef]
- Maryanoff, B.E.; O’neill, J.C.; McComsey, D.F.; Yabut, S.C.; Luci, D.K.; Gibbs, A.C.; Connelly, M.A. Pyrimidinopyrimidine Inhibitors of Ketohexokinase: Exploring the Ring C2 Group That Interacts with Asp-27B in the Ligand Binding Pocket. Bioorg. Med. Chem. Lett. 2012, 22, 5326–5329. [Google Scholar] [CrossRef]
- Abad, M.C.; Gibbs, A.C.; Zhang, X. Chapter Nineteen: Electron Density Guided Fragment-Based Drug Design—A Lead Generation Example. In Methods in Enzymology; Kuo, L.C., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 493, pp. 487–508. [Google Scholar]
- Zhang, X.; Song, F.; Kuo, G.H.; Xiang, A.; Gibbs, A.C.; Abad, M.C.; Sun, W.; Kuo, L.C.; Sui, Z. Optimization of a Pyrazole Hit from FBDD into a Novel Series of Indazoles as Ketohexokinase Inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 4762–4767. [Google Scholar] [CrossRef]
- Huard, K.; Ahn, K.; Amor, P.; Beebe, D.A.; Borzilleri, K.A.; Chrunyk, B.A.; Coffey, S.B.; Cong, Y.; Con, E.L.; Cul, J.S.; et al. Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK). J. Med. Chem. 2017, 60, 7835–7849. [Google Scholar] [CrossRef]
- Benthem, L.J.R.; Carling, D.A. Compounds Useful in Inhibiting Ketohexokinase and Methods of Making and Using the Same. WO2021161023, 12 August 2021. [Google Scholar]
- Durham, T.B. 2,6-Diamino Pyridine Compounds. WO2020051058, 12 March 2020. [Google Scholar]
- Futatsugi, K.; Smith, A.C.; Tu, M.; Raymer, B.; Ahn, K.; Coffey, S.B.; Dowling, M.S.; Fernando, D.P.; Gutierrez, J.A.; Huard, K.; et al. Discovery of PF-06835919: A Potent Inhibitor of Ketohexokinase (KHK) for the Treatment of Metabolic Disorders Driven by the Overconsumption of Fructose. J. Med. Chem. 2020, 63, 13546–13560. [Google Scholar] [CrossRef]
- Kazierad, D.J.; Chidsey, K.; Somayaji, V.R.; Bergman, A.J.; Birnbaum, M.J.; Calle, R.A. Inhibition of Ketohexokinase in Adults with NAFLD Reduces Liver Fat and Inflammatory Markers: A Randomized Phase 2 Trial. Med 2021, 2, 800–813.e803. [Google Scholar] [CrossRef]
- Eli-Lilly Q3 2021 Earnings Presentation. 26 October 2021. Available online: https://investor.lilly.com/events/event-details/q3-2021-earnings-call (accessed on 12 May 2023).
- Eli-Lilly Q4 2022 Earnings Call. 2 February 2023. Available online: https://investor.lilly.com/events/event-details/q4-2022-earnings-call (accessed on 12 May 2023).
- Casertano, M.; Genovese, M.; Santi, A.; Pranzini, E.; Balestri, F.; Piazza, L.; Del Corso, A.; Avunduk, S.; Imperatore, C.; Menna, M.; et al. Evidence of Insulin-Sensitizing and Mimetic Activity of the Sesquiterpene Quinone Avarone, a Protein Tyrosine Phosphatase 1B and Aldose Reductase Dual Targeting Agent from the Marine Sponge Dysidea Avara. Pharmaceutics 2023, 15, 528. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; MacKerell, A.D. Computer-aided drug design methods. Antibiotics 2017, 85–106. [Google Scholar] [CrossRef]
- Suleman, M.; Qamar, M.T.U.; Saleem, S.; Ahmad, S.; Ali, S.S.; Khan, H.; Akbar, F.; Khan, W.; Alblihy, A.; Alrumaihi, F.; et al. Mutational Landscape of Pirin and Elucidation of the Impact of Most Detrimental Missense Variants that Accelerate the Breast Cancer Pathways: A Computational Modelling Study. Front. Mol. Biosci. 2021, 8, 692835. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Albutti, A.; Tariq, M.H.; Din, G.; Qamar, M.T.U.; Ahmad, S. Discovery of Potential Antiviral Compounds against Hendra Virus by Targeting its Receptor-Binding Protein (G) Using Computational Approaches. Molecules 2022, 27, 554. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Chowdhury, D.U.S.; Farhana, J.; Akbar, M.T.; Chakraborty, A.; Islam, S.; Mannan, A. Identification of Potential Targets in Staphylococcus Aureus N315 Using Computer-Aided Protein Data Analysis. Bioinformation 2013, 9, 187. [Google Scholar] [CrossRef]
- Fatima, I.; Ahmad, S.; Abbasi, S.W.; Ashfaq, U.A.; Shahid, F.; ul Qamar, M.T.; Allemailem, K.S. Designing of a Multi-Epitopes-Based Peptide Vaccine against Rift Valley Fever Virus and its Validation through Integrated Computational Approaches. Comput. Biol. Med. 2021, 141, 105151. [Google Scholar] [CrossRef]
- O’Daniel, P.I.; Ahmad, S.; Abbasi, S.W.; Ashfaq, U.A.; Shahid, F.; Qamar, M.T.U.; Rehman, A.; Allemailem, K.S. Discovery of a New Class of Non-β-lactam Inhibitors of Penicillin-Binding Proteins with Gram-Positive Antibacterial Activity. J. Am. Chem. Soc. 2014, 136, 3664–3672. [Google Scholar] [CrossRef]
- Islam, S.; Hosen, M.A.; Ahmad, S.; Qamar, M.T.U.; Dey, S.; Hasan, I.; Fujii, Y.; Ozeki, Y.; Kawsar, S.M.A. Synthesis, Antimicrobial, Anticancer Activities, PASS Prediction, Molecular Docking, Molecular Dynamics and Pharmacokinetic Studies of Designed Methyl α-D-glucopyranoside Esters. J. Mol. Struct. 2022, 1260, 132761. [Google Scholar] [CrossRef]
- Sharma, V.; Wakode, S.; Kumar, H. Structure- and Ligand-Based Drug Design. Chemoinformatics Bioinform. Pharm. Sci. 2021, 27–53. [Google Scholar] [CrossRef]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef]
- Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel Procedure for Modeling Ligand/Receptor Induced Fit Effects. J. Med. Chem. 2006, 49, 534–553. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Karplus, M.; McCammon, J.A. Molecular Dynamics Simulations of Biomolecules. Nat. Struct. Mol. Biol. 2002, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Zhang, K.Y.J. Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery. Front. Chem. 2018, 6, 315. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.L.G.; Andricopulo, A.D. ADMET Modeling Approaches in Drug Discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef]
- Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A Software Program for pKa Prediction and Protonation State Generation for Drug-Like Molecules. J. Comput. Aided Mol. Des. 2007, 21, 681–691. [Google Scholar] [CrossRef]
- Jaundoo, R.; Bohmann, J.; Gutierrez, G.E.; Klimas, N.; Broderick, G.; Craddock, T.J.A. Using a Consensus Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies for Gulf War Illness. Int. J. Mol. Sci. 2018, 19, 3355. [Google Scholar] [CrossRef]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Cheatham, T.E. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
- Qamar, M.T.U.; Mirza, M.U.; Song, J.-M.; Rao, M.J.; Zhu, X.; Chen, L.-L. Probing the Structural Basis of Citrus Phytochrome B Using Computational Modelling and Molecular Dynamics Simulation Approaches. J. Mol. Liq. 2021, 340, 116895. [Google Scholar] [CrossRef]
- Sahin, K. Investigation of Novel Indole-Based HIV-1 Protease Inhibitors Using Virtual Screening and Text Mining. J. Biomol. Struct. Dyn. 2021, 39, 3638–3648. [Google Scholar] [CrossRef]
- Song, X.; Bao, L.; Feng, C.; Huang, Q.; Zhang, F.; Gao, X.; Han, R. Accurate Prediction of Protein Structural Flexibility by Deep Learning Integrating Intricate Atomic Structures and Cryo-EM Density Information. Nat. Commun. 2024, 15, 5538. [Google Scholar] [CrossRef] [PubMed]
- Ghahremanian, S.; Rashidi, M.M.; Raeisi, K.; Toghraie, D. Molecular Dynamics Simulation Approach for Discovering Potential Inhibitors against SARS-CoV-2: A Structural Review. J. Mol. Liq. 2022, 354, 118901. [Google Scholar] [CrossRef] [PubMed]
- Sastry, G.M.; Dixon, S.L.; Sherman, W. Rapid Shape-Based Ligand Alignment and Virtual Screening Method Based on Atom/Feature-Pair Similarities and Volume Overlap Scoring. J. Chem. Inf. Model. 2011, 51, 2455–2466. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Mechanisms of Drug Toxicity and Relevance to Pharmaceutical Development. Drug Metab. Pharmacokinet. 2011, 26, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties that Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple Selection Criteria for Drug-Like Chemical Matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Park, S.-H.; Helsley, R.N.; Fadhul, T.; Willoughby, J.L.; Noetzli, L.; Tu, H.-C.; Solheim, M.H.; Fujisaka, S.; Pan, H.; Dreyfuss, J.M.; et al. Fructose Induced KHK-C Can Increase ER Stress Independent of Its Effect on Lipogenesis to Drive Liver Disease in Diet-Induced and Genetic Models of NAFLD. Metabolism 2023, 145, 155591. [Google Scholar] [CrossRef]
- Mirtschink, P.; Jang, C.; Arany, Z.; Krek, W. Fructose Metabolism, Cardiometabolic Risk, and the Epidemic of Coronary Artery Disease. Eur. Heart J. 2018, 39, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Chen, Y.-P.P. Structure-Based Drug Design to Augment Hit Discovery. Drug Discov. Today 2011, 16, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate Prediction of the Relative Potencies of Members of a Series of Kinase Inhibitors Using Molecular Docking and MM-GBSA Scoring. J. Med. Chem. 2006, 49, 4805–4808. [Google Scholar] [CrossRef] [PubMed]
- Okimoto, N.; Futatsugi, N.; Fuji, H.; Suenaga, A.; Morimoto, G.; Yanai, R.; Ohno, Y.; Narumi, T.; Taiji, M. High-Performance Drug Discovery: Computational Screening by Combining Docking and Molecular Dynamics Simulations. PLoS Comput. Biol. 2009, 5, e1000528. [Google Scholar] [CrossRef] [PubMed]
- Pikul, S.; Ohler, N.E.; Ciszewski, G.; Laufersweiler, M.C.; Almstead, N.G.; De, B.; Natchus, M.G.; Hsieh, L.C.; Janusz, M.J.; Peng, S.X.; et al. Potent and Selective Carboxylic Acid-Based Inhibitors of Matrix Metalloproteinases. J. Med. Chem. 2001, 44, 2499–2502. [Google Scholar] [CrossRef]
- Dong, J.; Wang, N.-N.; Yao, Z.-J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.-P.; Cao, D.-S. ADMETlab: A Platform for Systematic ADMET Evaluation Based on a Comprehensively Collected ADMET Database. J. Cheminformatics 2018, 10, 29. [Google Scholar] [CrossRef]
- Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The Application of In Silico Drug-Likeness Predictions in Pharmaceutical Research. Adv. Drug Deliv. Rev. 2015, 86, 2–10. [Google Scholar] [CrossRef]
- Bonnet, P. Is Chemical Synthetic Accessibility Computationally Predictable for Drug and Lead-Like Molecules? A Comparative Assessment Between Medicinal and Computational Chemists. Eur. J. Med. Chem. 2012, 54, 679–689. [Google Scholar] [CrossRef]
- Jasial, S.; Hu, Y.; Bajorath, J. How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds. J. Med. Chem. 2017, 60, 3879–3886. [Google Scholar] [CrossRef]
- Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CCMNPD: A Comprehensive Marine Natural Products Database Towards Facilitating Drug Discovery from the Ocean. Nucl. Acids Res. 2021, 49, D509–D515. [Google Scholar] [CrossRef]
- Lagorce, D.; Bouslama, L.; Becot, J.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs4: Free ADME-Tox Filtering Computations for Chemical Biology and Early Stages Drug Discovery. Bioinformatics 2017, 33, 3658–3660. [Google Scholar] [CrossRef] [PubMed]
- Spławiński, J.; Kuźniar, J.; Filipiak, K.; Zieliński, W. Evaluation of Drug Toxicity in Clinical Trials. Sci. Eng. Ethics 2006, 12, 139–145. [Google Scholar] [CrossRef] [PubMed]
- David, T.I.; Adelakun, N.S.; Omotuyi, O.I.; Metibemu, D.S.; Ekun, O.E.; Eniafe, G.O.; Inyang, O.K.; Adewumi, B.; Enejoh, O.A.; Owolabi, R.T.; et al. Molecular Docking Analysis of Phyto-Constituents from Cannabis Sativa with pfDHFR. Bioinformation 2018, 14, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Whitty, A. Growing PAINS in Academic Drug Discovery. Fut. Med. Chem. 2011, 3, 797–801. [Google Scholar] [CrossRef]
- Aldholmi, M.; Ahmad, R.; Shaikh, M.H.; Salem, A.M.; Alqurashi, M.; Alturki, M. Anti-Infective Activity of Momordica Charantia Extract with Molecular Docking of Its Triterpenoid Glycosides. Antibiotics 2024, 13, 544. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An Open-Source Molecular Graphics Tool. CCP4 Newsl. Protein Crystallogr. 2002, 40, 82–92. [Google Scholar]
- Kapusta, K.; Kar, S.; Collins, J.T.; Franklin, L.M.; Kolodziejczyk, W.; Leszczynski, J.; Hill, G.A. Protein Reliability Analysis and Virtual Screening of Natural Inhibitors for SARS-CoV-2 Main Protease (M Pro) through Docking, Molecular Mechanic & Dynamic, and ADMET Profiling. J. Biomol. Struct. Dyn. 2021, 39, 6810–6827. [Google Scholar] [CrossRef]
- Alves, M.; Ahmad, R.; Shaikh, M.H.; Salem, A.M.; Alqurashi, M.; Alturki, M. Docking Studies in Target Proteins Involved in Antibacterial Action Mechanisms: Extending the Knowledge on Standard Antibiotics to Antimicrobial Mushroom Compounds. Molecules 2014, 19, 1672–1684. [Google Scholar] [CrossRef]
- Kwofie, S.; Dankwa, B.; Odame, E.A.; Agamah, F.E.; Doe, L.P.A.; Teye, J.; Agyapong, O.; Miller, W.A.; Mosi, L.; Wilson, M.D. In Silico Screening of Isocitrate Lyase for Novel Anti-Buruli Ulcer Natural Products Originating from Africa. Molecules 2018, 23, 1550. [Google Scholar] [CrossRef]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Tutone, M.; Pibiri, I.; Lentini, L.; Pace, A.; Almerico, A.M. Deciphering the Nonsense Readthrough Mechanism of Action of Ataluren: An in Silico Compared Study. ACS Med. Chem. Lett. 2019, 10, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Pattar, S.V.; Adhoni, S.A.; Kamanavalli, C.M.; Kumbar, S.S. In Silico Molecular Docking Studies and MM/GBSA Analysis of Coumarin-Carbonodithioate Hybrid Derivatives Divulge the Anticancer Potential Against Breast Cancer. Beni-Suef. Univ. J. Basic Appl. Sci. 2020, 9, 36. [Google Scholar] [CrossRef]
- Massova, I.; Kollman, P.A. Combined Molecular Mechanical and Continuum Solvent Approach (MM-PBSA/GBSA) to Predict Ligand Binding. Perspect. Drug Discov. Des. 2000, 18, 113–135. [Google Scholar] [CrossRef]
- Tuffery, P.; Derreumaux, P. Flexibility and Binding Affinity in Protein–Ligand, Protein–Protein and Multi-Component Protein Interactions: Limitations of Current Computational Approaches. J. R. Soc. Interface 2012, 9, 20–33. [Google Scholar] [CrossRef]
- Rants’o, T.A.; van der Westhuizen, C.J.; van Zyl, R.L. Optimization of Covalent Docking for Organophosphates Interaction with Anopheles Acetylcholinesterase. J. Mol. Graph. Model. 2022, 110, 108054. [Google Scholar] [CrossRef]
- Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpi, J.L. Molecular Dynamics Simulations: Advances and Applications. Adv. Appl. Bioinform. Chem. 2015, 8, 37–47. [Google Scholar] [CrossRef]
- Van Der Westhuizen, C.J.; Stander, A.; Riley, D.L.; Panayides, J.-L. Discovery of Novel Acetylcholinesterase Inhibitors by Virtual Screening, In Vitro Screening, and Molecular Dynamics Simulations. J. Chem. Inf. Model. 2022, 62, 1550–1572. [Google Scholar] [CrossRef]
- Callahan, K.M.; Roux, B. Molecular Dynamics of Ion Conduction through the Selectivity Filter of the Na V Ab Sodium Channel. J. Phys. Chem. B. 2018, 122, 10126–10142. [Google Scholar] [CrossRef]
- Abro, A.; Azam, S.S. Binding Free Energy Based Analysis of Arsenic (+3 Oxidation State) Methyltransferase with S-Adenosylmethionine. J. Mol. Liq. 2016, 220, 375–382. [Google Scholar] [CrossRef]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
Compound | Name/ Source | Glide Score Docking (Semi-Rigid) a | Induced-Fit Docking (IFD) (Flexible) a | Ionic Interactions (Semi-Rigid) | H-Bond Interactions (Semi-Rigid) |
---|---|---|---|---|---|
1 | NA/ Halorosellinia oceanica | −10.51 | −10.00 | Arg-108 | Lys-193 |
Ala-224 | |||||
Ala-226 | |||||
Gly-255 | |||||
Gly-257 | |||||
H2O-409(Bridge with Cys-282) | |||||
2 | PGF2α †/Hydropuntia Edulis | −9.47 | −9.69 | Arg-108 | Ala-226 |
Gly-229 | |||||
Gly-255 | |||||
Gly-257 | |||||
H2O-409(Bridge with Cys-282) | |||||
3 | Oxalicumone D/Penicillium oxalicum | −9.44 | −9.28 | Arg-108 | |
Gly-255 | |||||
Ala-256 | |||||
Gly-257 | |||||
H2O-409(Bridge with Cys-282) | |||||
4 | Rhytidchromone E/ Rhytidhysteron rufulum | −9.28 | −9.13 | Arg-108 | |
Gly-255 | |||||
Gly-257 | |||||
H2O-409(Bridge with Cys-282) | |||||
5 | Aplysiapalythine A/Aplysia californica | −9.23 | −8.28 | Arg-108 | Lys-193 |
Ala-226 | |||||
Gly-255 | |||||
Gly-257 | |||||
H2O-409(Bridge with Cys-282) | |||||
PF-06835919 | (Control) | −10.73 | −10.69 | Arg-108 | Gly-255 |
Gly-257 | |||||
H2O-409(Bridge with Cys-282) | |||||
H2O-429 |
Compound | ΔG Binding (kcal/mol) a | ΔG Binding H-bond | ΔG Binding vdW | ΔG Binding Solve GB |
---|---|---|---|---|
1 | −51.66 | −6.34 | −43.41 | −7.53 |
2 | −45.23 | −5.9 | −42.75 | −17.64 |
5 | −38.29 | −6.09 | −34.53 | −3.27 |
3 | −35.66 | −4.09 | −40.55 | −1.08 |
4 | −31.25 | −4.57 | −34.9 | −3.97 |
PF-06835919 (Control) | −92.35 | −6.18 | −46.85 | −0.34 |
Compound | Shape Similarity b |
---|---|
2 | 0.424 |
5 | 0.32 |
4 | 0.319 |
1 | 0.289 |
3 | 0.267 |
PF-06835919 (Control) | 1 |
Residue Mutated to Alanine | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
R108A | −7.55 | −7.36 | −8.97 | −6.99 | −6.42 |
G255A | −7.81 | −7.13 | −9.03 | −7.42 | −6.30 |
G257A | −7.44 | −7.50 | −8.57 | −7.77 | −6.71 |
C282A | −8.66 | −8.71 | −11.82 | −9.33 | −7.49 |
ADMET Parameters | PF-06835919 (Control) | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Absorption | ||||||
Water solubility (log mol/L) | −3.117 | −2.909 | −3.594 | −3.471 | −3.21 | −0.90 |
Caco2 permeability (log Papp in 10−6 cm/s) | 1.045 | −0.55 | 0.39 | −0.31 | 0.07 | −0.32 |
Intestinal absorption (human) (% Absorbed) | 95.07 | 40.97 | 48.87 | 46.84 | 59.53 | 17.61 |
P-glycoprotein substrate (Yes/No) | No | Yes | Yes | Yes | Yes | Yes |
Distribution | ||||||
BBB permeability (log BB) | −0.91 | −1.7 | −1.03 | −1.37 | −1.01 | −0.93 |
CNS permeability (log PS) | −3.04 | −3.82 | −3.24 | −3.67 | −3.39 | −4.39 |
Metabolism | ||||||
CYP2D6 substrate (Yes/No) | No | No | No | No | No | No |
CYP3A4 substrate (Yes/No) | Yes | Yes | No | Yes | Yes | No |
CYP1A2 inhibitior (Yes/No) | No | No | No | No | No | No |
CYP2C19 inhibitior (Yes/No) | No | No | No | No | No | No |
CYP2C9 inhibitior (Yes/No) | No | No | No | No | No | No |
CYP2D6 inhibitior (Yes/No) | No | No | No | No | No | No |
CYP3A4 inhibitior (Yes/No) | No | No | No | No | No | No |
Excretion | ||||||
Total Clearance (log ml/min/kg) | −0.13 | 1.11 | 1.55 | 0.14 | 0.88 | 0.67 |
Renal OCT2 substrate (Yes/No) | No | No | No | No | No | No |
Toxicity | ||||||
AMES toxicity (Yes/No) | No | No | No | Yes | No | No |
Max. tolerated dose (human) (log mg/kg/day) | 0.60 | 0.68 | 0.59 | 0.48 | 0.61 | 0.50 |
hERG I inhibitor (Yes/No) | No | No | No | No | No | No |
Hepatotoxicity (Yes/No) | Yes | No | No | Yes | Yes | Yes |
Molecule Properties | PF-06835919 (Control) | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Physicochemical properties | ||||||
Molecular Weight | 356.34 | 384.38 | 354.48 | 410.4 | 352.33 | 303.33 |
LogP | 2.25 | 1.37 | 3.04 | 0.56 | 1.2 | −3.06 |
#Acceptors | 5 | 8 | 4 | 9 | 8 | 6 |
#Donors | 1 | 5 | 4 | 4 | 2 | 6 |
#Heavy atoms | 25 | 27 | 25 | 28 | 25 | 21 |
#Arom. heavy atoms | 6 | 6 | 0 | 10 | 10 | 0 |
Fraction Csp3 | 0.69 | 0.50 | 0.75 | 0.39 | 0.41 | 0.69 |
#Rotatable bonds | 5 | 11 | 12 | 6 | 7 | 7 |
Molar refractivity | 90.40 | 94.22 | 100.45 | 98.31 | 88.91 | 75.55 |
TPSA (Å2) | 69.56 | 150.59 | 97.99 | 179.80 | 115.43 | 133.22 |
Drug-likeness | ||||||
Lipinski alert | Pass | Pass | Pass | Pass | Pass | Pass; 1 violation: #Donors > 5 |
Ghose | Pass | Pass | Pass | Pass | Pass | No; 1 violation: WLOGP < −0.4 |
Veber | Pass | No; 2 violations: Rotors>10, TPSA > 140 | No; 1 violation: Rotors>10 | No; 1 violation: TPSA > 140 | Pass | Pass |
Egan | Pass | No; 1 violation: TPSA > 131.6 | Pass | No; 1 violation: TPSA > 131.6 | Pass | No; 1 violation: TPSA > 131.6 |
Muegge | Pass | No; 1 violation: TPSA > 150 | Pass | No; 1 violation: TPSA > 150 | Pass | No; 1 violation: H-don > 5 |
Bioavailability Score | 0.85 | 0.11 | 0.56 | 0.11 | 0.56 | 0.55 |
Medicinal chemistry | ||||||
PAINS | Pass | Pass | Pass | Pass | Pass | Pass |
Brenk | Pass | 1 alert: more_than_2_esters | 1 alert: isolated_alkene | Pass | Pass | 1alert: imine_1 |
Synthetic accessibility | 3.91 | 4.19 | 5.04 | 4.77 | 4.20 | 4.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alturki, M.S. Exploring Marine-Derived Compounds: In Silico Discovery of Selective Ketohexokinase (KHK) Inhibitors for Metabolic Disease Therapy. Mar. Drugs 2024, 22, 455. https://doi.org/10.3390/md22100455
Alturki MS. Exploring Marine-Derived Compounds: In Silico Discovery of Selective Ketohexokinase (KHK) Inhibitors for Metabolic Disease Therapy. Marine Drugs. 2024; 22(10):455. https://doi.org/10.3390/md22100455
Chicago/Turabian StyleAlturki, Mansour S. 2024. "Exploring Marine-Derived Compounds: In Silico Discovery of Selective Ketohexokinase (KHK) Inhibitors for Metabolic Disease Therapy" Marine Drugs 22, no. 10: 455. https://doi.org/10.3390/md22100455
APA StyleAlturki, M. S. (2024). Exploring Marine-Derived Compounds: In Silico Discovery of Selective Ketohexokinase (KHK) Inhibitors for Metabolic Disease Therapy. Marine Drugs, 22(10), 455. https://doi.org/10.3390/md22100455