New Green Biorefinery Strategies to Valorize Bioactive Fractions from Palmaria palmata
Abstract
:1. Introduction
2. Results
2.1. Optimization of Biorefinery Process
2.1.1. UAE-NaDES and PLE-NaDES Extraction of Bioactive Phycobiliproteins, Proteins, and Sulfated Polysaccharides from P. palmata (Step 1)
2.1.2. PLE-NaDES Extraction of Phycobiliproteins, Proteins, and Sulfated Polysaccharides (Step 2)
2.1.3. PLE-NaDES Extraction of Bioactive Phenolic Compounds (Step 3)
2.2. Stability Study of PLE-NaDES and PLE-Water Phycobiliprotein Extracts
3. Discussion
3.1. Extraction of Phycobiliproteins, Proteins, and Sulfated Polysaccharides from P. palmata (Step 1)
3.2. Maximizing the Recovery of Phycobiliproteins, Proteins, and Sulfated Polysaccharides from P. palmata (Step 2)
3.3. Recovery of Phenolic Compounds from the Residue of Phycobiliproteins, Protein, and Sulfated Polysaccharide Extractions
3.4. Preservative Effect of NaDES against Phycobiliprotein Degradation
4. Materials and Methods
4.1. Chemicals and Samples
4.2. Proposed Biorefinery Process for the Valorization of P. palmata
4.3. Preparation of Natural Deep Eutectic Solvents (NaDESs)
4.4. Hydrolysis of Protein Fraction for In Vitro Assays
4.5. Preparation of Phenolic Extracts for In Vitro Assays
4.6. Spectrophotometric Analysis
4.6.1. Determination of Total Protein Content
4.6.2. Determination of Phycobiliprotein Contents
4.6.3. Determination of Sulfated Polysaccharides
4.6.4. Determination of Total Phenolic Content
4.7. Biological Activities
4.7.1. Antioxidant Capacity
4.7.2. Anticholinergic Activity
4.8. Stability Study
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amchova, P.; Siska, F.; Ruda-Kucerova, J. Food Safety and Health Concerns of Synthetic Food Colors: An Update. Toxics 2024, 12, 466. [Google Scholar] [CrossRef] [PubMed]
- Dumay, J.; Clément, N.; Morançais, M.; Fleurence, J. Optimization of Hydrolysis Conditions of Palmaria palmata to Enhance R-Phycoerythrin Extraction. Bioresour. Technol. 2013, 131, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Harnedy, P.A.; Soler-Vila, A.; Edwards, M.D.; FitzGerald, R.J. The Effect of Time and Origin of Harvest on the in Vitro Biological Activity of Palmaria palmata Protein Hydrolysates. Food Res. Int. 2014, 62, 746–752. [Google Scholar] [CrossRef]
- Irvine, L.M.; Chamberlain, Y.M. Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 2B. Corallinales, Hildenbrandiales. J. Mar. Biol. Assoc. U. K. 1994, 74, 986. [Google Scholar]
- Stévant, P.; Schmedes, P.S.; Le Gall, L.; Wegeberg, S.; Dumay, J.; Rebours, C. Concise Review of the Red Macroalga Dulse, Palmaria palmata (L.) Weber & Mohr. J. Appl. Phycol. 2023, 35, 523–550. [Google Scholar]
- Liboureau, P.; Pampanin, D.M. Effects of Vegetative Propagation on Protein Content and Bioactivity of the Red Seaweed Palmaria palmata. Food Chem. 2024, 455, 139929. [Google Scholar] [CrossRef]
- Schmedes, P.S.; Nielsen, M.M.; Petersen, J.K. Improved Palmaria palmata Hatchery Methods for Tetraspore Release, Even Settlement and High Seedling Survival Using Strong Water Agitation and Macerated Propagules. Algal Res. 2019, 40, 101494. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Ma, J.; Hu, J.; Sha, X.; Meng, D.; Yang, R. Phycobiliproteins, the Pigment-Protein Complex Form of Natural Food Colorants and Bioactive Ingredients. Crit. Rev. Food Sci. Nutr. 2024, 64, 2999–3017. [Google Scholar] [CrossRef]
- Kovaleski, G.; Kholany, M.; Dias, L.M.S.; Correia, S.F.H.; Ferreira, R.A.S.; Coutinho, J.A.P.; Ventura, S.P.M. Extraction and Purification of Phycobiliproteins from Algae and Their Applications. Front. Chem. 2022, 10, 1065355. [Google Scholar] [CrossRef]
- Ji, L.; Qiu, S.; Wang, Z.; Zhao, C.; Tang, B.; Gao, Z.; Fan, J. Phycobiliproteins from Algae: Current Updates in Sustainable Production and Applications in Food and Health. Food Res. Int. 2023, 167, 112737. [Google Scholar] [CrossRef]
- Lee, D.; Nishizawa, M.; Shimizu, Y.; Saeki, H. Anti-Inflammatory Effects of Dulse (Palmaria palmata) Resulting from the Simultaneous Water-Extraction of Phycobiliproteins and Chlorophyll a. Food Res. Int. 2017, 100, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T.; Miyabe, Y.; Yasui, H.; Kinoshita, Y.; Kishimura, H. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata. Mar. Drugs 2016, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bai, X.; Fu, P. In Silico and in Vitro Assessment of Bioactive Peptides from Arthrospira platensis Phycobiliproteins for DPP-IV Inhibitory Activity, ACE Inhibitory Activity, and Antioxidant Activity. J. Appl. Phycol. 2022, 34, 1497–1511. [Google Scholar] [CrossRef]
- Gomes-Dias, J.S.; Teixeira-Guedes, C.I.; Teixeira, J.A.; Rocha, C.M.R. Red Seaweed Biorefinery: The Influence of Sequential Extractions on the Functional Properties of Extracted Agars and Porphyrans. Int. J. Biol. Macromol. 2024, 257, 128479. [Google Scholar] [CrossRef] [PubMed]
- Premarathna, A.D.; Ahmed, T.A.E.; Kulshreshtha, G.; Humayun, S.; Shormeh Darko, C.N.; Rjabovs, V.; Hammami, R.; Critchley, A.T.; Tuvikene, R.; Hincke, M.T. Polysaccharides from Red Seaweeds: Effect of Extraction Methods on Physicochemical Characteristics and Antioxidant Activities. Food Hydrocoll. 2024, 147, 109307. [Google Scholar] [CrossRef]
- Mittal, R.; Tavanandi, H.A.; Mantri, V.A.; Raghavarao, K.S.M.S. Ultrasound Assisted Methods for Enhanced Extraction of Phycobiliproteins from Marine Macro-Algae, Gelidium pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103. [Google Scholar] [CrossRef]
- Castro-Varela, P.; Celis-Pla, P.S.M.; Figueroa, F.L.; Rubilar, M. Highly Efficient Water-Based Extraction of Biliprotein R-Phycoerythrin from Marine the Red-Macroalga Sarcopeltis skottsbergii by Ultrasound and High-Pressure Homogenization Methods. Front. Mar. Sci. 2022, 9, 877177. [Google Scholar] [CrossRef]
- Nowruzi, B.; Konur, O.; Anvar, S.A.A. The Stability of the Phycobiliproteins in the Adverse Environmental Conditions Relevant to the Food Storage. Food Bioproc. Technol. 2022, 15, 2646–2663. [Google Scholar] [CrossRef]
- Spain, O.; Hardouin, K.; Bourgougnon, N.; Michalak, I. Enzyme-Assisted Extraction of Red Seaweed Solieria chordalis (C. agardh) J. Agardh 1842—The Starting Point for the Production of Biostimulants of Plant Growth and Biosorbents of Metal Ions. Biomass Convers. Biorefinery 2024, 14, 1621–1635. [Google Scholar] [CrossRef]
- Choi, W.Y.; Lee, H.Y. Effect of Ultrasonic Extraction on Production and Structural Changes of C-Phycocyanin from Marine Spirulina maxima. Int. J. Mol. Sci. 2018, 19, 220. [Google Scholar] [CrossRef]
- Tavanandi, H.A.; Raghavarao, K.S.M.S. Ultrasound-Assisted Enzymatic Extraction of Natural Food Colorant C-Phycocyanin from Dry Biomass of Arthrospira platensis. LWT 2020, 118, 108802. [Google Scholar] [CrossRef]
- Le Guillard, C.; Dumay, J.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J.Y.; Fleurence, J.; Bergé, J.P. Ultrasound-Assisted Extraction of R-Phycoerythrin from Grateloupia turuturu with and without Enzyme Addition. Algal Res. 2015, 12, 522–528. [Google Scholar] [CrossRef]
- Gallego, R.; Martínez, M.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Development of a Green Downstream Process for the Valorization of Porphyridium cruentum Biomass. Molecules 2019, 24, 1564. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rodríguez, G.; Amador-Luna, V.M.; Benešová, K.; Pernica, M.; Parada-Alfonso, F.; Ibáñez, E. Biorefinery Approach with Green Solvents for the Valorization of Citrus reticulata Leaves to Obtain Antioxidant and Anticholinergic Extracts. Food Chem. 2024, 456, 140034. [Google Scholar] [CrossRef]
- Plaza, M.; Domínguez-Rodríguez, G.; Sahelices, C.; Marina, M.L. A Sustainable Approach for Extracting Non-Extractable Phenolic Compounds from Mangosteen Peel Using Ultrasound-Assisted Extraction and Natural Deep Eutectic Solvents. Appl. Sci. 2021, 11, 5625. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural Deep Eutectic Solvents (Nades): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Mišan, A.; Pojić, M. Applications of NADES in Stabilizing Food and Protecting Food Compounds against Oxidation. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2021; Volume 97. [Google Scholar]
- Bertolo, M.R.V.; Martins, V.C.A.; Plepis, A.M.G.; Bogusz, S. Utilization of Pomegranate Peel Waste: Natural Deep Eutectic Solvents as a Green Strategy to Recover Valuable Phenolic Compounds. J. Clean. Prod. 2021, 327, 129471. [Google Scholar] [CrossRef]
- Abdallah, M.M.; Cardeira, M.; Matias, A.A.; Bronze, M.R.; Fernández, N. Lactic Acid-Based Natural Deep Eutectic Solvents to Extract Bioactives from Marine By-Products. Molecules 2022, 27, 4356. [Google Scholar] [CrossRef]
- Gkioni, M.D.; Andriopoulos, V.; Koutra, E.; Hatziantoniou, S.; Kornaros, M.; Lamari, F.N. Ultrasound-Assisted Extraction of Nannochloropsis oculata with Ethanol and Betaine: 1,2-Propanediol Eutectic Solvent for Antioxidant Pigment-Rich Extracts Retaining Nutritious the Residual Biomass. Antioxidants 2022, 11, 1103. [Google Scholar] [CrossRef]
- García-Roldán, A.; Piriou, L.; Jauregi, P. Natural Deep Eutectic Solvents as a Green Extraction of Polyphenols from Spent Coffee Ground with Enhanced Bioactivities. Front. Plant Sci. 2023, 13, 1072592. [Google Scholar] [CrossRef] [PubMed]
- Munier, M.; Jubeau, S.; Wijaya, A.; Morançais, M.; Dumay, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical Factors Affecting the Stability of Two Pigments: R-Phycoerythrin of Grateloupia turuturu and B-Phycoerythrin of Porphyridium cruentum. Food Chem. 2014, 150, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Dussan, K.; Huijgen, W.J.J.; de Vrije, T.; van der Wal, H.; Capella, H.; van Doorn, J.; López-Contreras, A.M.; van Hal, J.W. Biorefinery of Red Seaweed Palmaria palmata for Production of Bio-Based Chemicals and Biofuels. Algal Res. 2024, 82, 103608. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; Amador-Luna, V.M.; Mendiola, J.A.; Parada-Alfonso, F.; Ibanez, E. Development of a Sustainable Extraction and Storage Stability of Antioxidant and Anticholinergic Pressurized Natural Deep Euteectic Solvent Extracts from Citrus reticulata Leaves; Institute of Food Science Research: Madrid, Spain, 2024; submitted. [Google Scholar]
- Gómez-Urios, C.; Viñas-Ospino, A.; Puchades-Colera, P.; Blesa, J.; López-Malo, D.; Frígola, A.; Esteve, M.J. Choline Chloride-Based Natural Deep Eutectic Solvents for the Extraction and Stability of Phenolic Compounds, Ascorbic Acid, and Antioxidant Capacity from Citrus sinensis Peel. LWT 2023, 177, 114595. [Google Scholar] [CrossRef]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multi-Functioning Deep Eutectic Solvents as Extraction and Storage Media for Bioactive Natural Products That Are Readily Applicable to Cosmetic Products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
- Miyabe, Y.; Furuta, T.; Takeda, T.; Kanno, G.; Shimizu, T.; Tanaka, Y.; Gai, Z.; Yasui, H.; Kishimura, H. Structural Properties of Phycoerythrin from Dulse Palmaria palmata. J. Food Biochem. 2017, 41, e12301. [Google Scholar] [CrossRef]
- Pradeep, H.N.; Nayak, C.A. Enhanced Stability of C-Phycocyanin Colorant by Extrusion Encapsulation. J. Food Sci. Technol. 2019, 56, 4526–4534. [Google Scholar] [CrossRef]
- Kannaujiya, V.K.; Sinha, R.P. Thermokinetic Stability of Phycocyanin and Phycoerythrin in Food-Grade Preservatives. J. Appl. Phycol. 2016, 28, 1063–1070. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Tripathi, M.; Lukk, T.; Karpichev, Y.; Gathergood, N.; Singh, B.N.; Thakur, V.K.; Tabatabaei, M.; Gupta, V.K. Biobased Natural Deep Eutectic System as Versatile Solvents: Structure, Interaction and Advanced Applications. Sci. Total Environ. 2023, 881, 163002. [Google Scholar] [CrossRef]
- Guzmán-Lorite, M.; Marina, M.L.; García, M.C. Successive Extraction Using Natural Deep Eutectic Solvents and Pressurized Liquids for a Greener and Holistic Recovery of Proteins from Pomegranate Seeds. Food Res. Int. 2022, 161, 111862. [Google Scholar] [CrossRef]
- Chentir, I.; Hamdi, M.; Li, S.; Doumandji, A.; Markou, G.; Nasri, M. Stability, Bio-Functionality and Bio-Activity of Crude Phycocyanin from a Two-Phase Cultured Saharian Arthrospira sp. Strain. Algal Res. 2018, 35, 395–406. [Google Scholar] [CrossRef]
- Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants 2023, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Navaf, M.; Sunooj, K.V.; Aaliya, B.; Sudheesh, C.; Akhila, P.P.; Mir, S.A.; Nemtanu, M.R.; George, J.; Lackner, M.; Mousavi Khaneghah, A. Contemporary Insights into the Extraction, Functional Properties, and Therapeutic Applications of Plant Proteins. J. Agric. Food Res. 2023, 14, 100861. [Google Scholar] [CrossRef]
- Hilali, S.; Wils, L.; Chevalley, A.; Clément-Larosière, B.; Boudesocque-Delaye, L. Glycerol-Based NaDES as Green Solvents for Ultrasound-Assisted Extraction of Phycocyanin from Arthrospira platensis—RSM Optimization and ANN Modelling. Biomass Convers. Biorefinery 2022, 12, 157–170. [Google Scholar] [CrossRef]
- Hu, R.S.; Yu, L.; Zhou, S.Y.; Zhou, H.F.; Wan, H.T.; Yang, J.H. Comparative Study on Optimization of NADES Extraction Process by Dual Models and Antioxidant Activity of Optimum Extraction from Chuanxiong-Honghua. LWT 2023, 184, 114991. [Google Scholar] [CrossRef]
- Gallagher, J.A.; Adams, J.M.M.; Turner, L.B.; Kirby, M.E.; Toop, T.A.; Mirza, M.W.; Theodorou, M.K. Bio-Processing of Macroalgae Palmaria palmata: Metabolite Fractionation from Pressed Fresh Material and Ensiling Considerations for Long-Term Storage. J. Appl. Phycol. 2021, 33, 533–544. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Kristinsson, H.G.; Hreggvidsson, G.O.; Jónsson, J.Ó.; Thorkelsson, G.; Ólafsdóttir, G. Enzyme-Enhanced Extraction of Antioxidant Ingredients from Red Algae Palmaria palmata. LWT 2010, 43, 1387–1393. [Google Scholar] [CrossRef]
- de Lima, N.D.; da Silva Monteiro Wanderley, B.R.; Andrade Ferreira, A.L.; Pereira-Coelho, M.; da Silva Haas, I.C.; Vitali, L.; dos Santos Madureira, L.A.; Müller, J.M.; Fritzen-Freire, C.B.; de Mello Castanho Amboni, R.D. Green Extraction of Phenolic Compounds from the by-Product of Purple Araçá (Psidium myrtoides) with Natural Deep Eutectic Solvents Assisted by Ultrasound: Optimization, Comparison, and Bioactivity. Food Res. Int. 2024, 191, 114731. [Google Scholar] [CrossRef]
- Vilková, M.; Płotka-Wasylka, J.; Andruch, V. The Role of Water in Deep Eutectic Solvent-Base Extraction. J. Mol. Liq. 2020, 304, 112747. [Google Scholar] [CrossRef]
- Yuan, Y.V.; Bone, D.E.; Carrington, M.F. Antioxidant Activity of Dulse (Palmaria palmata) Extract Evaluated In Vitro. Food Chem. 2005, 91, 485–494. [Google Scholar] [CrossRef]
- Yuan, Y.V.; Carrington, M.F.; Walsh, N.A. Extracts from Dulse (Palmaria palmata) Are Effective Antioxidants and Inhibitors of Cell Proliferation In Vitro. Food Chem. Toxicol. 2005, 43, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Idowu, A.T.; Amigo-Benavent, M.; Whelan, S.; Edwards, M.D.; FitzGerald, R.J. Impact of Different Light Conditions on the Nitrogen, Protein, Colour, Total Phenolic Content and Amino Acid Profiles of Cultured Palmaria palmata. Foods 2023, 12, 3940. [Google Scholar] [CrossRef] [PubMed]
- Rebocho, S.; Mano, F.; Cassel, E.; Anacleto, B.; Bronze, M.d.R.; Paiva, A.; Duarte, A.R.C. Fractionated Extraction of Polyphenols from Mate Tea Leaves Using a Combination of Hydrophobic/Hydrophilic NADES. Curr. Res. Food Sci. 2022, 5, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Varriale, S.; Delorme, A.E.; Andanson, J.M.; Devemy, J.; Malfreyt, P.; Verney, V.; Pezzella, C. Enhancing the Thermostability of Engineered Laccases in Aqueous Betaine-Based Natural Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2022, 10, 572–581. [Google Scholar] [CrossRef]
- Queffelec, J.; Beraud, W.; Dolores Torres, M.; Domínguez, H. Advances in Obtaining Ready to Use Extracts with Natural Solvents. Sustain. Chem. Pharm. 2024, 38, 101478. [Google Scholar] [CrossRef]
- Rajha, H.N.; Mhanna, T.; El Kantar, S.; El Khoury, A.; Louka, N.; Maroun, R.G. Innovative Process of Polyphenol Recovery from Pomegranate Peels by Combining Green Deep Eutectic Solvents and a New Infrared Technology. LWT 2019, 111, 138–146. [Google Scholar] [CrossRef]
- Bradford, M.M. Determinación de Proteínas: Método de Bradford. Anal. Biochem. 1976, 254, 248–254. [Google Scholar] [CrossRef]
- Román, R.B.; Alvárez-Pez, J.M.; Fernández, F.G.A.; Grima, E.M. Recovery of Pure B-Phycoerythrin from the Microalga Porphyridium cruentum. J. Biotechnol. 2002, 93, 73–85. [Google Scholar] [CrossRef]
- Beutler, J.A.; Mckee, T.C.; Fuller, R.W.; Tischler, M.; Cardellina, J.H.; Snader, I.K.M.; Mccloud, T.G.; Boyd, M.R. Frequent Occurrence of HIV-Inhibitory Sulphated Polysaccharides in Marine Invertebrates. Antivir. Chem. Chemother. 1993, 4, 167–172. [Google Scholar] [CrossRef]
- Albano, R.M.; Mourao, P.A.S. Isolation, Fractionation, and Preliminary Characterization of a Novel Class of Sulfated Glycans from the Tunic of Styela Plicata (Chordata tunicata). J. Biol. Chem. 1986, 261, 758–765. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Sanchez-Martinez, J.D.; Bueno, M.; Alvarez-Rivera, G.; Tudela, J.; Ibanez, E.; Cifuentes, A. In Vitro Neuroprotective Potential of Terpenes from Industrial Orange Juice By-Products. Food Funct. 2021, 12, 302–314. [Google Scholar] [CrossRef]
- Idowu, A.T.; Amigo-Benavent, M.; Santos-Hernández, M.; Whelan, S.; Edwards, M.D.; FitzGerald, R.J. Impact of Growth Conditions on the Nitrogen, Protein, Colour and Amino Acid Profiles of the Cultured Macroalga, Palmaria palmata. J. Appl. Phycol. 2023, 35, 2397–2411. [Google Scholar] [CrossRef]
STEP 1 | R-Phycocyanin (R-PC) (µg/mg Sample) | Allophycocyanin (APC) (µg/mg Sample) | B-Phycoerythrin (B-PE) (µg/mg Sample) | Total Protein Content (µg/mg Sample) | Total Sulfated Polysaccharide Content (µg/mg Sample) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Solvents | UAE | PLE | UAE | PLE | UAE | PLE | UAE | PLE | UAE | PLE |
Gly:Glu, 50% H2O | 11 ± 2 Aa | 12.4 ± 0.7 Ab | 14 ± 2 ABb | 18 ± 2 Aa | 17 ± 2 Aa | 18 ± 1 Aa | 173 ± 15 Aa | 126 ± 5 Cb | 54.3 ± 0.8 Aa | 50 ± 2 Bb |
Gly:Glu:Bet, 50% H2O | 10.7 ± 0.6 Aa | 10.5 ± 0.1 Ba | 13 ± 2 Bb | 15.4 ± 0.9 ABa | 15.6 ± 0.9 ABa | 15.3 ± 0.5 ABa | 158 ± 9 Aa | 85 ± 9 Db | 53.4 ± 0.3 Aa | 44 ± 2 Cb |
Gly:Glu:Pro, 50% H2O | 10.5 ± 0.4 ABa | 10.7 ± 0.5 Ba | 16 ± 2 ABa | 13 ± 1 Bb | 15.8 ± 0.4 ABa | 15.6 ± 0.6 ABa | 164 ± 6 Aa | 145 ± 14 Bb | 44 ± 2 Bb | 50 ± 2 Ba |
Gly:Glu, 25% H2O | 8 ± 1 BCa | 8.9 ± 0.6 Ca | 17 ± 2 Ba | 9 ± 2 Cb | 13 ± 2 CDa | 12.8 ± 1.0 Ba | 94 ± 13 Bb | 131 ± 15 Ca | 37 ± 5 Ca | 30 ± 2 Db |
Gly:Glu:Bet, 25% H2O | 6.8 ± 0.4 C | ⎯ | 14 ± 2 AB | ⎯ | 10.5 ± 0.9 D | ⎯ | 18 ± 1 D | ⎯ | 32 ± 4 C | ⎯ |
Gly:Glu:Pro, 25% H2O | 8.6 ± 0.2 ABC | ⎯ | 17 ± 1 A | ⎯ | 14.1 ± 0.1 BC | ⎯ | 59 ± 8 C | ⎯ | 37 ± 4 C | ⎯ |
H2O | 9.7 ± 0.4 ABa | 10.7 ± 0.5 Bb | 13.8 ± 0.6 ABa | 13 ± 1 Ba | 16.5 ± 0.2 ABa | 15.6 ± 0.6 ABa | 152 ± 7 Ab | 189 ± 7 Aa | 38.4 ± 0.2 BCa | 61.7 ± 0.7 Ab |
TEAC (µmol trolox/g Sample) | ORAC (IC50 μg/mL Sample) | |||||||
---|---|---|---|---|---|---|---|---|
Extracts | Hydrolysate | Extracts | Hydrolysate | |||||
Solvents | UAE | PLE | UAE | PLE | UAE | PLE | UAE | PLE |
Gly:Glu, 50% H2O | 14.81 ± 0.02 Bb | 25.64 ± 0.04 Ba | 20.90 ± 0.01 Bb | 35.60 ± 0.02 Ca | 107 ± 7 Ba | 111 ± 9 Bb | 29 ± 2 Bb | 27.8 ± 0.8 Ba |
Gly:Glu:Bet, 50% H2O | 14.39 ± 0.03 Bb | 25.32 ± 0.03 Ba | 19.30 ± 0.01 Cb | 46 ± 1 Aa | 111 ± 4 Ca | 112 ± 8 Ca | 32 ± 2 Cb | 28 ± 3 Ba |
Gly:Glu:Pro, 50% H2O | 13.28 ± 0.07 Cb | 13 ± 0.02 Ca | 18.10 ± 0.02 Db | 40.17 ± 0.02 Ba | 116 ± 5 Da | 116 ± 3 Da | 31 ± 1 Cb | 28 ± 1 Ba |
H2O | 15.74 ± 0.05 Ab | 27.48 ± 0.03 Aa | 22.30 ± 0.01 Ab | 42.05 ± 0.02 Ba | 101 ± 11 Ab | 94 ± 3 Aa | 22 ± 2 Ab | 15.4 ± 0.2 Aa |
STEP-2 | R-Phycocyanin (R-PC) (µg/mg Sample) | Allophycocyanin (APC) (µg/mg Sample) | B-Phycoerythrin (B-PE) (µg/mg Sample) | Total Protein Content (µg/mg Sample) | Total Sulfated Polysaccharide Content (µg/mg Sample) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Solvents | 25 °C | 40 °C | 25 °C | 40 °C | 25 °C | 40 °C | 25 °C | 40 °C | 25 °C | 40 °C |
Gly:Glu, 50% H2O | 20 ± 1 ABb | 28 ± 2 Aa | 36 ± 2 Ab | 52 ± 8 Aa | 29 ± 1 ABb | 43 ± 4 Aa | 218 ± 8 Db | 268 ± 14 Da | 123 ± 2 Cb | 131 ± 3 Ba |
Gly:Glu:Bet, 50% H2O | 20.1 ± 0.7 ABa | 20 ± 3 BCa | 35.4 ± 0.6 Aa | 35 ± 4 Ba | 29 ± 1 ABb | 30 ± 4 Ba | 181 ± 10 Ea | 176 ± 3 Ea | 119 ± 3 Db | 124 ± 3 Ca |
Gly:Glu:Pro, 50% H2O | 22 ± 2 Aa | 20.9 ± 0.4 Bb | 28 ± 3 Ba | 25.3 ± 0.9 Cb | 32 ± 3 Aa | 30.4 ± 0.5 Bb | 357 ± 5 Ba | 330 ± 7 Cb | 129.9 ± 0.4 Ba | 131 ± 5 Ba |
Gly:Glu, 25% H2O | 18.1 ± 0.4 Ba | 17.1 ± 0.4 Cb | 18.0 ± 0.9 Ca | 15.6 ± 0.9 Db | 26.1 ± 0.5 Ba | 24.5 ± 0.5 Cb | 292 ± 7 Cb | 387 ± 3 Ba | 89 ± 4 Eb | 100 ± 1 Da |
H2O | 22 ± 2 Aa | 20.9 ± 0.4 Bb | 28 ± 3 Ba | 25.3 ± 0.9 Cb | 32 ± 3 Aa | 30.4 ± 0.5 Bb | 431 ± 5 Aa | 410 ± 2 Ab | 146.0 ± 0.7 Aa | 141.9 ± 0.4 Aa |
PLE-NaDES | PLE-Water | |||||||
---|---|---|---|---|---|---|---|---|
Days | L* | α* | b* | ΔE | L* | α* | b* | ΔE |
0 | 838 ± 1 C | 179 ± 1 B | 69 ± 2 C | 0 | 760 ± 1 C | 233 ± 1 A | 61 ± 2 D | 0 |
7 | 841 ± 1 C | 105 ± 0 D | 51 ± 0 D | 76 ± 0 Ab | 755 ± 0 D | 76 ± 1 B | 112± 1 C | 165.3 ± 1 Ba |
21 | 864 ± 1 A | 162 ± 1 C | 81 ± 1 B | 33 ± 1 Cb | 974 ± 0 A | 59 ± 1 C | 268 ± 1 B | 344 ± 1 Aa |
30 | 844 ± 1 B | 183 ± 0 Aa | 125 ± 0 A | 56 ± 2 Bb | 968 ± 0 B | 64 ± 0 D | 278 ± 2 A | 345 ± 3 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cokdinleyen, M.; Domínguez-Rodríguez, G.; Kara, H.; Ibáñez, E.; Cifuentes, A. New Green Biorefinery Strategies to Valorize Bioactive Fractions from Palmaria palmata. Mar. Drugs 2024, 22, 467. https://doi.org/10.3390/md22100467
Cokdinleyen M, Domínguez-Rodríguez G, Kara H, Ibáñez E, Cifuentes A. New Green Biorefinery Strategies to Valorize Bioactive Fractions from Palmaria palmata. Marine Drugs. 2024; 22(10):467. https://doi.org/10.3390/md22100467
Chicago/Turabian StyleCokdinleyen, Melis, Gloria Domínguez-Rodríguez, Huseyin Kara, Elena Ibáñez, and Alejandro Cifuentes. 2024. "New Green Biorefinery Strategies to Valorize Bioactive Fractions from Palmaria palmata" Marine Drugs 22, no. 10: 467. https://doi.org/10.3390/md22100467
APA StyleCokdinleyen, M., Domínguez-Rodríguez, G., Kara, H., Ibáñez, E., & Cifuentes, A. (2024). New Green Biorefinery Strategies to Valorize Bioactive Fractions from Palmaria palmata. Marine Drugs, 22(10), 467. https://doi.org/10.3390/md22100467