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Abstract: The increasing prevalence of metabolic diseases, including nonalcoholic fatty liver disease
(NAFLD), obesity, and type 2 diabetes, poses significant global health challenges. Ketohexokinase
(KHK), an enzyme crucial in fructose metabolism, is a potential therapeutic target due to its role
in these conditions. This study focused on the discovery of selective KHK inhibitors using in
silico methods. We employed structure-based drug design (SBDD) and ligand-based drug design
(LBDD) approaches, beginning with molecular docking to identify promising compounds, followed
by induced-fit docking (IFD), molecular mechanics generalized Born and surface area continuum
solvation (MM-GBSA), and molecular dynamics (MD) simulations to validate binding affinities.
Additionally, shape-based screening was conducted to assess structural similarities. The findings
highlight several potential inhibitors with favorable ADMET profiles, offering promising candidates
for further development in the treatment of fructose-related metabolic disorders.
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1. Introduction

The increasing prevalence of metabolic diseases such as nonalcoholic fatty liver disease
(NAFLD), obesity, and type 2 diabetes have resulted in widespread epidemics significantly
affecting global health, [1] reducing life expectancy, and diminishing the quality of life for
people worldwide [2–4]. Over the past few decades, numerous studies have concentrated
on investigating the impact of fructose, a prevalent sugar in plant-based foods and pro-
cessed energy-dense foods, such as sugar-sweetened beverages, on metabolic diseases [5–7].
Ketohexokinase (KHK) plays a crucial role in fructose metabolism by phosphorylating
fructose to fructose-1-phosphate. This enzyme exists in two isoforms, KHK-A and KHK-
C, with KHK-C being more active in the liver and having a higher capacity for fructose
phosphorylation [8–10]. Fructose metabolism contributes directly to the development of
cardiometabolic diseases due to the rapid action of KHK-C, which lacks feedback inhi-
bition. This rapid metabolism can deplete hepatic ATP after fructose consumption [11],
leading to increased lipogenesis and promoting the expression of lipogenic genes [12,13].
Fructose also enhances glucose-stimulated insulin secretion [14–16], resulting in hyperin-
sulinemia and insulin resistance, critical factors in diseases like NAFLD (Figure 1) [17].
Consequently, health organizations recommend limiting daily fructose intake to mitigate
these effects [18,19]. However, the widespread presence of fructose in a diet suggests that
additional measures may be necessary to counteract its harmful impacts. The inhibition
of KHK, particularly KHK-C, is considered a potential strategy for mitigating the adverse
effects of excessive fructose consumption, which is linked to these metabolic disorders.

KHK is a member of the ribokinase superfamily and typically functions as a ho-
modimer [20]. Each monomer consists of two domains: an N-terminal and a C-terminal
domain [21]. The enzyme’s active site is located at the interface of these domains, and its
structure has been elucidated through several crystal structures. One of the key structural
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features of KHK is its pseudo-homodimeric form, where one monomer adopts a closed
conformation while the other remains in an open conformation [22,23]. This conformation
is stabilized by a β-clasp interaction, which plays a critical role in the enzyme’s function
and has been a target for small-molecule inhibitor design [24]. The active site of KHK binds
ATP and fructose, facilitating the transfer of a phosphate group from ATP to fructose. In-
hibitors targeting KHK typically interact with the ATP-binding site or the fructose-binding
site. The structural insights gained from crystallographic studies have been instrumental
in the rational design of potent KHK inhibitors. For example, the binding of AMP-PNP
(a non-hydrolyzable ATP analog) to KHK has provided valuable information on the key
interactions necessary for inhibitor binding.
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Figure 1. Inhibition of KHK reduced liver fat in adults with non-alcoholic fatty liver disease (NAFLD).

Potent pyrimidine and indazole derivatives against KHK were reported through high-
throughput screening and fragment-based drug design [23,25–28]. These compounds were
further optimized via structure-based drug design, revealing fundamental interactions
within KHK’s active site [25]. X-ray crystallography confirmed their binding, with some
inhibitors achieving submicromolar potency and significant inhibitory activity against
KHK [25]. Recent advances in KHK inhibitor development have focused on novel struc-
tural motifs and modifications to known inhibitor classes. Researchers have explored
various chemical scaffolds, including pyrimidine/cyanopyridine [29], sulfinates [30], and
saturated monocyclic heterocycles [31]; some have demonstrated good bioavailability and
good pharmacokinetic profiles in preclinical studies, making them promising candidates for
further development. Despite the progress in developing small-molecule KHK inhibitors,
translating KHK inhibitors into clinical success has been challenging. Several inhibitors,
such as Pfizer’s PF-06835919 (Figure 2) [32], showed initial promise [33] but were discontin-
ued after Phase II trials without the reason’s disclosure. Eli Lilly’s inhibitors LY3478045
and LY3522348 faced similar issues [34,35], demonstrating that achieving sufficient efficacy
and safety profiles remains a primary challenge in clinical development.

The main hurdle to using natural products, especially those of marine origin, is their
reduced availability and complicated extraction and purification procedures. One example
is avarone, a promising sesquiterpene quinone, which, despite being isolated in good
quantities from its original matrix, deserves further biotechnological development [36].
Additionally, due to the time and expense associated with traditional drug discovery
processes, bioinformatics approaches are increasingly favored for identifying novel drug
targets that are specific and selective against bacterial pathogens [37–39]. One primary ob-
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jective of screening is to discover new chemical compounds with optimal biological activity
by searching commercial and public databases [40]. For example, bioinformatics tech-
niques have been used to identify seven metabolic pathway enzymes and non-homologous
membrane proteins as promising antibacterial targets [41]. Furthermore, existing targets
can be leveraged to unravel new classes of drug molecules, as exemplified by identifying
hits against penicillin-binding protein 2a of Methicillin-resistant S. aureus (MRSA) [42].
Telithromycin, a third-generation ketolide antibiotic, was discovered to be an effective
agent specifically targeting resistant bacterial strains [43]. Thus, molecular modeling with
medicinal chemistry knowledge can facilitate the development of potential targets and
promising drug candidates [44].

Mar. Drugs 2024, 22, x FOR PEER REVIEW 3 of 26 
 

 

 
Figure 1. Inhibition of KHK reduced liver fat in adults with non-alcoholic fatty liver disease (NAFLD). 

 
Figure 2. KHK inhibitor. 

2. Results 
2.1. High-Quality Protein Structure Evaluation 

Relevant information on protein reliability is illustrated in Figure S1. The KHK structure 
(6W0Z) exhibited some issues with B-factors, suggesting a disorder of atoms from their ideal 
equilibrium positions. Specifically, the ARG-249 atom was missing (Figure S2), and several 
water molecules, including H2O-485, 487, 493, 495, 572, 579, 580, and 581, lacked hydrogen 
bond partners (Figure S3). Additionally, three isolated water molecules were detected at a 
minimum distance of 8.983 Å from the protein. A slight bond angle deviation was observed 
for ASP-114 and GLU-227. Despite these issues, the overall reliability report for 6W0Z was 
favorable, indicating minimal concerns. Steric clashes in the KHK enzyme structure were ad-
dressed through energy minimization. These clashes indicate high-energy conformations that 
can cause disruptions and lead to instability during simulations (Figure S4). However, mini-
mization can also introduce unfavorable contacts, potentially altering the enzyme’s overall 
conformation. Therefore, it is essential to evaluate the enzyme before and after minimization 
to achieve an energy-optimized structure for accurate docking and simulation predictions. 
The Ramachandran plot for the pre-minimized KHK enzyme showed 93.3% residues in the 
favored region, while the plot for the energy-minimized enzyme showed 92.5% residues in 
the favored region. Notably, no residues were in disallowed regions for both the pre-mini-
mized and minimized structures. Figure 3 depicts the Ramachandran plots for both the pre-
minimized and energy-minimized KHK enzymes. 
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The present in silico study focused on exploring molecules from natural marine or-
ganisms as selective inhibitors of ketohexokinase (KHK). Two drug design strategies were
employed: structure-based drug design (SBDD) and ligand-based drug design (LBDD) [44].
Initially, molecular docking was used to identify the top-docked compounds [45], followed
by induced-fit docking (IFD) [46], molecular mechanics generalized Born and surface area
continuum solvation (MM-GBSA) [47], and molecular dynamics simulations to validate
their binding affinities [48]. A shape-based screening was also conducted to assess shape
similarities [49]. ADMET studies were conducted to evaluate the pharmacokinetic prop-
erties of the potential KHK inhibitors [50]. The findings of this study have the potential
to contribute significantly to the ongoing efforts to enhance the biological activity of hit
compounds against ketohexokinase (KHK).

2. Results
2.1. High-Quality Protein Structure Evaluation

Relevant information on protein reliability is illustrated in Figure S1. The KHK
structure (6W0Z) exhibited some issues with B-factors, suggesting a disorder of atoms from
their ideal equilibrium positions. Specifically, the ARG-249 atom was missing (Figure S2),
and several water molecules, including H2O-485, 487, 493, 495, 572, 579, 580, and 581,
lacked hydrogen bond partners (Figure S3). Additionally, three isolated water molecules
were detected at a minimum distance of 8.983 Å from the protein. A slight bond angle
deviation was observed for ASP-114 and GLU-227. Despite these issues, the overall
reliability report for 6W0Z was favorable, indicating minimal concerns. Steric clashes
in the KHK enzyme structure were addressed through energy minimization. These clashes
indicate high-energy conformations that can cause disruptions and lead to instability
during simulations (Figure S4). However, minimization can also introduce unfavorable
contacts, potentially altering the enzyme’s overall conformation. Therefore, it is essential
to evaluate the enzyme before and after minimization to achieve an energy-optimized
structure for accurate docking and simulation predictions. The Ramachandran plot for
the pre-minimized KHK enzyme showed 93.3% residues in the favored region, while
the plot for the energy-minimized enzyme showed 92.5% residues in the favored region.
Notably, no residues were in disallowed regions for both the pre-minimized and minimized
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structures. Figure 3 depicts the Ramachandran plots for both the pre-minimized and
energy-minimized KHK enzymes.
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2.2. Docking Studies

The co-crystalline ligand was redocked into its target KHK using the same proce-
dure and protocol applied for the six hits to validate docking. Subsequently, rigid-body
superposition was performed using Maestro’s structure superposition tool to align the pre-
dicted lowest energy conformation of the target with its corresponding co-crystalline ligand
(Figure S5). The classical RMSD from the co-crystalline pose was calculated for the pre-
dicted binding poses, with an RMSD < 2 Å considered an effective threshold for validating
correctly posed molecules [50,51]. The results showed good binding mode superimposition,
with an RMSD of 0.3004 Å for PF-06835919, reflecting the accuracy of Glide’s pose predic-
tion (Figure 4). MM-GBSA study identified five hits, including compound 1(CMNPD12445),
compound 2(CMNPD799), compound 3(CMNPD24755), compound 4(CMNPD27745), and
compound 5(CMNPD21775) (Figure 5). The binding affinities of the five hits were assessed
against KHK. Initially, the inhibition profiles of these five hits were examined by docking
them into the binding pockets of the target, investigating their binding patterns, target
interactions, and binding affinities compared to the reference PF-06835919.
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2.3. Computational Analysis of the Five Hits Binding to KHK

The findings presented in Table 1 offer valuable insights into the binding affinities and
interaction profiles of the selected hit compounds with the target enzyme KHK. The appli-
cation of induced-fit docking (IFD) was crucial in generating accurate complex structures
for these hits, allowing for the identification of true binders that might have been initially
overlooked due to poor scores (false negatives). This was accomplished by employing
multiple receptor conformations obtained through the IFD protocol rather than relying on
a single rigid conformation, thereby enhancing the reliability of the screening process [52].
Compound 1 exhibited significant polar interactions, a high docking score, and binding
affinity. (1) The carbonyl oxygen group occupancy of the ATP-ribose pocket with the
oxygen atom filling a small but crucial sub-pocket defined by Phe-260 (normally filled by
the methylene of the ATP ribose sidechain); (2) a hydrogen-bonding interaction between
the para hydroxyl group and a conserved water that forms a hydrogen bond with the
backbone CO of Cys-282; (3) the primary alcohol and the ester oxygen groups filling the
hydrophobic pocket defined by the Lys-193, Ala-224, and Ala-226 residues; (4) one of the
oxygen atoms of the carboxylate group was well-positioned to interact with the cationic
guanidinium group of Arg-108 (distance= 2.37 Å). In addition, the backbone NH of Gly-255
and Gly-257 and (5) the aromatic core provides rigidity and enhances binding affinity by
reducing the entropy loss upon binding [52]. Compound 2 exhibited comparable key amino
acid interactions, a high docking score, and binding affinity to 1; (1) an ionic bond between
the oxygen atoms of the carboxylate group and Arg108, the backbone NH of Gly-255 and
Gly-257; (2)two hydroxyl groups of the cyclopentane ring formed strong hydrogen bonds
with Ala-226 and Gly-229, and conserved water that forms a hydrogen-bond with the
backbone CO of Cys-282. Similar interactions with key amino acid residues were observed
for 3, 4, and 5. These interactions support their relatively high binding affinity and docking
scores. Favorable binding-based 2D and 3D docking positions interact with key residues
within the binding pocket, as shown in (Figures 6 and 7).
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Table 1. Docking scores and induced-fit docking of the five hits at the binding site of KHK (PDB
entry: 6W0Z).

Compound Name/
Source

Glide Score Docking
(Semi-Rigid) a

Induced-Fit Docking
(IFD)

(Flexible) a

Ionic
Interactions
(Semi-Rigid)

H-Bond
Interactions
(Semi-Rigid)

1
NA/

Halorosellinia
oceanica

−10.51 −10.00 Arg-108

Lys-193
Ala-224
Ala-226
Gly-255
Gly-257

H2O-409(Bridge with Cys-282)

2
PGF2α

†/Hydropuntia
Edulis

−9.47 −9.69 Arg-108

Ala-226
Gly-229
Gly-255
Gly-257

H2O-409(Bridge with Cys-282)

3
Oxalicumone

D/Penicillium
oxalicum

−9.44 −9.28

Arg-108
Gly-255
Ala-256
Gly-257

H2O-409(Bridge with Cys-282)

4
Rhytidchromone E/

Rhytidhysteron
rufulum

−9.28 −9.13

Arg-108
Gly-255
Gly-257

H2O-409(Bridge with Cys-282)

5
Aplysiapalythine

A/Aplysia californica −9.23 −8.28 Arg-108

Lys-193
Ala-226
Gly-255
Gly-257

H2O-409(Bridge with Cys-282)

PF-06835919 (Control) −10.73 −10.69 Arg-108

Gly-255
Gly-257

H2O-409(Bridge with Cys-282)
H2O-429

a Higher negative value indicate higher binding interactions within the binding pocket.
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2.4. Binding Free Energies Analysis

To validate the affinity of compounds to KHK, post-docking of MM-GBSA was per-
formed to yield different free energies of the complexes. MM-GBSA is considered reliable
for this purpose as it is more accurate than docking predictions [53]. The MM-GBSA
method was used to cross-validate the docking findings. Table 2 presents the different
binding free energies calculated by the MM-GBSA method. In MM/GBSA, the net binding
free energy of the systems is −51.66 kcal/mol for 1, −45.23 kcal/mol for 2, −38.29 kcal/mol
for 5, −35.66 kcal/mol for 3, and −31.25 kcal/mol for 4.

Table 2. MM-GBSA net binding energy of the compounds/control.

Compound ∆G Binding (kcal/mol) a ∆G Binding H-bond ∆G Binding vdW ∆G Binding Solve GB

1 −51.66 −6.34 −43.41 −7.53

2 −45.23 −5.9 −42.75 −17.64

5 −38.29 −6.09 −34.53 −3.27

3 −35.66 −4.09 −40.55 −1.08

4 −31.25 −4.57 −34.9 −3.97

PF-06835919 (Control) −92.35 −6.18 −46.85 −0.34
a Higher negative value indicate a higher binding affinity within the binding pocket.

2.5. Molecular Dynamics Simulation of 1 and 2 Binding to the KHK Target

Based on the initial docking and MM-GBSA results, 1 and 2 were chosen for further
analysis by MD perturbation. In the MD study, the KHK RMSDs were equilibrated between
30 and 100 ns and maintained below 4.0, signaling that they formed stable complexes [54]
with 1 and 2 (Figure 8A,B). Interestingly, the RMSDs of 1 and 2, in reference to the KHK
backbone (Lig Fit Prot), showed that the ligands remained at the receptor binding site
throughout the analysis [55] (Figure 8A,B).

To further assess the structural components of KHK for considerable deformations
during the analysis, its root mean square fluctuations (RMSFs) were considered [56]. When
assessed in complexes with either 1 (Figure 9A) or 2 (Figure 9B), KHK experienced the
highest oscillations (RMSF 4.2–5.2 Å) on amino acid residues between 0 and 50 and then at
about 95–105, depicting that these residues were freely flexible [57]. However, none of these
showed relevance in maintaining the ligand–receptor complex (Figure 10), while most of
the backbone structure remained relatively rigid (Figure 9) and played an important part in
interacting with ligands (Figure 10).

The prominent interactions that significantly contributed to the established binding
poses of 1 and 2 to 6W0Z included a mixture of hydrogen bonds (with or without water
bridges), as well as hydrophobic, and ionic interactions (Figure 10). Consistently, Ala-
226 established the highest hydrogen bond interaction with both ligands (Figure 10A,B),
while Glu-227 participated mainly through the water bridge-mediated hydrogen and ionic
interactions (Figure 10C,D). Further water-bridge-assisted hydrogen bonding could be
seen with Ala-244, Phe-245, Thr-253, and Cys-282, involving both ligands (Figure 10A–D).
The direct ionic interactions with Arg-108 were obtained for both ligands, where it was
most significant for 1 (19%) than 2 (5%) (Figure 10C,D). Some hydrophobic amino acid
residues, such as Pro-247 and Phe-260, were in very close proximity to induce significant
hydrophobic interactions with 1, while 2 relied on Pro-247 and Ala-285 for this interaction.
In general, the MD results were in agreement with the initial docking results (Figure 6 and
Table 1).
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2.6. Shape Similarity Prediction

Two molecules with comparable shapes are likely to fit into the same binding pocket
and demonstrate similar biological activity. The similarity between two molecules is mea-
sured using various descriptions of molecular shape as previously outlined. This approach
has been successfully utilized as a virtual screening tool to identify molecules from a chem-
ical library that resemble a specific query [58]. According to Table 3, 2 exhibited the highest
score for shape similarity compared to the other compounds. The structural resemblance
between 2 and PF-06835919 plays an essential role in their interaction with KHK.

Table 3. Shape similarity of the hits and control.

Compound Shape Similarity b

2 0.424

5 0.32

4 0.319

1 0.289

3 0.267

PF-06835919 (Control) 1
b Values closer to 1 indicate higher shape similarity to the control. Cutoff score ≥0.4.

2.7. Alanine Scanning Analysis

Specific residues were mutated to understand their functional significance involved in
the docking pose and the strong interaction of potential hits with KHK. In this context, Arg-
108, Gly-255, Gly-257, and Cys-282 were replaced by alanine to induce native changes in the
structure without affecting the overall conformation of the enzyme. This approach showed
that the hits have lower docking scores except for 3 and 4 (C282A), as seen in Table 4,
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compared to the initial docking results (Table 1). The decline is observed in most mutant
residues owing to their importance in the KHK binding chamber, which was reported
previously [32].

Table 4. Mutated residues and docking scores of potential hits.

Residue Mutated to Alanine 1 2 3 4 5

R108A −7.55 −7.36 −8.97 −6.99 −6.42

G255A −7.81 −7.13 −9.03 −7.42 −6.30

G257A −7.44 −7.50 −8.57 −7.77 −6.71

C282A −8.66 −8.71 −11.82 −9.33 −7.49

2.8. ADMET and Drug-Likeness

In drug development, inadequate pharmacokinetics can result in substantial drug
waste and expensive costs. Assessing the ADMET (Absorption, Distribution, Metabolism,
Excretion, and Toxicity) characteristics is essential during drug discovery and development.
An ideal drug candidate should be effective against its intended target and demonstrate
favorable ADMET profiles at therapeutic levels [59]. A comprehensive pharmacokinetic
assessment was carried out on the five potential drug candidates. Molecular descriptors
were employed to examine absorption mechanisms and potential administration routes to
estimate bioavailability, water solubility, Caco2, and human intestinal absorption. Table 5
reveals compounds that exhibit good oral absorption, except 5, which requires structural
improvements for better water solubility and intestinal absorption. None can penetrate
the BBB or CNS, indicating limited distribution via these routes. Metabolism studies show
that CYP3A4 enzyme metabolizes 1, 3, and 4, whereas the remaining compounds do not
involve CYP450 isoforms, indicating other routes of metabolism. Their excretion profiles,
assessed by total clearance and renal OCT2, suggest efficient body clearance without being
substrates for renal OCT2. Pharmacodynamic properties were also inspected by analyzing
toxicological descriptors such as AMES toxicity, maximum tolerated dose, hepatotoxicity,
and hERG inhibition. Interestingly, 1 and 2 are predicted to show no toxicity except for
3, 4, and 5, suggesting future experimental exploration. In assessing the potential drug
candidates’ ADMET profiles, the drug-like profile of the inhibitors was also analyzed. The
ADME characteristics of the molecules align with established drug-like criteria, including
notable frameworks such as Lipinski’s rule of five [60], Ghose [61], Veber [62], Egan [63],
and Muegge [64] rules. This suggests that the potential candidates will likely exhibit
favorable pharmacokinetics and potentially strong oral bioavailability. Medicinal chemistry
evaluations indicate that the molecules are synthetically accessible and show no indicators
for pans assay interference structures (PAINS), which underscores their selective binding to
KHK. Table 6 shows that 4 meets all criteria without any alerts, and all examined inhibitors
generally conform to the established drug-like criteria.

Table 5. ADMET profiling of the five promising drug candidates.

ADMET Parameters PF-06835919 (Control) 1 2 3 4 5

Absorption

Water solubility (log mol/L) −3.117 −2.909 −3.594 −3.471 −3.21 −0.90

Caco2 permeability (log Papp in 10−6 cm/s) 1.045 −0.55 0.39 −0.31 0.07 −0.32

Intestinal absorption (human) (% Absorbed) 95.07 40.97 48.87 46.84 59.53 17.61

P-glycoprotein substrate (Yes/No) No Yes Yes Yes Yes Yes
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Table 5. Cont.

ADMET Parameters PF-06835919 (Control) 1 2 3 4 5

Distribution

BBB permeability (log BB) −0.91 −1.7 −1.03 −1.37 −1.01 −0.93

CNS permeability (log PS) −3.04 −3.82 −3.24 −3.67 −3.39 −4.39

Metabolism

CYP2D6 substrate (Yes/No) No No No No No No

CYP3A4 substrate (Yes/No) Yes Yes No Yes Yes No

CYP1A2 inhibitior (Yes/No) No No No No No No

CYP2C19 inhibitior (Yes/No) No No No No No No

CYP2C9 inhibitior (Yes/No) No No No No No No

CYP2D6 inhibitior (Yes/No) No No No No No No

CYP3A4 inhibitior (Yes/No) No No No No No No

Excretion

Total Clearance (log ml/min/kg) −0.13 1.11 1.55 0.14 0.88 0.67

Renal OCT2 substrate (Yes/No) No No No No No No

Toxicity

AMES toxicity (Yes/No) No No No Yes No No

Max. tolerated dose (human) (log mg/kg/day) 0.60 0.68 0.59 0.48 0.61 0.50

hERG I inhibitor (Yes/No) No No No No No No

Hepatotoxicity (Yes/No) Yes No No Yes Yes Yes

Table 6. Physicochemical properties, drug-likeness, and medicinal chemistry prediction of top five
promising hits.

Molecule Properties PF-06835919 (Control) 1 2 3 4 5

Physicochemical properties

Molecular Weight 356.34 384.38 354.48 410.4 352.33 303.33

LogP 2.25 1.37 3.04 0.56 1.2 −3.06

#Acceptors 5 8 4 9 8 6

#Donors 1 5 4 4 2 6

#Heavy atoms 25 27 25 28 25 21

#Arom. heavy atoms 6 6 0 10 10 0

Fraction Csp3 0.69 0.50 0.75 0.39 0.41 0.69

#Rotatable bonds 5 11 12 6 7 7

Molar refractivity 90.40 94.22 100.45 98.31 88.91 75.55

TPSA (Å2) 69.56 150.59 97.99 179.80 115.43 133.22

Drug-likeness

Lipinski alert Pass Pass Pass Pass Pass Pass; 1 violation:
#Donors > 5

Ghose Pass Pass Pass Pass Pass No; 1 violation:
WLOGP < −0.4

Veber Pass

No; 2
violations:

Rotors > 10,
TPSA > 140

No; 1 violation:
Rotors > 10

No; 1 violation:
TPSA > 140 Pass Pass

Egan Pass No; 1 violation:
TPSA > 131.6 Pass No; 1 violation:

TPSA > 131.6 Pass No; 1 violation:
TPSA > 131.6
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Table 6. Cont.

Molecule Properties PF-06835919 (Control) 1 2 3 4 5

Muegge Pass No; 1 violation:
TPSA > 150 Pass No; 1 violation:

TPSA > 150 Pass No; 1 violation:
H-don > 5

Bioavailability Score 0.85 0.11 0.56 0.11 0.56 0.55

Medicinal chemistry

PAINS Pass Pass Pass Pass Pass Pass

Brenk Pass 1 alert:
more_than_2_esters

1 alert:
isolated_alkene Pass Pass 1alert: imine_1

Synthetic accessibility 3.91 4.19 5.04 4.77 4.20 4.56

3. Discussion

KHK is a key-limiting enzyme in fructose metabolism that catalyzes the phospho-
rylation of fructose into fructose-1-phosphate. The rapid metabolism of fructose via this
pathway contributes to lipogenesis and ATP depletion, thereby promoting metabolic syn-
drome and NAFLD [8–10]. More recently, it has been demonstrated that KHK-C promotes
endoplasmic reticulum stress, further exacerbating liver disease in both diet-induced and ge-
netic murine models of NAFLD [65]. The importance of KHK for fructose-related metabolic
diseases has promoted the development of KHK inhibitors that are now being assessed
in clinical trials. One such inhibitor is PF-06835919 [32]. Excessive intake of fructose has
been associated with an increased risk of cardiometabolic syndrome and cardiovascular
disease [66].

Structure-based drug design (SBDD) is a strategy in drug development that utilizes
the three-dimensional structure of a target protein to direct the design and optimization
of potential inhibitors. It relies heavily on high-resolution structural information, usually
acquired through X-ray crystallography or nuclear magnetic resonance spectroscopy, to
identify key interactions within the binding site of the target protein. This involves docking
small molecules into the active site to predict their binding mode and affinities, followed
by iterative cycles of design and optimization toward improvement in binding strength,
specificity, and overall drug-like properties. SBDD is particularly useful for optimizing the
fit and orientation of potential drug candidates within the binding pocket, allowing the
rational design of compounds with enhanced potency and selectivity. On the other hand,
ligand-based drug design (LBDD) is used when the structure of the target protein is not
available. By using the structural information from known active compounds, LBDD will
make predictive models that can spot novel compounds with similar biological activities.
Several of the typically applied techniques in LBDD are QSAR modeling, pharmacophore
modeling, and similarity-based virtual screening. These methods analyze the chemical
features and spatial arrangements critical for the biological activity of known ligands,
utilizing that information for screening or designing new compounds [44].

In our study, we employed state-of-the-art in silico techniques to identify potential
inhibitors binding with the active site of KHK-C, which demonstrated the efficiency of the
combined use of both SBDD and LBDD approaches [54,67]. Docking provided an initial
set of potential compounds, which were further validated for predicting binding affinities
using IFD and MM-GBSA [68]. The Root Mean Square Deviation (RMSD) and Root Mean
Square Fluctuation (RMSF) analyses were conducted to evaluate the stability and flexibility
of protein–ligand complexes during simulation. The low RMSD and RMSF values show
that these complexes retained their structural integrity, and the residues at the binding site
displayed minimal fluctuations [48]. Molecular dynamics simulations were carried out
on the two top-ranked compounds, 1 and 2, to assess their dynamic stability and binding
interaction with the active site of KHK. This step is very important in confirming the
reliability and efficacy of the selected inhibitors through their observation in the simulated
physiological environment. From this 100-ns MD simulation, the RMSD of both the ligands
and the RMSF of the KHK target maintained values below 3.0 Å, testifying to the fact that
a stable complex was formed between the ligands and the protein. More precisely, stable
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RMSD and RMSF indicate that the inhibitors retained their consistent binding pose with a
strong interaction towards the target enzyme. The most persistent interactions are formed
via hydrogen bonds, water bridges, and ionic bonds, particularly with residues Arg-108,
Lys-193, Gly-255, and Gly-257 of KHK. Hydrogen-bonding interactions between ligand and
protein were observed with these amino acids, confirming the initial docking results that
further support the reliability of the binding mode predicted during the docking studies.
At 40 and 100 ns, 1 showed fast dynamics of interaction; most of them are insignificant
for the overall stability of the complex. The study thus shows that the important residues
and interactions were stable along the simulation frames and supported the binding pose.
Results from MD simulations provided information about stability and interactions in
protein–ligand complexes, confirming the reliability of the hits selected in the current
study [69]. The presence of the carboxylic acid group in all five hits and PF-06835919
emphasizes its important role in the binding interaction of KHK inhibitors, contributing
to the stability and affinity of the inhibitor–enzyme complex. This is interesting because,
in fact, the carboxylic acid group can hydrogen bond with active site residues such as
Gly-255 and Gly-257 to help maintain the inhibitor in the correct orientation and stabilize
the inhibitor. Interaction with Arg-108, along with other positively charged residues,
enhances the binding strength and specificity of the inhibitors [70]. While traditional
virtual screening workflows typically apply shape similarity early in the process, we used
shape similarity screening in a post-screening manner to refine and validate that the final
shortlisted compounds would not only meet our docking and binding affinity criteria but
also mimic some of the desired structural features of the reference compound. This will
add a layer of confirmation that the hits possess the desired shape attributes and, therefore,
their potential to act as effective inhibitors [49].

Arg-108 is in the ATP-binding site of the KHK enzyme, and it maintains Coulombic
interactions to stabilize inhibitor or substrate binding. An acidic or hydroxyl group can
be introduced to form favorable interactions with Arg-108 and can render the compound
more inhibitory with higher affinity, as evidenced in the binding mode of PF-06835919.
Gly-255 and 257 residues form the backbone in the KHK binding pocket. Their small
size permits flexibility in the binding pocket by forming hydrogen bonds with inhibitors,
resulting in improved complex stability and enhanced binding affinity. Cys-282 is located
proximal to the ATP-binding site. It was shown to interact directly with the binding
pocket and contribute to the overall conformation of the enzyme. Potential inhibitors,
including the pyrimidinopyrimidine series, were reported to form hydrogen bonding
interactions with the backbone CO of Cys-282. This residue is involved in the proper shape
and conformation of the active site; therefore, mutations to alanine may result in major
changes in binding affinity. The observed trends in docking scores across these mutations
highlight the functional significance of these residues in modulating the binding affinity of
the potential 5 hits [32].

ADMET predictions were conducted post-MD simulations to provide more logical
interpretability as they were applied to compounds with confirmed stability in their protein–
ligand complexes. Therefore, this approach reduced the likelihood of advancing false
positives to the ADMET screening stage. The compounds displayed favorable pharmacoki-
netic properties, as evaluated through ADMET profiling. All compounds showed excellent
intestinal absorption except for 5, which required structural optimization to enhance its
absorption. None of the compounds were predicted to penetrate the blood–brain barrier
(BBB) or central nervous system (CNS), indicating limited distribution via these pathways,
which is advantageous for targeting liver-specific metabolic diseases. Metabolism studies
revealed that the selected compounds do not inhibit CYP450 enzymes, suggesting they
are metabolized through alternative pathways, thereby reducing the risk of drug–drug
interactions and bioaccumulation. Excretion profiles indicated efficient clearance from the
body [71].

The evaluation of drug-likeness properties using Lipinski’s rule of five and other crite-
ria confirmed that the compounds generally adhere to established drug-like profiles. Medic-
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inal chemistry assessments indicated good synthetic accessibility and no significant alerts
for pans assay interference structures (PAINS). Of the five hits, 4 demonstrated the most
promising characteristics, reinforcing its potential as a drug candidate for KHK [72–74].

4. Materials and Methods
4.1. Experimental Design

The Comprehensive Marine Natural Products database (CMNPD) was retrieved from
the online serve (https://www.cmnpd.org/, accessed on 25 June 2024) [75], which is a pub-
lic web-accessible database containing over 46,000 compounds. Around 47,000 compounds
derived from bacteria, fungi, and algae were initially collected in an sdf file format and
subsequently processed using the online FAFDrugs4 server [76]. This processing in-
volved a sequential application of drug-like soft filters, toxicophore screening [76], and
Eli Lilly MedChem rules, which systematically removed compounds deemed non-drug-
like, toxic [77,78], or problematic (PAINS compounds) from the dataset [79], resulting in
12,470 compounds—followed by preparation using the LigPrep tool in Maestro to add
missing hydrogen atoms, build and energetically minimize outputs, optimize with the
OPLS3e force field, convert to their respective 3D chemical structures, and ionize stereoiso-
mers at a neutral pH of 7.0 ± 2.0 using Epik. The generation of tautomer and desalt was
checked, and the stereoisomers were left to contain specific chirality to produce 32 isomers
per ligand at most, and energy was minimized for molecular modeling [80]. The filtered
12,470 compounds were subjected to high throughput virtual screening (HTVS) using Glide
software within Schrödinger. This helped rapidly assess the binding potential of each com-
pound against the target protein, Ketohexokinase-6W0Z. A total of 9032 compounds with
favorable GlideScore passed this initial screening; these were then subjected to a more strin-
gently filtered Standard Precision (SP) docking. This includes a more refined binding pose
and energy calculation considering extra molecular interactions. The screening at this stage
narrowed the pool further to 1053 compounds with improved docking scores and plausible
binding poses within the active site of the target protein. The top 1053 compounds passed
through an additional filter of Extra Precision Docking that provides a highly accurate
assessment of binding interactions, considering both ligand and receptor side chains. This
resulted in XP docking identifying 279 compounds with the most favorable binding pose
and the best docking score, hence being strong potential inhibitors. To further refine this
selection, the top 279 compounds were subjected to MM-GBSA calculations. This method
estimates the free binding energy of the ligand–protein complexes, therefore making more
reliable predictions for the binding affinity of a compound. Indeed, from these calculations,
the final 5 hits had the lowest binding free energies and stable binding conformation, as
shown in Figure 11.

4.2. Retrieval of Ketohexokinase-c Crystal Structure, Protein Reliability, and Preparation for
Docking Analysis

The X-ray crystallographic structure of KHK-c from a human complexed with PF-06835919
(PDB ID: 6W0Z) [32] was obtained from the Protein Data Bank (https://www.rcsb.org/,
accessed on 25 June 2024) as displayed in Figure 12. All 3D structural figures were generated
using Pymol [81]. A structural analysis panel was utilized to obtain a protein reliability report
to assess the reliability of retrieved structures [82]. The Protein Preparation Wizard in Maestro
molecular modeling software, 13.6, was used to repair missing residues and side chains,
protonate histidine residues using PROPKA at pH 7.0, fill loops with Prime, and assign bond
orders. The Het (hetero atom) state was created for PF-06835919 (S6D 301) at the protein’s
active site during preprocessing. Polar hydrogens were added, non-essential water molecules
were removed, and all heavy atoms converged to a root mean square deviation (RMSD) of
0.3 Å. Performing an independent Ramachandran plot analysis is essential for verifying the
structural integrity of key residues, especially those falling within or near the active site or
binding pocket. This is a critical step since the quality of the crystal structure will define the
quality and reliability of further computational simulations and analyses, such as molecular

https://www.cmnpd.org/
https://www.rcsb.org/
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docking and dynamic simulations. To assess the general quality of the minimized structure, the
Ramachandran plot was generated and compared with the unminimized. The entire structure
was minimized and optimized with the OPLS3 force field and was subsequently used for the
docking process [82].
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4.3. Binding Site Determination and Docking Validation

A docking grid was generated using the receptor grid generation tool to specify the
3D coordinates of the active sites of ketohexokinase (KHK), set at (−4.49, 0.93, 18.79) for
(x, y, z) within a confined volume of 20 Å. This setup created a centroid in the receptor’s
active site and established a grid box. The co-crystallized ligand was redocked to ensure
accuracy, and docking poses and interactions were validated through Maestro’s structure
superimposition and RMSD alignment calculations [52,83,84]. Using a van der Waals
(vdW) radius scaling factor of 1.00 and a partial charge cutoff of 0.25, the receptor grid was
centered on the bound ligand. The binding site was enclosed within the grid box, adhering
to default parameters and without applying any constraints. Following this setup, the
docking process was repeated and validated across three screening settings.

4.4. Non-Covalent Docking Screening (Semi-Rigid Docking)

The ligand was docked using the Glide tool without constraints [85], employing a
van der Waals (vdw) radius scaling factor of 0.80 and a partial charge cut-off of 0.15. The
ligands’ flexibility was considered, while the protein was considered a rigid structure, with
all other parameters set to their default values. GlideScore, implemented in Glide, was
utilized to predict binding affinity and rank ligands. The Pose Rank was utilized to identify
the optimal docking pose for each ligand. Subsequently, the compounds were thoroughly
examined based on their binding scores and a detailed analysis of all binding interactions.

4.5. Induced Fit Docking (Flexible Docking)

The induced-fit docking (IFD) technique, developed by Schrödinger, is used to model
how ligand binding induces conformational changes [86]. This method involves several
steps, as outlined in [46], for docking one or more ligands. Using the IFD tool in Maestro,
each ligand undergoes initial docking using a softened potential (van der Waals radii scal-
ing) and flexible conformational sampling. After that, side-chain prediction is conducted
within a specified distance of each ligand pose. Following this, residues and the ligand
in each protein/ligand complex pose undergo minimization. Finally, a favorable binding
pose is predicted based on the IFD score.

4.6. Molecular Mechanics-Based Re-Scoring

The binding complexes were re-scored using molecular mechanics generalized Born
surface area (MM/GBSA) docking to improve the accuracy of affinity predictions [87].

∆G binding free energy = ∆G binding, vacuum + ∆G solvation, complex−
(∆G solvation, ligand + ∆G solvation, receptor.)

(1)

MM/GBSA enhances accuracy by allowing both the ligand and receptor to remain
flexible, which is critical for physiological relevance [88]. Therefore, an intensive MM/GBSA
simulation was used to rank the binding affinities of the eight identified hits against the
KHK target. To achieve this, the initial extensive precision (XP) complexes of KHK hits and
PF-06835919 underwent MM/GBSA docking in Maestro. Flexibility was incorporated by
adjusting the distance between the hits or PF-06835919 and KHK to 5 Å. The simulation
employed the VGSB solvation model alongside the OPLS3 force field [88].

4.7. Molecular Dynamics Simulation Studies

The high scoring complex was further assessed through molecular dynamics (MD)
simulations in Maestro 13.6 software. The simulation system was prepared using the
Desmond System Builder where the receptor–ligand complex was immersed in the TIP3P
solvent model with a buffer system containing 0.15M sodium chloride [89]. The solvent
box volume was minimized under the OPLS4 force field, resulting in the final system
containing approximately 25,000 atoms. The final system was retrieved for a 100 ns MD
simulation, beginning with the system relaxation using the default protocol. The isothermal-
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isobaric NPT entity at 310 K temperature and 1.103 bar pressure was adopted during the
simulation [89,90]. Other parameters such as Coulombic cutoff distance and a reversible
reference system propagator algorithm (RESPA) integrator were kept at default settings.
Following the simulation, the Desmond Simulation Interaction Diagram tool was used to
analyze the results [91–93].

4.8. Shape-Based Screen

The 2023 version of Schrödinger’s Shape Screening tool was employed for shape
screening. PF-06835919 served as the reference structure during this process. Six com-
pounds underwent screening utilizing the pharmacophore volume scoring technique,
which evaluates each compound as an assembly of pharmacophore features, including
aromatic groups, hydrogen bond acceptors (HBAs), hydrogen bond donors (HBDs), hy-
drophobic regions, as well as positively and negatively charged groups. The shape simi-
larity score (Shape Sim score) was derived from the most matching features among these
compounds [49].

4.9. In Silico Site-Directed Mutagenesis

The residues involved in consistent interactions and stability of the complexes were
chosen for alanine scanning analysis. Alanine scanning was performed ne in the Maestro
BioLuminate 4.4.123 package. These key amino acid residues were selected according to
the docking interactions and residue analysis and were manually mutated to ALA. The
XP calculation in the Glide tool was followed with the intention of using the generated
docking poses and scores for qualitative and quantitative analyses. The goal was to scan
for variations in docking scores due to residues mutations [94].

4.10. ADMET Properties and Drug-Likeness Predictions

We utilized the pkCSM web server (http://biosig.unimelb.edu.au/pkcsm/prediction,
accessed on 2 July 2024). Ref. [95] to predict descriptors for both ADMET (absorption,
distribution, metabolism, excretion, and toxicity) and drug-likeness properties of the fi-
nal selected potential inhibitors. Eight molecular descriptors were generated to char-
acterize the ADMET properties of the potential KHK hits. Additionally, physicochem-
ical properties, medicinal chemistry, and drug-likeness were applied via SwissADME
(http://www.swissadme.ch/, accessed on 5 July 2024) [96].

5. Conclusions

This study successfully identified several promising KHK inhibitors, including 1 (CMNPD12445),
2 (CMNPD799), 3 (CMNPD24755), 4 (CMNPD27745), and 5 (CMNPD21775) with strong binding
affinities and favorable ADMET profiles. The integration of SBDD and LBDD methodolo-
gies provides an all-encompassing approach toward discovering novel inhibitors targeting
the key player enzyme, KHK, in fructose metabolism. Our findings demonstrated that com-
pounds identified from marine sources had a highly effective potential for therapeutic agent
development against fructose-related metabolic disorders, including NAFLD and obesity.

The stability of these compounds bound to the active site of KHK was further validated
by computational analyses such as molecular docking, induced-fit docking, MM/GBSA
calculations, and MD simulations. Of these, compound 1 and compound 2 exhibited robust
binding interactions with the important amino acids lining the KHK binding pocket, which
remained stable throughout the period of the MD simulation. These compounds were also
computationally found to exhibit favorable pharmacokinetic properties, which supports
the prospect of these compounds acting as drug candidates.

The significance of this study lies in its contribution to the growing body of knowledge
on marine-derived natural products as a drug for metabolic diseases. Some of the identified
KHK inhibitors could thus form the basis for developing novel therapeutic approaches
against the undesirable aspects of excessive fructose intake. Further experimental validation
and optimization may, thus, be required to confirm their efficacy and safety.

http://biosig.unimelb.edu.au/pkcsm/prediction
http://www.swissadme.ch/
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md22100455/s1, Figure S1: Protein reliability for ketohexokinase;
Figure S2: Missing atoms, ARG-249 and several water molecules, including H2O-485, 487, 493, 495,
572, 579, 580, and 581, lacked hydrogen bond partners; Figure S3: Invalid atom types with missing
hydrogen atoms or wrong number of bonds; Figure S4: All issues for ketohexokinase crystal structure
were addressed, and no further problems were reported; Figure S5: Alignment of the predicted
lowest energy conformation of the target with its corresponding co-crystalline ligand.
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