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Abstract: In this study, we investigated the protective effects of astaxanthin (AST) against oxidative
stress induced by the combination of azoxymethane (AOM) and dextran sulfate sodium (DSS) in
colitis-associated cancer (CAC) and TNF-α-induced human colorectal cancer cells (SW480), as well
as the underlying mechanism. In vitro experiments revealed that astaxanthin reduced reactive
oxygen species (ROS) generation and inhibited the expression of Phosphorylated JNK (P-JNK),
Phosphorylated ERK (P-ERK), Phosphorylated p65 (P-p65), and the NF-κB downstream protein
cyclooxygenase-2 (COX-2). In vivo experiments showed that astaxanthin ameliorated AOM/DSS-
induced weight loss, shortened the colon length, and caused histomorphological changes. In addition,
astaxanthin suppressed cellular inflammation by modulating the MAPK and NF-κB pathways and
inhibiting the expression of the proinflammatory cytokines IL-6, IL-1β, and TNF-α. In conclusion,
astaxanthin attenuates cellular inflammation and CAC through its antioxidant effects.

Keywords: astaxanthin; oxidative stress; inflammation; colitis-associated cancer

1. Introduction

Oxidative stress refers to the deleterious effects of highly reactive oxidizing molecules,
either endogenously or exogenously generated, on living cells, which can be both free and
non-free radicals [1]. They are able to readily acquire electrons from the molecules they
come in contact with, thereby generating reactions that ultimately lead to the destruction
of cellular structures [2]. Among these molecules, reactive oxygen species (ROS) and
reactive nitrogen species (RNS) are produced endogenously at the highest concentrations
and have major biological effects [3]. ROS are essential for biological processes. In normal
cells, catalase (CAT), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD)
partially help to clear ROS and maintain cellular redox homeostasis [4]. Excessive ROS
production leads to oxidative stress [5]. Physiological levels of ROS are required for
different processes, including intracellular signal transduction; metabolic, immune, and
hypoxic responses; and transcriptional regulation [6]. At relatively high levels of ROS, the
oxidation of proteins and DNA, among others, leads to cellular dysfunction [7]. Excess ROS
may be pathological and lead to the development and progression of chronic diseases [8].
Oxidative stress and inflammation are densely separable [9]. Severe cases can lead to
other related diseases such as intestinal inflammation [10,11] and colorectal cancer [12].
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Therefore, there is an urgent need to prevent the harm caused by oxidative stress to prevent
the development of colitis and colitis-related cancers.

Colorectal cancer (CRC) is the third most common cancer in the world and has be-
come a global health concern [13]. Inflammatory bowel disease (IBD) is a chronic and
recurrent inflammatory disease characterized by severe intestinal damage and an intense
inflammatory response. The incidence of colorectal cancer in patients with IBD is almost
three times greater than that in normal patients [14]. CAC is a major subtype of colorectal
cancer closely associated with chronic or dysregulated inflammation that is difficult to
treat [15]. CAC is a classic disease that transforms chronic inflammation into a tumor
and results in long-term colitis in IBD patients [16]. Inside the epithelium, the mucus
secreted by the cup cells acts as a barrier against the penetration of bacteria and pathogens.
This gel coating facilitates the maintenance of a balanced intestinal environment. During
colitis, the integrity of the coating is compromised, thereby allowing pathogens to contact
the underlying immune system deep within the stroma [17]. Epidemiological studies
have shown that anti-inflammatory treatments are effective in minimizing the incidence
of CAC in patients with IBD [18]. Moreover, oxidative damage has been shown to be
critical in the development of chronic inflammation [19]. Drugs that can inhibit cancer,
such as 5-FU, oxaliplatin, and calcium folinate, can be used alone or in combination in the
clinic. However, significant side effects of these drugs have been reported [20]. In recent
years, extracts of natural substances have gained popularity as a class of cancer prevention
drug. Astaxanthin (AST) has various functions, such as antioxidant, anti-inflammatory,
and antidiabetic properties [21]. Many studies have shown that carotenoids, including AST,
have potent cancer-preventive effects [22].

AST is a carotenoid extracted from shrimp, crabs, and seaweed, especially from Haema-
tococcus pluvialis [23]. AST contains unsaturated hydroxyl groups, ketones, and conjugated
double bonds, which have strong electronic effects and can bind to free radicals, thus
scavenging free radicals and preventing oxidative damage [24]. AST has attracted scientific
research attention due to its strong antioxidant properties [25]. The European Food Safety
Authority recommends an acceptable daily intake of 0.034 mg/kg AST and concludes that
the safety of daily intake of 0.06 mg/kg AST has not been fully determined [26]. However,
several studies have shown that supplementing AST at doses higher than 0.06 mg/kg per
day does not lead to any adverse reactions [27]. Owing to its unique molecular structure,
AST can pass through the cell membrane barrier to reach its point of action and alleviate
inflammation, cancer, obesity, diabetes, and other diseases through various biological appli-
cations [28]. In a previous study, AST significantly reduced the expression of key genes in
the inflammation-related signaling pathway induced by oxidative DNA damage and sup-
pressed inflammation [29]. In addition, AST inhibited dimethylhydrazine-induced colon
carcinogenesis in rats by regulating the expression of nuclear factor-κB, COX-2, matrix
metalloproteinase 2/9, proliferating cell nuclear antigen, and ERK [30]. Similarly, AST has
also been shown to attenuate the severity of intestinal damage in patients with necrotizing
small bowel colitis [31]. The effect of AST on patients with CAC has not been extensively
studied. This study selected an appropriate concentration of AST for treatment on the basis
of the results of preliminary experiments. The aim of this study was to investigate the
therapeutic effects of AST on TNF-α-induced human colorectal cancer cells (SW480) and
DSS/AOM-induced CAC in mice and to further explore its mechanism of action.

2. Results
2.1. Effects of AST on TNF-α-Induced SW480 Cells
2.1.1. AST Attenuates TNF-α-Induced Oxidative Stress in SW480 Cells

As shown in Figure 1, TNF-α-treated cells exhibited elevated ROS levels (p < 0.001,
Figure 1A–E) and significantly decreased SOD activity (p < 0.01, Figure 1F). Interestingly,
the ROS levels and SOD activity recovered in a concentration-dependent manner after AST
treatment. These results indicated that AST can reduce oxidative stress.
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Figure 1. Effect of AST treatment on oxidative stress in SW480 cells induced by 50 µg/L TNF-α for
24 h. (A–D) DCF overlay histogram of each group and model group. (E) The fluorescence intensity of
DCF. (F) SOD activity in different groups. CTR was the control group, - was the TNF-α model group,
and 2.5–10 was the AST treatment group. After the cell modeling intervention was completed, cell
proteins were extracted from the cell lysate for follow-up experiments. p values < 0.05 were regarded
as statistically significant; * p < 0.05, ** p < 0.01, *** p < 0.001.

2.1.2. AST Inhibits TNF-α-Induced MAPK and NF-κB Signaling Pathways in SW480 Cells

Compared with AOM/DSS alone, TNF-α increased the expression of P-JNK (p < 0.001)
and P-ERK (p < 0.001), which decreased in a concentration-dependent manner after 24 h of
AST treatment (Figure 2A–C). Similarly, TNF-α increased the expression of p-p65 (p < 0.01)
and the NF-κB downstream protein COX-2 (p < 0.001), whereas AST treatment decreased
their expression (Figure 2D–F).

2.1.3. AST Downregulates TNF-α-Induced Inflammatory Cytokine Expression in
SW480 Cells

To explore whether AST regulates the production of proinflammatory cytokines,
the levels of IL-6 and IL-1β were measured. The results revealed that the levels of IL-6
(p < 0.001) and IL-1β (p < 0.01) were significantly increased in TNF-α-treated SW480 cells
and gradually decreased with increasing concentrations of AST (Figure 2G,H).
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Figure 2. Effect of AST treatment on SW480 cells induced with 50 µg/L TNF-α for 24 h. (A) Western
blot analysis of p-JNK, p-ERK, and β-actin. (B,C) Quantification of the protein expression of p-JNK,
p-ERK, and β-actin was used as an internal control. (D) Western blot analysis of p-p65, COX-2, and
GAPDH. (E,F) The quantification of the protein expression of p-p65 and COX-2; GAPDH was used
as an internal control. (G,H) Contents of proinflammatory cytokines IL-6 and IL-1β. CTR was the
control group, - was the TNF-α model group, and 2.5–10 was the AST treatment group. After the
cell modeling intervention was completed, cell proteins were extracted from cell lysate for follow-up
experiments. p values < 0.05 were regarded as statistically significant. ** p < 0.01, *** p < 0.001.

2.2. Effects of AST on AOM/DSS-Induced Colon Cancer in Mice
2.2.1. Effects of AST on Physical Changes, Colon Tissue Morphology, and Colon Length

A CAC model was established in AOM/DSS mice, which were then treated with AST
by gavage (Figure 3A). The colon length was lower in the AOM/DSS model group than in
the control group (p < 0.001). The colon length gradually increased with increasing AST
concentration (Figure 3B). After the mice were euthanized, the colonic tissue was collected.
Compared with those in the control group, AOM/DSS-treated mice had severely more
congested tissues with larger and denser tumors (Figure 3C); however, this effect was
significantly attenuated by AST treatment. The improvement was even more pronounced
in the high-dose AST group, with a trend toward a significant decrease in tumor number
and density. The weights of the mice in all the groups decreased, and some of the mice had
bloody stools, erect hair, poor mental status, and slow movement during the DSS cycle.
After AST treatment, the weight recovered in a dose-dependent manner (Figure 3D).
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Figure 3. The CAC model-building method and the effect of AST in mice. (A) A schematic diagram
of the model process and AST intakes. (B) Mouse weight map. (C) Colon tissue morphology.
(D) Colon tissue length diagram. CTR was the control group, - was the AOM/DSS model group, and
50–200 mg/kg was the AST dose group. p values < 0.05 were regarded as statistically significant.
* p < 0.05, ** p < 0.01, *** p < 0.001.

2.2.2. Hematoxylin-Eosin (HE) Staining of Mouse Intestinal Tissues

HE staining was used to observe the morphological structure of the intestinal tissues.
As shown in Figure 4, lymphocyte infiltration was detected in the mouse sections. The
colonic glands of the normal group were neatly arranged and basically equal in shape and
size. The epithelial mucosa and crypts were normal. However, in the AOM/DSS model
group, the inflammatory features of the intestinal submucosa worsened, with connective
tissue hyperplasia and severe lymphocytic infiltration. In addition, atrophy of the intestinal
glands and the absence of crypts were also observed.

Figure 4. The CAC model-building method and the effect of AST in mice. (A–E) HE staining of colonic
tissue. The arrow indicates the infiltration of inflammatory cells, enlarged voids, the disappearance
of crypts, and the detachment of goblet cells. CTR was the control group.

2.2.3. AST Inhibits Ki67 Expression in AOM/DSS-Induced Mice

The expression of Ki67 was significantly increased in the AOM/DSS model group and
decreased in the AST-treated group (p < 0.001, Figure 5A–F). In addition, the proportion
of positive cells gradually decreased with increasing AST concentration. AST reduced the
expression of Ki67 and inhibited the malignant proliferation of colon cancer cells.

2.2.4. AST Attenuates the MAPK and NF-κB Pathways in AOM/DSS-Induced Mice

To investigate the immunoregulatory mechanism of AST in AOM/DSS-induced CAC,
we examined the expression of several key proteins of the MAPK and NF-κB pathways.
The results showed that the expression of P-MEK (p < 0.05), P-JNK (p < 0.001), and P-
ERK (p = 0.001) was significantly increased in the AOM/DSS group (Figure 6A,B). After
AOM/DSS induction, the phosphorylation level of the inflammation-related protein NF-κB
p65 in mouse colon tissue was upregulated, and the phosphorylation level of this protein
gradually decreased with increasing AST concentration. (Figure 6C,D).
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Figure 5. Effect of AST on Ki67 expression in mouse colorectum by immunohistochemistry analysis.
(A–E) The immunohistochemistry graphs of Ki67 expression. (F) The positive index of Ki67. p values
< 0.05 were regarded as statistically significant. Compared with the model group, CTR was the control
group, - was the AOM/DSS model group, and 50–200 mg/kg was the AST dose group. * p < 0.05,
** p < 0.01, *** p < 0.001.

Figure 6. Effects of AST on MAPK and NF-κ B in mice. (A) Western blot analysis of p-MEK, p-
JNK, p-ERK, and GAPDH. (B) The quantification of the protein expression of p-MEK, p-JNK, and
p-ERK; GAPDH was used as an internal control. (C) Western blotting of p-p65 and β-actin. (D) The
quantification of the protein expression of p-p65; β-actin was used as an internal control. CTR was
the control group, - was the AOM/DSS model group without treatment, and 50–200 mg/kg was
the AST dose group. p values < 0.05 were regarded as statistically significant. * p < 0.05, ** p < 0.01,
*** p < 0.001.

2.2.5. AST Reduces Inflammatory Cytokines in AOM/DSS-Induced Mice

The ELISA results revealed that the expression of IL-6 (p < 0.05), IL-1β (p < 0.01),
and TNF-α (p < 0.05) was greater in the AOM/DSS group than in the control group.
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The expression of these proinflammatory cytokines was reduced in AST-treated mice
(Figure 7A–C).

Figure 7. Effects of AST on downstream proinflammatory cytokines in mice. (A–C) The contents of
proinflammatory cytokines IL-6, IL-1β, and TNF-α in mice. CTR was the control group, - was the
AOM/DSS model group without treatment, and 50–200 mg/kg was the AST dose group. p values
< 0.05 were regarded as statistically significant. * p < 0.05, ** p < 0.01.

3. Discussion

Our main findings reveal the protective effect of astaxanthin on the excessive inflam-
matory response in SW480 cells and mice. Specifically, astaxanthin significantly reduced
oxidative stress levels; significantly decreased the phosphorylation of JNK and ERK; and
lowered the levels of IL-1β, IL-6, and TNF-α.

Our findings are consistent with previous research results. Astaxanthin has anti-
inflammatory effects on a variety of diseases, such as Alzheimer’s disease, diabetes, acute
kidney injury, cardiovascular disease, and pancreatic cancer [32–35]. The in vivo and
in vitro results described in this study reveal the potential mechanism by which astaxanthin
inhibits colitis.

The inflammatory response is a key component of the immune system, and unresolved
inflammation can promote the occurrence of chronic diseases [36,37]. Confirmed inflamma-
tory biomarkers include cytokines, transcription factors, and growth factors, as well as the
NF-κB and MAPK pathways [38,39]. In addition to inflammatory biomarkers, the expres-
sion of NF-κB-related pathways and downstream inflammatory factors, including IL-1β,
IL-6, and TNF α, are also affected by astaxanthin [40,41]. In addition, astaxanthin has been
shown to affect MAPK signal transduction by regulating the expression of extracellular
signal-regulated kinases and terminal kinases [42,43].

Colon length is often used as a marker of the degree of inflammation in individuals
with colitis [44]. The results of HE staining indicated that AST intervention attenuated
these inflammatory phenomena. In addition, the immunohistochemical parameter Ki67
is a nuclear-expressed protein consisting of two polypeptide chains coupled to a semi-
conserved replication of cellular DNA. Ki67 is considered an objective indicator of the
overall proliferative activity of a cellular population [45]. Ki67 is hardly expressed in
nonproliferative or low-transforming tissues but is expressed only in actively proliferating
cells. The expression of Ki67 can be used as a biomarker to determine the malignancy
and prognosis of E. coli tissue-associated cancers. In this study, we found that AST could
reduce the expression of Ki67 and thus inhibit the proliferation of cancer cells, and in vivo
experiments further verified that AST could inhibit the production of inflammatory factors
and reduce the incidence of CAC by inhibiting the expression of proteins related to the
MAPK and NF-κB pathways.

The MAPK signaling pathway is crucial for cell proliferation, differentiation, and
apoptosis [46]. κB also plays a crucial role in regulating the immune response to infection.
These results suggest that AST attenuates oxidative stress and reduces inflammation by
inhibiting the expression of proteins related to the MAPK and NF-κB pathways as well as
the production of proinflammatory factors. These findings are consistent with many previ-
ous findings that astaxanthin can inhibit the development of precancerous lesions in colon
cancer by reducing oxidative stress, alleviating chronic inflammation, and inhibiting NF-κB
activation and colon mucosal cell proliferation [47]. Astaxanthin can inhibit cell prolifera-
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tion, migration, and invasion and induce cell cycle arrest and apoptosis by affecting MAPK,
NF-κB, MMP, and apoptosis factors [48]. Research has also confirmed that astaxanthin
regulates autophagy by modulating AMP-activated protein kinase, which is a cellular ho-
molog of the mouse thymoma virus Akt 8 oncogene and MAPK [49]. Previous studies have
shown that astaxanthin significantly reduces the expression of proinflammatory cytokines
and enhances cell apoptosis induced by lipopolysaccharides in human neutrophils, thereby
protecting against neutrophil inflammation [50]. In addition, astaxanthin can improve the
gut microbiota and effectively treat DSS-induced acute colitis and chronic colitis-related
intestinal fibrosis [51]. AST can also reduce free radicals and protect cells from oxidative
damage in the synergistic treatment of inflammation [52].

Consistent with previous findings, treatment with S-MVLS significantly downregu-
lated the expression of proinflammatory factors and significantly increased the expression
of anti-inflammatory factors in the colonic mucosa, thereby improving DSS-induced colitis
in mice [53]. Astaxanthin can protect against neuronal damage caused by Alzheimer’s
disease by targeting the miR-7/SNCA axis to inhibit endoplasmic reticulum stress [54].

4. Materials and Methods
4.1. Reagents and Materials

High-glucose DMEM was purchased from Gibco (Grand Island, NY, USA); fetal bovine
serum was obtained from EallBio (Beijing, China); penicillin-streptomycin was purchased
from Beyotime Biotechnology (Beijing, China); AOM (A5486) and astaxanthin were pro-
vided by Sigma; DSS was obtained from MP (Santa Ana, CA, USA); consumables, SDS and
HE staining reagents, were provided by Solarbio (Beijing, China); NCM Biotech (Suzhou,
China) provided the protease and phosphatase inhibitor mixture, an antibody dilution
solution, a rapid sealing solution, and protein blotting stripping solution, as well as an
ultrasensitive ECL chemiluminescence kit and a high-sensitivity ECL chemiluminescence
kit; the mouse IL-6, IL-1β, and TNF-α ELISA kits were provided by Mlbio (Shanghai,
China). Protein markers and a rapid gel preparation kit were purchased from Vazyme
(Nanjing, China). The primary antibodies (1:1000) included total MEK 1/2 (#9126), p-MEK
1/2 (#3958), total JNK (#9252), p-JNK (#4668), total ERK1/2 (#4695), p-ERK 1/2 (#4370),
GAPDH (#5174), β-Actin (#4970), and all antibodies above were acquired from Cell Sig-
naling Technology(Danvers, MS, USA), and NF-κB p65 and p-NF-κB p65 antibodies were
sourced from Upstate Biotechnology (Shanghai, China). The secondary antibodies (1:5000)
included Anti-rabbit IgG, HRP-linked Antibody (7074S) and Anti-mouse IgG, HRP-linked
Antibody (7076S) sourced from Cell Signaling Technology.

4.2. In Vitro Experiments
4.2.1. Cell Culture and Treatment

SW480 cells were cultured in complete DMEM (Gibco, Paisley, UK) supplemented
with 10% fetal bovine serum (FBS) (EallBio, Beijing, China) and 1% penicillin-streptomycin
(Beyotime, Shanghai, China) at 37 ◦C in a 5% CO2 cell culture chamber. SW480 cells were
inoculated into a 96-well plate at a density of 1 × 104. A control group, a model group,
and a treatment group were established. The control group was treated with conventional
culture medium, while the model group was treated with 50 µg/L TNF-α for 24 h. After
pretreatment with 50 µg/L TNF-α for 2 h, each treatment group was added with different
concentrations (2.5, 5, 10 µM) of AST for culture. When both model and drug cells were
exposed to TNF-a, AST was used to intervene with the drug group. Finally, cell lysate was
used to extract cell protein for subsequent experiments.

4.2.2. Oxidative Stress Analysis

SOD activity was measured with a superoxide dismutase assay kit (Beyotime, Shang-
hai, China). The protein concentration was measured with a BCA assay kit (Thermo Fisher
Scientific, Waltham, MA, USA). Briefly, the reagent solutions were added according to the
instructions, followed by incubation at 37 ◦C for 30 min and detection of the absorbance
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at 450 nm. ROS levels were detected with an ROS assay kit (Beyotime, Shanghai, China).
Briefly, 10 µmol/L DCFH-DA was added and the mixture was incubated at 37 ◦C for
20 min. Then, the cells were washed three times with PBS (centrifuged at 3000× g for 5 min
at 4 ◦C) and analyzed via flow cytometry (Beckman, Germany).

4.3. In Vivo Experiments
4.3.1. Establishment of the AOM/DSS-Induced Mouse Colon Cancer Model

Healthy C57BL/6 mice (weighing 18–20 g, 6–8 weeks old) were kept in the SPF-grade
mouse house of the Centre for Comparative Medicine of Yangzhou University, License
No. SYXK(SU)2017-0044. Mice were acclimatized for one week, and the test was started in
the second week. Good ventilation and a clean and hygienic rearing environment were
maintained in the mouse house, and the ambient temperature was maintained at 21~26 ◦C,
the relative humidity was maintained at 40~70%, and the light exposure cycle was 12 h.
All tests were completed in the light phase. Seventy-five mice were randomly divided
into five groups, the blank control group, AOM/DSS model group, AST low-dose group
(50 mg/kg), AST medium-dose group (100 mg/kg), and AST high-dose group (200 mg/kg),
and the clipped toes of each mouse were numbered from 1 to 75. The blank control group
was kept normally without other treatments; the AOM/DSS model group was treated with
AOM and DSS; and the AST dose group was treated with AOM and DSS and gavaged with
different concentrations of AST.

AOM (25 mg) was prepared with 2.5 mL of saline to make a 10 mg/mL solution, which
was stored in a refrigerator at −20 ◦C. Before use, the solution was diluted with saline to
a concentration of 1 mg/mL and mixed with sufficient shaking. On the first day of the
experiment, all the mice were weighed with an electronic balance, and the mice in the model
group and the AST dose groups were injected intraperitoneally with the corresponding
volume of AOM at a final concentration of 10 mg/kg. The blank control group was injected
intraperitoneally with physiological saline as a control. DSS was prepared as a 2.5% solution
in the drinking water of experimental animals and dissolved by sufficient shaking. AST
was dissolved in olive oil at the corresponding concentration, and the model group was
simultaneously gavaged with olive oil as a control. Throughout the modeling process, the
body weights of the mice were measured once a week, and the mice were sacrificed after
the 10th week.

4.3.2. Blood and Tissue Collection from Mice

The mice were anesthetized and killed by removing the eyeballs and collecting blood
in centrifuge tubes. The serum was separated after the blood had been left to stand for 1 h,
and then refrigerated at −80 ◦C. The colonic tissues of the mice in each group were fixed in
4% paraformaldehyde (Xianyang, China) at room temperature for 24 h. The collected tissue
samples were then embedded in paraffin wax, serially sliced into 4 µm thick sections, and
stained with hematoxylin and eosin (H&E) for morphological analysis [55]. The tissues
were also collected and processed for further protein blot analysis.

4.3.3. Inflammatory Factor Assay

Mouse plasma was centrifuged at 3000× g for 10 min, after which, the supernatant was
collected. The levels of the inflammatory factors IL-6, IL-1β, and TNF-α in mouse serum
were detected via a mouse ELISA kit [56]. The absorbance was measured at 450 nm using a
microplate reader (BioTek, Burlington, VT, USA). A standard curve for the inflammatory
factor assay was plotted, and the serum IL-6, IL-β, and tumor necrosis factor-α (pg/mL)
levels in the mice were calculated.

4.4. Protein Blot Analysis

Proteins were extracted from intestinal tissues or cell lysates according to the manu-
facturer’s instructions. Proteins were separated on 10% separating gel, and at the end of
electrophoresis, the proteins were transferred to a membrane transfer solution for transfer
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to a PVDF filter membrane. The membrane was blocked in skim milk for one hour, and
after being washed with TBST, the membrane was incubated with a specific primary an-
tibody (1:1000) at 4 ◦C overnight. Afterwards, the PVDF membrane was removed from
the primary antibody, washed with TBST buffer, and incubated on a shaker with the corre-
sponding secondary antibody for 60 min [55]. Finally, the membrane was visualized with a
chemiluminescence imaging system.

4.5. Data Statistics and Analysis

All the data are expressed as the mean ± standard deviation (mean ± sem). The
differences among the groups were analyzed via a randomized block design analysis of
variance with the Statistical Package for Social Sciences (SPSS) software and GraphPad 8
software for graphing. Differences in the model group compared with all other groups
were analyzed by t-test. p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) (n = 3).

5. Conclusions

In summary, in vitro experiments revealed that AST can increase the activities of
superoxide dismutase and catalase, which are able to reduce TNF-α-induced oxidative
stress damage in SW480 cells. AST inhibited the expression of proteins related to the MAPK
and NF-κB signaling pathways as well as the levels of proinflammatory factors to reduce
the inflammatory response. In in vivo experiments, AST reduced the phosphorylation of
MAPK signaling pathway-related proteins in intestinal tissues, which could attenuate the
apparent pathological symptoms of intestinal inflammation and colonic injury in mice. In
addition, AST downregulated the expression of Ki67, reduced the malignant proliferation
of colon cancer cells, and inhibited the expression of the proinflammatory factors IL-6,
IL-1β, and tumor necrosis factor-α, thereby attenuating the colitis-associated colon cancer
injury induced by AOM/DSS in mice. AST attenuated oxidative stress injury, providing a
new opportunity for therapeutic agents.
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