The Marine Antimicrobial Peptide AOD with Intact Disulfide Bonds Has Remarkable Antibacterial and Anti-Biofilm Activity
Abstract
:1. Introduction
2. Results
2.1. AOD Mutants Design Based on Disulfide Bonds
2.2. MIC of AOD and Its Derivatives
2.3. CD Spectroscopy of AOD and Its Derivatives
2.4. Synergy with Antibiotics
2.5. The Safety of AOD In Vivo
2.6. Fluorescence Staining of S. epidermidis G-81
2.7. Effect of AOD on Cell Membrane Fluidity in S. epidermidis G-81
2.8. Intracellular ATP Assay
2.9. Effect of AOD on Reactive Oxygen Species in S. epidermidis G-81
2.10. MBIC/MBEC of AOD on S. epidermidis G-81
2.11. Effect of AOD on Primary and Mature Biofilms of S. epidermidis G-81
2.12. Biofilm Observation by Confocal Laser Scanning Microscopy
2.13. Effect of AOD on the Biofilm-Retaining Bacteria S. epidermidis G-81
3. Discussion
4. Materials and Methods
4.1. Strains, Peptides, and Reagents
4.2. Physical and Chemical Properties
4.2.1. MIC of AOD and Its Derivatives
4.2.2. Circular Dichroism (CD) of AOD
4.2.3. Drug Combination Index
4.2.4. AOD In Vivo Safety
4.3. Bactericidal Mechanism
4.3.1. Fluorescence Staining
4.3.2. Cell Membrane Fluidity
4.3.3. Detection of Intracellular ATP Activity
4.3.4. ROS Detection
4.4. Effects of AOD against S. epidermidis G-81 Biofilms
4.4.1. Effects of AOD on Early Biofilm Formation
4.4.2. Effects of AOD on Mature Biofilm Formation
4.4.3. Minimal Biofilm Inhibitory Concentration and Minimal Biofilm Eradication Concentration Determination
4.4.4. Biofilm Observation by Confocal Laser Scanning Microscopy
4.4.5. Effect of AOD on the Activity of Persistent Bacteria in Biofilm
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Foster, T.J. Immune evasion by staphylococci. Nat. Rev. Microbiol. 2005, 3, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Sahal, G.; Bilkay, I.S. Multi drug resistance in strong biofilm forming clinical isolates of Staphylococcus epidermidis. Braz. J. Microbiol. 2014, 45, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Johnson, N.; Cizmas, L.; McDonald, T.J.; Kim, H. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 2016, 150, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N. A personal history of research on microbial biofilms and biofilm infections. Pathog. Dis. 2014, 70, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Musk, D.J., Jr.; Hergenrother, P.J. Chemical countermeasures for the control of bacterial biofilms: Effective compounds and promising targets. Curr. Med. Chem. 2006, 13, 2163–2177. [Google Scholar] [CrossRef]
- Dong, Y.; Speer, C.P.; Glaser, K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence 2018, 9, 621–633. [Google Scholar] [CrossRef]
- Seo, J.-K.; Crawford, J.M.; Stone, K.L.; Noga, E.J. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem. Bioph. Res. Commun. 2005, 338, 1998–2004. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, N.; Gu, X.; Li, Y.; Teng, D.; Hao, Y.; Lu, H.; Mao, R.; Wang, J. High-yield preparation of American oyster defensin (AOD) via a small and acidic fusion tag and its functional characterization. Mar. Drugs 2024, 22, 8. [Google Scholar] [CrossRef]
- Wiedemann, C.; Kumar, A.; Lang, A.; Ohlenschläger, O. Cysteines and disulfide bonds as structure-forming units: Insights from different domains of life and the potential for characterization by NMR. Front. Chem. 2020, 8, 280. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.; Choi, H.; Kim, H.H.; Kim, H.; Hwang, J.S.; Lee, D.G.; Kim, J.I. Structure-activity relationships of the intramolecular disulfide bonds in coprisin, a defensin from the dung beetle. BMB Rep. 2014, 47, 625. [Google Scholar] [CrossRef]
- Nehls, C.; Böhling, A.; Podschun, R.; Schubert, S.; Grötzinger, J.; Schromm, A.; Fedders, H.; Leippe, M.; Harder, J.; Kaconis, Y.; et al. Influence of disulfide bonds in human beta defensin-3 on its strain specific activity against Gram-negative bacteria. BBA Biomembr. 2020, 1862, 183273. [Google Scholar] [CrossRef] [PubMed]
- Köpnick, A.L.; Geistlinger, K.; Beitz, E. Cysteine 159 delineates a hinge region of the alternating access monocarboxylate transporter 1 and is targeted by cysteine-modifying inhibitors. FEBS J. 2021, 288, 6052–6062. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.V.; Margreiter, R.; Ausserlechner, M.J.; Hagenbuchner, J. The complex interplay between mitochondria, ROS and entire cellular metabolism. Antioxidants 2022, 11, 1995. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.P.; Hancock, R.E. The relationship between peptide structure and antibacterial activity. Peptides 2003, 24, 1681–1691. [Google Scholar] [CrossRef]
- Koehbach, J. Structure-activity relationships of insect defensins. Front. Chem. 2017, 5, 45. [Google Scholar] [CrossRef]
- Mao, D.; Wachter, E.; Wallace, B.A. Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. Biochemistry 1982, 21, 4960–4968. [Google Scholar] [CrossRef]
- Yang, N.; Teng, D.; Mao, R.; Hao, Y.; Wang, X.; Wang, Z.; Wang, X.; Wang, J. A recombinant fungal defensin-like peptide-P2 combats multidrug-resistant Staphylococcus aureus and biofilms. Appl. Microbiol. Biotechnol. 2019, 103, 5193–5213. [Google Scholar] [CrossRef]
- Liu, H.; Yang, N.; Teng, D.; Mao, R.; Hao, Y.; Ma, X.; Wang, J. Design and pharmacodynamics of recombinant fungus defensin NZL with improved activity against Staphylococcus hyicus in vitro and in vivo. Int. J. Mol. Sci. 2021, 22, 5435. [Google Scholar] [CrossRef]
- Ceřovský, V.; Slaninová, J.; Fučík, V.; Monincová, L.; Bednárová, L.; Maloň, P.; Stokrová, J. Lucifensin, a novel insect defensin of medicinal maggots: Synthesis and structural study. Chembiochem 2011, 12, 1352–1361. [Google Scholar] [CrossRef]
- Casanova, M.; Maresca, M.; Poncin, I. Promising antibacterial efficacy of arenicin peptides against the emerging opportunistic pathogen Mycobacterium abscessus. J. Biomed. Sci. 2024, 31, 18. [Google Scholar] [CrossRef]
- Bruno, R.; Maresca, M.; Canaan, S.; Cavalier, J.F.; Mabrouk, K.; Boidin-Wichlacz, C.; Olleik, H.; Zeppilli, D.; Brodin, P.; Massol, F.; et al. Worms’ antimicrobial peptides. Mar. Drugs 2019, 17, 512. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikova, T.V.; Shenkarev, Z.O.; Balandin, S.V.; Nadezhdin, K.D.; Paramonov, A.S.; Kokryakov, V.N.; Arseniev, A.S. Molecular insight into mechanism of antimicrobial action of the beta-hairpin peptide arenicin: Specific oligomerization in detergent micelles. Biopolymers 2008, 89, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Teng, D.; Mao, R.; Yang, N.; Wang, J. Site mutation improves the expression and antimicrobial properties of fungal defense. Antibiotics 2023, 12, 1283. [Google Scholar] [CrossRef] [PubMed]
- Wongchai, M.; Wongkaewkhiaw, S.; Kanthawong, S.; Roytrakul, S.; Aunpad, R. Dual-function antimicrobial-antibiofilm peptide hybrid to tackle biofilm-forming Staphylococcus epidermidis. Ann. Clin. Microb. Anti. 2024, 23, 44. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.E. Clinical characteristics of infections in humans due to Staphylococcus epidermidis. Methods Mol. Biol. 2014, 1106, 44. [Google Scholar]
- Nunes, A.P.; Teixeira, L.M.; Iorio, N.L.; Bastos, C.C.; de Sousa Fonseca, L.; Souto-Padrón, T.; dos Santos, K.R. Heterogeneous resistance to vancomycin in Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: Characterisation of glycopeptide susceptibility profiles and cell wall thickening. Int. J. Antimicrob. Agents 2006, 27, 307–315. [Google Scholar] [CrossRef]
- Halawa, E.M.; Fadel, M.; Al-Rabia, M.W.; Behairy, A.; Nouh, N.A.; Abdo, M.; Olga, R.; Fericean, L.; Atwa, A.M.; El-Nablaway, M.; et al. Antibiotic action and resistance: Updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Front. Pharmacol. 2024, 14, 1305294. [Google Scholar] [CrossRef]
- Doiron, K.; Beaulieu, L.; St-Louis, R.; Lemarchand, K. Reduction of bacterial biofilm formation using marine natural antimicrobial peptides. Colloid. Surf. B 2018, 167, 524–530. [Google Scholar] [CrossRef]
- Beaudoin, T.; Stone, T.A.; Glibowicka, M.; Adams, C.; Yau, Y.; Ahmadi, S.; Bear, C.E.; Grasemann, H.; Waters, V.; Deber, C.M. Activity of a novel antimicrobial peptide against Pseudomonas aeruginosa biofilms. Sci. Rep. 2018, 8, 14728. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Bakshi, K.; Liyanage, M.R.; Volkin, D.B.; Middaugh, C.R. Circular dichroism of peptides. Methods Mol. Biol. 2014, 1088, 247–253. [Google Scholar] [PubMed]
- Yamauchi, R.; Kawano, K.; Yamaoka, Y.; Taniguchi, A.; Yano, Y.; Takasu, K.; Matsuzaki, K. Development of antimicrobial peptide-antibiotic conjugates to improve the outer membrane permeability of antibiotics against gram-negative bacteria. ACS Infect Dis. 2022, 8, 2339–2347. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Li, W.; Li, C.; Vittayapadung, S.; Lin, L. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 2016, 32, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Liu, X.; Teng, D.; Li, Z.; Wang, X.; Mao, R.; Wang, X.; Hao, Y.; Wang, J. Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Sci. Rep. 2017, 7, 3392. [Google Scholar] [CrossRef] [PubMed]
Peptides | Sequences | Disulfide Bonds | MW (Da) | PI | Charge | GRAVY |
---|---|---|---|---|---|---|
AOD | GFGCPWNRYQCHSHCRSIGRLGGYCAGSLRLTCTCYRS | C4-C25 C11-C33 C15-C35 | 4264.89 | 8.73 | 5 | −0.363 |
AOD-1 | GFGCPWNRYQCHSHSRSIGRLGGYCAGSLRLTCTSYRS | C4-C25 C11-C33 | 4234.79 | 9.55 | 5.5 | −0.537 |
AOD-2 | GFGSPWNRYQCHSHCRSIGRLGGYSAGSLRLTCTCYRS | C11-C33 C15-C35 | 4234.79 | 9.55 | 5.5 | −0.537 |
AOD-3 | GFGCPWNRYQSHSHCRSIGRLGGYCAGSLRLTSTCYRS | C4-C25 C15-C35 | 4234.79 | 9.55 | 5.5 | −0.537 |
Strains | MIC (μg/mL) | ||||
---|---|---|---|---|---|
AOD | AOD-1 | AOD-2 | AOD-3 | Lincomycin | |
S. aureus ATCC 43300 | 8 | 64 | >64 | >64 | >64 |
S. aureus ATCC 25923 | 16 | >64 | >64 | >64 | 1 |
S. aureus E48 | 8 | 64 | >64 | >64 | 1 |
S. epidermidis ATCC 12228 | 4 | 64 | >64 | >64 | 4 |
S. epidermidis G-81 | 4 | 64 | >64 | >64 | 4 |
E. coli ATCC 25922 | >64 | >64 | >64 | >64 | 2 |
Salmonella typhimurium CVCC 14028 | >64 | >64 | >64 | >64 | >64 |
Shigella flexneri CMCC 51571 | >64 | >64 | >64 | >64 | >64 |
Pseudomonas aeruginosa CICC 21625 | >64 | >64 | >64 | >64 | >64 |
Secondary Structure | H2O | 20 mM SDS | 50% TFE | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AOD | AOD -1 | AOD -2 | AOD -3 | AOD | AOD -1 | AOD -2 | AOD -3 | AOD | AOD -1 | AOD -2 | AOD -3 | |
Helix | 6.18 | 5.82 | 6.03 | 5.8 | 7.23 | 6.2 | 6.47 | 6.37 | 8.51 | 7.8 | 8.14 | 7.5 |
Antiparallel | 31.85 | 40.47 | 42.76 | 41.49 | 28.1 | 43.31 | 30.68 | 43.63 | 28.6 | 43.3 | 45.9 | 45.25 |
Parallel | 5.11 | 3.26 | 3.41 | 3.35 | 5.3 | 3.44 | 5.09 | 3.47 | 5.09 | 3.71 | 3.93 | 3.7 |
Beta-Turn | 22.2 | 18.56 | 17.64 | 18.19 | 23.17 | 17.71 | 23.1 | 17.66 | 23.1 | 17.89 | 16.65 | 17.27 |
Rndm.Coil | 34.5 | 31.79 | 30.16 | 31.17 | 36.2 | 29.34 | 34.7 | 28.86 | 34.7 | 27.3 | 25.38 | 26.28 |
Combination | Variety | S. epidermidis G-81 | |||
---|---|---|---|---|---|
MICa (μg/mL) | MICc (μg/mL) | FIC | FICI | ||
AOD-CEF | AOD | 4 | 2 | 0.5 | 0.575 |
CEF | 1 | 0.075 | 0.075 | ||
AOD-TC | AOD | 4 | 2 | 0.5 | 1 |
TC | 2 | 1 | 0.5 | ||
AOD-CIP | AOD | 4 | 0.5 | 0.125 | 1.125 |
CIP | 2 | 2 | 1 | ||
AOD-VAN | AOD | 4 | 2 | 0.5 | 0.581 |
VAN | 4 | 0.125 | 0.031 |
Parameter | Unit | Control | AOD 10 mg/kg |
---|---|---|---|
WBC | 109 cells/mL | 7.96 ± 0.22 | 8.56 ± 0.35 |
NEUT | 109 cells/mL | 1.46 ± 0.069 | 1.69 ± 0.14 |
LYM | 109 cells/mL | 5.96 ± 0.14 | 6.24 ± 0.16 |
MONO | 109 cells/mL | 0.26 ± 0.017 | 0.25 ± 0.035 |
EO | 109 cells/mL | 0.18 ± 0.01 | 0.20 ± 0.001 |
BASO | 109 cells/mL | 0.13 ± 0.01 | 0.16 ± 0.01 |
NEUT | % | 18.33 ± 0.38 | 19.71 ± 0.75 |
LYM | % | 74.86 ± 0.44 | 73.13 ± 0.01 |
MONO | % | 2.85 ± 0.15 | 2.94 ± 0.28 |
EO | % | 2.29 ± 0.09 | 2.35 ± 0.01 |
BASO | % | 1.68 ± 0.07 | 1.86 ± 0.08 |
RBC | 1012/L | 9.11 ± 0.12 | 9.835 ± 0.13 |
HBG | g/L | 111.75 ± 1.44 | 127.25 ± 1.75 |
HCT | % | 39.4 ± 0.56 | 43.025 ± 0.0611 |
MCV | fL | 40.1 ± 0.204 | 40.55 ± 0.26 |
MCH | pg | 12.8 ± 0.041 | 12.925 ± 0.047 |
MCHC | g/L | 32.4 ± 0.125 | 32.075 ± 0.25 |
PLT | 109/L | 826.25 ± 9.42 | 811 ± 5.64 |
MPV | fL | 6.425 ± 0.025 | 6.475 ± 0.047 |
PDW | % | 12.425 ± 0.048 | 16.1 ± 0.13 |
PLCR | % | 12.425 ± 0.66 | 16.15 ± 0.51 |
Strain | MBIC (μg/mL) | MBEC (μg/mL) | ||
---|---|---|---|---|
AOD | Lin | AOD | Lin | |
S. epidermidis G-81 | 16 | 64 | 32 | >128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, R.; Zhao, Q.; Lu, H.; Yang, N.; Li, Y.; Teng, D.; Hao, Y.; Gu, X.; Wang, J. The Marine Antimicrobial Peptide AOD with Intact Disulfide Bonds Has Remarkable Antibacterial and Anti-Biofilm Activity. Mar. Drugs 2024, 22, 463. https://doi.org/10.3390/md22100463
Mao R, Zhao Q, Lu H, Yang N, Li Y, Teng D, Hao Y, Gu X, Wang J. The Marine Antimicrobial Peptide AOD with Intact Disulfide Bonds Has Remarkable Antibacterial and Anti-Biofilm Activity. Marine Drugs. 2024; 22(10):463. https://doi.org/10.3390/md22100463
Chicago/Turabian StyleMao, Ruoyu, Qingyi Zhao, Haiqiang Lu, Na Yang, Yuanyuan Li, Da Teng, Ya Hao, Xinxi Gu, and Jianhua Wang. 2024. "The Marine Antimicrobial Peptide AOD with Intact Disulfide Bonds Has Remarkable Antibacterial and Anti-Biofilm Activity" Marine Drugs 22, no. 10: 463. https://doi.org/10.3390/md22100463
APA StyleMao, R., Zhao, Q., Lu, H., Yang, N., Li, Y., Teng, D., Hao, Y., Gu, X., & Wang, J. (2024). The Marine Antimicrobial Peptide AOD with Intact Disulfide Bonds Has Remarkable Antibacterial and Anti-Biofilm Activity. Marine Drugs, 22(10), 463. https://doi.org/10.3390/md22100463