Investigating Non-Native Ribbon Worm Cephalothrix simula as a Potential Source of Tetrodotoxin in British Bivalve Shellfish
Abstract
:1. Introduction
2. Results
2.1. Confirmation of C. simula in Seawater Samples
2.1.1. Targeted Approach Using Novel C. simula-Specific Primers
2.1.2. Intra-Species Variant Screening
2.1.3. Broad-Target COI Amplicon Approach for Genus Variant Screening
2.1.4. Phylogenetic Analysis of Sequence Data
2.2. Abundance of C. simula DNA in Seawater and Comparison with TTX Concentrations in M. gigas
2.2.1. Time Series Analysis
2.2.2. Statistical Evaluation
2.3. C. simula Presence in Digestive Gland of TTX-Bearing M. gigas
3. Discussion
3.1. Confirmation of C. simula in the Study Area
3.2. Correlating C. simula DNA Abundance in Seawater and TTX Concentrations in M. gigas from the Study Area
3.3. C. simula as a Potential Source of TTX in Bivalve Shellfish
4. Materials and Methods
4.1. Sample Collection and Preparation
4.2. Molecular Methods
4.2.1. DNA Extraction from Water Filters
4.2.2. DNA Extraction from M. gigas Digestive Gland Tissue and Swab Samples
4.2.3. Targeted Approach Using Novel C. simula-Specific PCR Assay
4.2.4. Sanger Sequencing of Individual C. simula PCR Amplicons
4.2.5. Intra-Species Variant Screening
4.2.6. Broad-Target COI Amplicon Approach for Genus Variant Screening
4.2.7. Phylogenetic Analysis of Sequencing Data
4.2.8. C. simula-Specific Real-Time qPCR
4.3. Analysis of Tetrodotoxins
4.3.1. Reagents and Chemicals
4.3.2. TTX Extraction, Clean-Up and Dilution
4.3.3. Liquid Chromatography—Tandem Mass Spectrometry
4.3.4. Data Analysis
4.3.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guardone, L.; Maneschi, A.; Meucci, V.; Gasperetti, L.; Nucera, D.; Armani, A. A Global Retrospective Study on Human Cases of Tetrodotoxin (TTX) Poisoning after Seafood Consumption. Food Rev. Int. 2019, 36, 645–667. [Google Scholar] [CrossRef]
- Bane, V.; Lehane, M.; Dikshit, M.; O’Riordan, A.; Furey, A. Tetrodotoxin: Chemistry, Toxicity, Source, Distribution and Detection. Toxins 2014, 6, 693–755. [Google Scholar] [CrossRef] [PubMed]
- Katikou, P. Public Health Risks Associated with Tetrodotoxin and Its Analogues in European Waters: Recent Advances after The EFSA Scientific Opinion. Toxins 2019, 11, 240. [Google Scholar] [CrossRef]
- Katikou, P.; Gokbulut, C.; Kosker, A.R.; Campàs, M.; Ozogul, F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar. Drugs 2022, 20, 47. [Google Scholar] [CrossRef] [PubMed]
- Biessy, L.; Boundy, M.J.; Smith, K.F.; Harwood, D.T.; Hawes, I.; Wood, S.A. Tetrodotoxin in Marine Bivalves and Edible Gastropods: A Mini-Review. Chemosphere 2019, 236, 124404. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, P.; Salerno, B.; Bordin, P.; Peruzzo, A.; Orsini, M.; Arcangeli, G.; Barco, L.; Losasso, C. Tetrodotoxin in Live Bivalve Mollusks from Europe: Is It to Be Considered an Emerging Concern for Food Safety? Compr. Rev. Food Sci. Food Saf. 2021, 21, 719–737. [Google Scholar] [CrossRef]
- Chau, R.; Kalaitzis, J.A.; Neilan, B.A. On the Origins and Biosynthesis of Tetrodotoxin. Aquat. Toxicol. 2011, 104, 61–72. [Google Scholar] [CrossRef]
- Noguchi, T.; Arakawa, O. Tetrodotoxin—Distribution and Accumulation in Aquatic Organisms, and Cases of Human Intoxication. Mar. Drugs 2008, 6, 220–242. [Google Scholar] [CrossRef]
- Kodama, M.; Sato, S.; Ogata, T. Alexandrium tamarense as a Source of Tetrodotoxin in the Scallop Patinopecten Yessoensis. In Proceedings of the Toxic Phytoplankton Blooms in the Sea. In Proceeding of the 5th International Conference on Toxic Marine Phytoplankton, Newport, RI, USA, 28 October–1 November 1991; Elsevier: New York, NY, USA, 1993; pp. 401–406. [Google Scholar]
- Ogilvie, S.; Taylor, D.; McNabb, P.; Hamon, D.; Nathan, P.; Anderson, A. Tetrodotoxin in Kaimoana: Science and Mātauranga Mitigating Health Risks from a Lethal Neurotoxin; Report. No. 2219; Cawthron Institute: Nelson, New Zealand, 2012; pp. 1–46. [Google Scholar]
- Turner, A.D.; Powell, A.; Schofield, A.; Lees, D.N.; Baker-Austin, C. Detection of the Pufferfish Toxin Tetrodotoxin in European Bivalves, England, 2013 to 2014. Eurosurveillance 2015, 20, 21009. [Google Scholar] [CrossRef]
- Vlamis, A.; Katikou, P.; Rodriguez, I.; Rey, V.; Alfonso, A.; Papazachariou, A.; Zacharaki, T.; Botana, A.M.; Botana, L.M. First Detection of Tetrodotoxin in Greek Shellfish by UPLC-MS/MS Potentially Linked to the Presence of the Dinoflagellate Prorocentrum Minimum. Toxins 2015, 7, 1779–1807. [Google Scholar] [CrossRef]
- Bacchiocchi, S.; Campacci, D.; Siracusa, M.; Dubbini, A.; Accoroni, S.; Romagnoli, T.; Campanelli, A.; Griffoni, F.; Tavoloni, T.; Gorbi, S.; et al. A Hotspot of TTX Contamination in the Adriatic Sea: Study on the Origin and Causative Factors. Mar. Drugs 2023, 21, 8. [Google Scholar] [CrossRef]
- Bacchiocchi, S.; Campacci, D.; Siracusa, M.; Dubbini, A.; Leoni, F.; Tavoloni, T.; Accoroni, S.; Gorbi, S.; Giuliani, M.E.; Stramenga, A.; et al. Tetrodotoxins (TTXs) and Vibrio alginolyticus in Mussels from Central Adriatic Sea (Italy): Are They Closely Related? Mar. Drugs 2021, 19, 304. [Google Scholar] [CrossRef] [PubMed]
- Bordin, P.; Dall’Ara, S.; Tartaglione, L.; Antonelli, P.; Calfapietra, A.; Varriale, F.; Guiatti, D.; Milandri, A.; Dell’Aversano, C.; Arcangeli, G.; et al. First Occurrence of Tetrodotoxins in Bivalve Mollusks from Northern Adriatic Sea (Italy). Food Control 2021, 120, 107510. [Google Scholar] [CrossRef]
- Gerssen, A.; Bovee, T.H.F.; Klijnstra, M.D.; Poelman, M.; Portier, L.; Hoogenboom, R.L.A.P. First Report on the Occurrence of Tetrodotoxins in Bivalve Mollusks in The Netherlands. Toxins 2018, 10, 450. [Google Scholar] [CrossRef]
- Hort, V.; Arnich, N.; Guérin, T.; Lavison-Bompard, G.; Nicolas, M. First Detection of Tetrodotoxin in Bivalves and Gastropods from the French Mainland Coasts. Toxins 2020, 12, 599. [Google Scholar] [CrossRef]
- Leão, J.M.; Lozano-Leon, A.; Giráldez, J.; Vilariño, Ó.; Gago-Martínez, A. Preliminary Results on the Evaluation of the Occurrence of Tetrodotoxin Associated to Marine Vibrio spp. in Bivalves from the Galician Rias (Northwest of Spain). Mar. Drugs 2018, 16, 81. [Google Scholar] [CrossRef]
- Réveillon, D.; Savar, V.; Schaefer, E.; Chevé, J.; Halm-Lemeille, M.-P.; Hervio-Heath, D.; Travers, M.-A.; Abadie, E.; Rolland, J.-L.; Hess, P. Tetrodotoxins in French Bivalve Mollusks—Analytical Methodology, Environmental Dynamics and Screening of Bacterial Strain Collections. Toxins 2021, 13, 740. [Google Scholar] [CrossRef]
- Turner, A.D.; Dhanji-Rapkova, M.; Coates, L.; Bickerstaff, L.; Milligan, S.; O’Neill, A.; Faulkner, D.; McEneny, H.; Baker-Austin, C.; Lees, D.N.; et al. Detection of Tetrodotoxin Shellfish Poisoning (TSP) Toxins and Causative Factors in Bivalve Molluscs from the UK. Mar. Drugs 2017, 15, 277. [Google Scholar] [CrossRef]
- Antonelli, P.; Peruzzo, A.; Mancin, M.; Boscolo Anzoletti, A.; Dall’Ara, S.; Orsini, M.; Bordin, P.; Arcangeli, G.; Zanolin, B.; Barco, L.; et al. Tetrodotoxin in Bivalve Mollusks: An Integrated Study towards the Comprehension of the Influencing Factors of a Newly Native Phenomenon. Chemosphere 2023, 339, 139682. [Google Scholar] [CrossRef]
- Blanco, L.; Lago, J.; González, V.; Paz, B.; Rambla-Alegre, M.; Cabado, A.G. Occurrence of Tetrodotoxin in Bivalves and Gastropods from Harvesting Areas and Other Natural Spaces in Spain. Toxins 2019, 11, 331. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Pinto, E.P.; Oliveira, P.; Pedro, S.; Costa, P.R. Evaluation of the Occurrence of Tetrodotoxin in Bivalve Mollusks from the Portuguese Coast. J. Mar. Sci. Eng. 2019, 7, 232. [Google Scholar] [CrossRef]
- Dhanji-Rapkova, M.; Teixeira Alves, M.; Triñanes, J.A.; Martinez-Urtaza, J.; Haverson, D.; Bradley, K.; Baker-Austin, C.; Huggett, J.F.; Stewart, G.; Ritchie, J.M.; et al. Sea Temperature Influences Accumulation of Tetrodotoxin in British Bivalve Shellfish. Sci. Total Environ. 2023, 885, 163905. [Google Scholar] [CrossRef] [PubMed]
- Biessy, L.; Pearman, J.K.; Mertens, K.N.; Réveillon, D.; Savar, V.; Hess, P.; Hampton, H.; Thompson, L.; Lebrun, L.; Terre-Terrillon, A.; et al. Sudden Peak in Tetrodotoxin in French Oysters during the Summer of 2021: Source Investigation Using Microscopy, Metabarcoding and Droplet Digital PCR. Toxicon 2024, 243, 107721. [Google Scholar] [CrossRef] [PubMed]
- Magarlamov, T.Y.; Melnikova, D.I.; Chernyshev, A.V. Tetrodotoxin-Producing Bacteria: Detection, Distribution and Migration of the Toxin in Aquatic Systems. Toxins 2017, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Dhanji-Rapkova, M.; Turner, A.D.; Baker-Austin, C.; Huggett, J.F.; Ritchie, J.M. Distribution of Tetrodotoxin in Pacific Oysters (Crassostrea gigas). Mar. Drugs 2021, 19, 84. [Google Scholar] [CrossRef]
- Okabe, T.; Saito, R.; Yamamoto, K.; Watanabe, R.; Kaneko, Y.; Yanaoka, M.; Furukoshi, S.; Yasukawa, S.; Ito, M.; Oyama, H.; et al. The Role of Toxic Planocerid Flatworm Larvae on Tetrodotoxin Accumulation in Marine Bivalves. Aquat. Toxicol. 2021, 237, 105908. [Google Scholar] [CrossRef]
- Numano, S.; Kudo, Y.; Cho, Y.; Konoki, K.; Yotsu-Yamashita, M. Temporal Variation of the Profile and Concentrations of Paralytic Shellfish Toxins and Tetrodotoxin in the Scallop, Patinopecten yeossoensis, Cultured in a Bay of East Japan. Mar. Drugs 2019, 17, 653. [Google Scholar] [CrossRef]
- Neves, R.A.F.; Nascimento, S.M.; Santos, L.N. Harmful Algal Blooms and Shellfish in the Marine Environment: An Overview of the Main Molluscan Responses, Toxin Dynamics, and Risks for Human Health. Environ. Sci. Pollut. Res. 2021, 28, 55846–55868. [Google Scholar] [CrossRef]
- Turner, A.D.; Lewis, A.M.; Bradley, K.; Maskrey, B.H. Marine Invertebrate Interactions with Harmful Algal Blooms—Implications for One Health. J. Invertebr. Pathol. 2021, 186, 107555. [Google Scholar] [CrossRef]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived Global Increase in Algal Blooms Is Attributable to Intensified Monitoring and Emerging Bloom Impacts. Commun. Earth Environ. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Rodríguez, I.; Alfonso, A.; Alonso, E.; Rubiolo, J.A.; Roel, M.; Vlamis, A.; Katikou, P.; Jackson, S.A.; Menon, M.L.; Dobson, A.; et al. The Association of Bacterial C 9 -Based TTX-like Compounds with Prorocentrum minimum Opens New Uncertainties about Shellfish Seafood Safety. Sci. Rep. 2017, 7, srep40880. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Jeon, J.K.; Noguchi, T.; Ito, K.; Hashimoto, K. Distribution of Tetrodotoxin in the Tissues of the Flatworm Planocera Multitentaculata (Platyhelminthes). Toxicon 1987, 25, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Ritson-Williams, R.; Yotsu-Yamashita, M.; Paul, V.J. Ecological Functions of Tetrodotoxin in a Deadly Polyclad Flatworm. Proc. Natl. Acad. Sci. USA 2006, 103, 3176–3179. [Google Scholar] [CrossRef] [PubMed]
- Itoi, S.; Tabuchi, S.; Abe, M.; Ueda, H.; Oyama, H.; Ogata, R.; Okabe, T.; Kishiki, A.; Sugita, H. Difference in Tetrodotoxin Content between Two Sympatric Planocerid Flatworms, Planocera multitentaculata and Planocera reticulata. Toxicon 2020, 173, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.; Tsunashima, T.; Takei, M.; Sato, T.; Wajima, Y.; Kawase, M.; Oshikiri, S.; Kajitani, Y.; Kosoba, K.; Ueda, H.; et al. Seasonal Changes in the Tetrodotoxin Content of the Flatworm Planocera multitentaculata. Mar. Drugs 2017, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, M.; Ito, K.; Kajihara, H. Highly Toxic Ribbon Worm Cephalothrix simula Containing Tetrodotoxin in Hiroshima Bay, Hiroshima Prefecture, Japan. Toxins 2013, 5, 376–395. [Google Scholar] [CrossRef]
- Asakawa, M.; Toyoshima, T.; Shida, Y.; Noguchi, T.; Miyazawa, K. Paralytic Toxins in a Ribbon Worm Cephalothrix Species (Nemertean) Adherent to Cultured Oysters in Hiroshima Bay, Hiroshima Prefecture, Japan. Toxicon 2000, 38, 763–773. [Google Scholar] [CrossRef]
- Asakawa, M.; Toyoshima, T.; Ito, K.; Bessho, K.; Yamaguchi, C.; Tsunetsugu, S.; Shida, Y.; Kajihara, H.; Mawatari, S.F.; Noguchi, T.; et al. Paralytic Toxicity in the Ribbon Worm Cephalothrix Species (Nemertea) in Hiroshima Bay, Hiroshima Prefecture, Japan and the Isolation of Tetrodotoxin as a Main Component of Its Toxins. Toxicon 2003, 41, 747–753. [Google Scholar] [CrossRef]
- Tanu, M.B.; Mahmud, Y.; Arakawa, O.; Takatani, T.; Kajihara, H.; Kawatsu, K.; Hamano, Y.; Asakawa, M.; Miyazawa, K.; Noguchi, T. Immunoenzymatic Visualization of Tetrodotoxin (TTX) in Cephalothrix Species (Nemertea: Anopla: Palaeonemertea: Cephalotrichidae) and Planocera reticulata (Platyhelminthes: Turbellaria: Polycladida: Planoceridae). Toxicon 2004, 44, 515–520. [Google Scholar] [CrossRef]
- Ali, A.E.; Arakawa, O.; Noguchi, T.; Miyazawa, K.; Shida, Y.; Hashimoto, K. Tetrodotoxin and Related Substances in a Ribbon Worm Cephalothrix linearis (Nemertean). Toxicon 1990, 28, 1083–1093. [Google Scholar] [CrossRef]
- Vlasenko, A.E.; Velansky, P.V.; Chernyshev, A.V.; Kuznetsov, V.G.; Magarlamov, T.Y. Tetrodotoxin and Its Analogues Profile in Nemertean Species from the Sea of Japan. Toxicon 2018, 156, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Vlasenko, A.E.; Magarlamov, T.Y. Tetrodotoxin and Its Analogues in Cephalothrix Cf. simula (Nemertea: Palaeonemertea) from the Sea of Japan (Peter the Great Gulf): Intrabody Distribution and Secretions. Toxins 2020, 12, 745. [Google Scholar] [CrossRef] [PubMed]
- Vlasenko, A.E.; Magarlamov, T.Y. Tetrodotoxins in Ribbon Worms Cephalothrix Cf simula and Kulikovia alborostrata from Peter the Great Bay, Sea of Japan. Toxins 2023, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Strand, M.; Norenburg, J.L.; Sun, S.; Kajihara, H.; Chernyshev, A.V.; Maslakova, S.A.; Sundberg, P. Statistical Parsimony Networks and Species Assemblages in Cephalotrichid Nemerteans (Nemertea). PLoS ONE 2010, 5, e12885. [Google Scholar] [CrossRef] [PubMed]
- Sagorny, C.; Wesseler, C.; Krämer, D.; von Döhren, J. Assessing the Diversity and Distribution of Cephalothrix Species (Nemertea: Palaeonemertea) in European Waters by Comparing Different Species Delimitation Methods. J. Zool. Syst. Evol. Res. 2019, 57, 497–519. [Google Scholar] [CrossRef]
- Fernández-Álvarez, F.Á.; Machordom, A. DNA Barcoding Reveals a Cryptic Nemertean Invasion in Atlantic and Mediterranean Waters. Helgol. Mar. Res. 2013, 67, 599–605. [Google Scholar] [CrossRef]
- Faasse, M.A.; Turbeville, J.M. The First Record of the North-West Pacific Nemertean Cephalothrix simula in Northern Europe. Mar. Biodivers. Rec. 2015, 8, 6–11. [Google Scholar] [CrossRef]
- Holman, L.E.; de Bruyn, M.; Creer, S.; Carvalho, G.; Robidart, J.; Rius, M. Detection of Introduced and Resident Marine Species Using Environmental DNA Metabarcoding of Sediment and Water. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef]
- Turner, A.D.; Fenwick, D.; Powell, A.; Dhanji-Rapkova, M.; Ford, C.; Hatfield, R.G.; Santos, A.; Martinez-Urtaza, J.; Bean, T.P.; Baker-Austin, C.; et al. New Invasive Nemertean Species (Cephalothrix simula) in England with High Levels of Tetrodotoxin and a Microbiome Linked to Toxin Metabolism. Mar. Drugs 2018, 16, 452. [Google Scholar] [CrossRef]
- Kajihara, H.; Sun, S.-C.; Chernyshev, A.V.; Chen, H.-X.; Ito, K.; Asakawa, M.; Maslakova, S.A.; Norenburg, J.L.; Strand, M.; Sundberg, P.; et al. Taxonomic Identity of a Tetrodotoxin-Accumulating Ribbon-Worm Cephalothrix simula (Nemertea: Palaeonemertea): A Species Artificially Introduced from the Pacific to Europe. Zoolog Sci. 2013, 30, 985–997. [Google Scholar] [CrossRef]
- Malykin, G.V.; Velansky, P.V.; Melnikova, D.I.; Magarlamov, T.Y. Tetrodotoxins in Larval Development of Ribbon Worm Cephalothrix Cf simula (Palaeonemertea, Nemertea). Mar. Biotechnol. 2023, 25, 918–934. [Google Scholar] [CrossRef] [PubMed]
- Malykin, G.V.; Chernyshev, A.V.; Magarlamov, T.Y. Intrabody Tetrodotoxin Distribution and Possible Hypothesis for Its Migration in Ribbon Worms Cephalothrix Cf simula (Palaeonemertea, Nemertea). Mar. Drugs 2021, 19, 494. [Google Scholar] [CrossRef]
- Chernyshev, A.V.; Polyakova, N.E. An Integrative Description of a New Cephalothrix Species (Nemertea: Palaeonemertea) from the South China Sea. Zootaxa 2021, 4908, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, A.R. DNA Primers for Amplification of Mitochondrial Cytochrome c Oxidase Subunit I from Diverse Metazoan Invertebrate. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Leray, M.; Yang, J.Y.; Meyer, C.P.; Mills, S.C.; Agudelo, N.; Ranwez, V.; Boehm, J.T.; Ryuji, J.M. A New Versatile Primer Set Targeting a Short Fragment of the Mitochondrial COI Region for Metabarcoding Metazoan Diversity: Application for Characterizing Coral Reef Fish Gut Contents. Front. Zool. 2013, 10, 1–14. [Google Scholar] [CrossRef]
- Kajihara, H. Resolving a 200-Year-Old Taxonomic Conundrum: Neotype Designation for Cephalothrix linearis (Nemertea: Palaeonemertea) Based on a Topotype from Bergen, Norway. Fauna Norv 2019, 39, 39–76. [Google Scholar] [CrossRef]
- Chernyshev, A.V. Nemerteans from the Far Eastern Seas of Russia. Russ. J. Mar. Biol. 2020, 46, 141–153. [Google Scholar] [CrossRef]
- Grizel, H.; Heral, M. Introduction into France of the Japanese Oyster (Crassostrea gigas). J. Cons. Int. Explor. Mer. 1991, 47, 399–403. [Google Scholar] [CrossRef]
- Fenwick, D.; Independent researcher. Cornwall, UK Personal Communication. 2022. [Google Scholar]
- Humphreys, J.; Herbert, R.J.H.; Roberts, C.; Fletcher, S. A Reappraisal of the History and Economics of the Pacific Oyster in Britain. Aquaculture 2014, 428–429, 117–124. [Google Scholar] [CrossRef]
- Drinkwaard, A.C. Introductions and Developments of Oysters in the North Sea Area: A Review. Helgoländer Meeresunters. 1999, 52, 301–308. [Google Scholar] [CrossRef]
- Clubley, C.H.; Firth, L.B.; Wood, L.E.; Bilton, D.T.; Silva, T.A.M.; Knights, A.M. Science Paper or Big Data? Assessing Invasion Dynamics Using Observational Data. Sci. Total Environ. 2023, 877, 162754. [Google Scholar] [CrossRef] [PubMed]
- Malykin, G.V.; Velansky, P.V.; Magarlamov, T.Y. Tetrodotoxin and Its Analogues (TTXs) in the Food-Capture and Defense Organs of the Palaeonemertean Cephalothrix Cf. Simula. Toxins 2024, 16, 43. [Google Scholar] [CrossRef] [PubMed]
- Vlasenko, A.E.; Kuznetsov, V.G.; Petrova, I.Y.; Magarlamov, T.Y. Development of a Polyclonal Antibody-Based Indirect Competitive ELISA for the Determination of Tetrodotoxins in Marine Ribbon Worms (NEMERTEA) and Its Comparison with High Performance Liquid Chromatography-Tandem Mass Spectrometry. Toxicon 2020, 176, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.E.; Shumway, S.E. Separating the Grain from the Chaff: Particle Selection in Suspension- and Deposit-Feeding Bivalves. J. Exp. Mar. Biol. Ecol. 2004, 300, 83–130. [Google Scholar] [CrossRef]
- Safi, K.A.; Gibbs, M.M. Importance of Different Size Classes of Phytoplankton in Beatrix Bay, Marlborough Sounds, New Zealand, and the Potential Implications for the Aquaculture of the Mussel, Perna canaliculus. N. Z. J. Mar. Freshw. Res. 2003, 37, 267–272. [Google Scholar] [CrossRef]
- Cognie, B.; Barille, L.; Masse, G.; Beninger, P.G. Selection and Processing of Large Suspended Algae in the Oyster C. gigas. Mar. Ecol. Prog. Ser. 2003, 250, 145–152. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucl. Acids Symp. 1999, 41, 95–98. [Google Scholar]
- Chen, Y.; Ye, W.; Zhang, Y.; Xu, Y. High Speed BLASTN: An Accelerated MegaBLAST Search Tool. Nucleic Acids Res. 2015, 43, 7762–7768. [Google Scholar] [CrossRef]
- Sahlin, K.; Lim, M.C.W.; Prost, S. NGSpeciesID: DNA Barcode and Amplicon Consensus Generation from Long-Read Sequencing Data. Ecol. Evol. 2021, 11, 1392–1398. [Google Scholar] [CrossRef]
- Hatfield, R.G.; Ryder, D.; Tidy, A.M.; Hartnell, D.M.; Dean, K.J.; Batista, F.M. Combining Nanopore Sequencing with Recombinase Polymerase Amplification Enables Identification of Dinoflagellates from the Alexandrium Genus, Providing a Rapid, Field Deployable Tool. Toxins 2023, 15, 372. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The Barcode of Life Data System: Barcoding. Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Von Haeseler, A.; Schmidt, H.A.; Bui, M.Q.; Nguyen, L.T. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2014, 32, 268–272. [Google Scholar]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3-New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.D.; Boundy, M.J.; Dhanji-Rapkova, M. Development and Single-Laboratory Validation of a Liquid Chromatography Tandem Mass Spectrometry Method for Quantitation of Tetrodotoxin in Mussels and Oysters. J. AOAC Int. 2017, 100, 1469–1482. [Google Scholar] [CrossRef]
- Turner, A.D.; Dhanji-Rapkova, M.; Fong, S.Y.T.; Hungerford, J.; McNabb, P.S.; Boundy, M.J.; Harwood, D.T. Ultrahigh-Performance Hydrophilic Interaction Liquid Chromatography with Tandem Mass Spectrometry Method for the Determination of Paralytic Shellfish Toxins and Tetrodotoxin in Mussels, Oysters, Clams, Cockles, and Scallops: Collaborative Study. J. AOAC Int. 2020, 103, 533–562. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: Http://Www.R-Project.Org/ (accessed on 20 September 2023).
Sample Group (n = Number of Samples) | TTX Min–Max [μg/kg] | TTX Mean [μg/kg] | C. simula Min–Max [gc/L] | C. simula Mean [gc/L] |
---|---|---|---|---|
no TTX (n = 12) | 0.0–<LOQ 1 | 0.0 | 134–4728 2 | 1019 |
TTX (n = 13) | 2.0–116.3 | 48.3 | 1122–115,361 | 12,381 |
TTX-post peak (n = 15) | 2.2–49.1 | 16.1 | 300–1920 | 854 |
C. simula DNA Correlated with: | Correlation Coefficient (ρ) | Significance (p) | Degree of Freedom (n − 2) |
---|---|---|---|
TTX in WF (all data) | 0.48 | 0.0016 | 38 |
TTX in WF (5 samples excluded) 1 | 0.56 | 0.0005 | 33 |
TTX in DG (all data) | 0.54 | 0.0011 | 32 |
TTX in DG (5 samples excluded) 1 | 0.59 | 0.0008 | 27 |
Sample Name (YYMMDD) | Ct | C. simula Mean | |||
---|---|---|---|---|---|
1st | 2nd | Mean | gc/µL | gc/g | |
210615_Tissue Extract 1 | 36.79 | 37.44 | 37.11 | 0.58 | 965 |
210615_Tissue Extract 2 | 36.77 | 36.33 | 36.55 | 0.97 | 1617 |
210615_Tissue Extract 3 | 38.41 | 37.38 | 37.90 | 0.35 | 590 |
210615_Swab 4_oyster 2 | 38.42 | 38.58 | 38.50 | 0.22 | na |
210615_Swab 6_oyster 3 | 38.43 | 36.91 | 37.67 | 0.44 | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanji-Rapkova, M.; Hatfield, R.G.; Walker, D.I.; Hooper, C.; Alewijnse, S.; Baker-Austin, C.; Turner, A.D.; Ritchie, J.M. Investigating Non-Native Ribbon Worm Cephalothrix simula as a Potential Source of Tetrodotoxin in British Bivalve Shellfish. Mar. Drugs 2024, 22, 458. https://doi.org/10.3390/md22100458
Dhanji-Rapkova M, Hatfield RG, Walker DI, Hooper C, Alewijnse S, Baker-Austin C, Turner AD, Ritchie JM. Investigating Non-Native Ribbon Worm Cephalothrix simula as a Potential Source of Tetrodotoxin in British Bivalve Shellfish. Marine Drugs. 2024; 22(10):458. https://doi.org/10.3390/md22100458
Chicago/Turabian StyleDhanji-Rapkova, Monika, Robert G. Hatfield, David I. Walker, Chantelle Hooper, Sarah Alewijnse, Craig Baker-Austin, Andrew D. Turner, and Jennifer M. Ritchie. 2024. "Investigating Non-Native Ribbon Worm Cephalothrix simula as a Potential Source of Tetrodotoxin in British Bivalve Shellfish" Marine Drugs 22, no. 10: 458. https://doi.org/10.3390/md22100458
APA StyleDhanji-Rapkova, M., Hatfield, R. G., Walker, D. I., Hooper, C., Alewijnse, S., Baker-Austin, C., Turner, A. D., & Ritchie, J. M. (2024). Investigating Non-Native Ribbon Worm Cephalothrix simula as a Potential Source of Tetrodotoxin in British Bivalve Shellfish. Marine Drugs, 22(10), 458. https://doi.org/10.3390/md22100458