
Citation: Peng, Z.-H.; Jia, H.; Luo,

Y.-L.; Zhang, L.-J.; Zhou, J.-T.; Xie,

Y.-H.; Wang, L.-J.; Qin, J.-K.; Li, J.;

Zhang, G.-H.; et al. Talaroterpenoids

A–F: Six New Seco-Terpenoids from

the Marine-Derived Fungus

Talaromyces aurantiacus. Mar. Drugs

2024, 22, 475. https://doi.org/

10.3390/md22100475

Academic Editors: Chang-Lun Shao

and Simona De Marino

Received: 28 September 2024

Revised: 16 October 2024

Accepted: 16 October 2024

Published: 18 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

marine drugs 

Article

Talaroterpenoids A–F: Six New Seco-Terpenoids from the
Marine-Derived Fungus Talaromyces aurantiacus
Zi-Hong Peng 1,†, Hui Jia 1,†, Yan-Liang Luo 1, Li-Jun Zhang 1, Jia-Tong Zhou 1, Yuan-Han Xie 1, Li-Jun Wang 2,
Jiang-Ke Qin 1, Jun Li 1, Guo-Hai Zhang 1,* , Rui-Yun Yang 1,* and Wei-Feng Xu 1,*

1 State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative
Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences,
Guangxi Normal University, Guilin 541004, China; pengzihong000311@163.com (Z.-H.P.);
jiahui18878391665@163.com (H.J.); lyl2010927@163.com (Y.-L.L.); ajun840618@mailbox.gxnu.edu.cn (L.-J.Z.);
zjt990123@163.com (J.-T.Z.); xieyuanhan0330@163.com (Y.-H.X.); jiangke@sina.com (J.-K.Q.);
lijun9593@gxnu.edu.cn (J.L.)

2 School of Design, Guangxi Normal University, Guilin 541004, China; gxsd307@126.com
* Correspondence: zgh1207@gxnu.edu.cn (G.-H.Z.); yang_rui_yun@163.com (R.-Y.Y.);

xuweifeng_u@163.com (W.-F.X.)
† These authors contributed equally to this work.

Abstract: Six new highly oxidized seco-terpenoids, including three 3-nor-labdane type diterpenes, ta-
laroterpenoids A–C (1–3), and three meroterpenoids containing an orthoester group, talaroterpenoids
D–F (6–8), together with five known compounds (4–5 and 9–11), were isolated from the marine-
derived fungus Talaromyces aurantiacus. Their chemical structures were elucidated through 1D, 2D
NMR, HRESIMS, J-based configuration analysis (JBCA), computational ECD calculations, and single-
crystal X-ray diffraction analysis. Compounds 1 and 2 contain an unusual 6,20-γ-lactone-bridged
scaffold. Compounds 10 and 11 presented inhibitory effects on NO release in lipopolysaccharide
(LPS)-induced BV-2 cells with IC50 values of 11.47 and 11.32 µM, respectively. Talaroterpenoid C (3)
showed moderate antifungal activity against A. alternata and P. theae Steyaert.

Keywords: seco-terpenoids; Talaromyces aurantiacus; anti-inflammatory activities; marine-derived
fungus

1. Introduction

Marine-derived fungi are recognized as a significant source of chemically diverse and
bioactive organic molecules. The vastness and unique environmental conditions of the
ocean have fostered the evolution of these fungi, endowing them with the capacity to pro-
duce an array of secondary metabolites. To date, over 35,000 marine natural products have
been characterized, and 13 marine-derived drugs have been approved for clinical use [1–6].
Among them, the genus Talaromyces has shown great potential in agriculture, food, cos-
metics, medicine, and environmental protection, emerging as a promising source for
bioactive compound discovery [7–9]. Secondary metabolites isolated from marine-derived
Talaromyces species exhibited various bioactivities, including anti-inflammatory [10], an-
tibacterial [11], antitumor [12], and antifouling properties [13].

Seco-labdanes represent an intriguing class of diterpenoids distinguished by the ox-
idative cleavage of a carbon–carbon (C–C) bond during their biosynthesis [14]. This
biochemical modification diversifies the rigid labdane skeleton, giving rise to a plethora of
structurally diverse compounds with increased chemical and biological complexity [15].
This process is often facilitated by enzymes such as Baeyer–Villiger monooxygenases, lead-
ing to the formation of nor- and seco-terpenoids. To date, over 100 seco-labdanes have been
isolated, and these compounds can be classified into several subclasses based on the specific
C–C bond that undergoes cleavage: 2,3-seco-labdanes, 3,4-seco-labdanes, 6,7-seco-labdanes,
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7,8-seco-labdanes, 8,9-seco-labdanes, and 9,10-seco-labdanes [16]. Among these subclasses,
2,3-seco-labdanes feature a cleavage between the C-2 and C-3 positions of the labdane
skeleton [17].

As part of our ongoing efforts to explore structurally novel and biologically active
metabolites from marine-derived fungi [18–21], six new seco-terpenoids, talaroterpenoids
A–F (1–3 and 6–8), together with five known compounds, 5-(4-carboxy-3-methyl-3-buten-1-
yl) octahydro-4-(methoxycarbonyl)-3-methyl-6-methylene-2-oxo-4-benzofuranacetic acid
(4) [22], penioxalicin (5) [22], fusariumin A (9) [23], verruculide A (10) [24] and pentacecilide
A (11) [25] (Figure 1), were isolated from the marine-derived fungus Talaromyces aurantiacus
(CGXWFNi1–24). Compounds 1 and 2 represent unusual 3-nor-labdane-type diterpenes
with a 6,20-γ-lactone-bridged scaffold. Herein, we report the isolation, structure elucidation,
possible biosynthetic pathway, and biological activities of these compounds.
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Figure 1. Chemical structures of 1–11.

2. Results and Discussion

Talaroterpenoid A (1), isolated as a colorless oil, was assigned the molecular formula
C19H24O8 by HRESIMS data at m/z 403.1357 [M + Na]+ (calcd for C19H24O8Na+, 403.1363),
indicating 8 degrees of unsaturation. Analysis of its 13C NMR data (Table 1) revealed the
presence of two methyls (δC 14.0 and 19.2) and four carbonyl carbons (δC 169.6, 174.0,
178.2, and 178.9). The 1H NMR data (Table 1) presented characteristic signals related to
two methyls (δH 1.47 and 2.39), four methylenes (δH 2.31/1.91, 2.48/2.26, 2.84/2.70, and
3.56/3.09), four methines (δH 3.28, 3.47, 3.73, and 5.18), and three olefinic protons (δH 5.05,
5.07, and 6.16). The COSY spectrum revealed two distinct spin systems corresponding to
H-19/H-4/H-5/H-6/H-7 and H-9/H-11/H-12 (Figure 2). Analysis of HMBC correlations
of H-5 and H-9/C-10 and H-7 and H-9/C-8 indicated the presence of a cyclohexane ring.
Furthermore, HMBC correlations of H3-19/C-18 demonstrated that a carboxyl group (C-18)
was attached to C-4. The α,β-unsaturated acid residue was found to be adjacent to C-12,
supported by HMBC correlations of H-14/C-13, C-15, and C-16, as well as H3-16/C-12. The
connection of C-17 to C-8 was established through HMBC correlations of H2-17/C-7 and
C-9. The carboxymethyl group was identified as being attached to C-10, based on HMBC
correlations of H2-1/C-2, C-9, and C-20. Finally, the unusual 6,20-lactone-bridged moiety
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was established by the HMBC correlation of H-1 and H-6/C-20. Thus, the planar structure
of 1 was established.

Table 1. The NMR data (1H 400 MHz, 13C 100 MHz) for talaroterpenoids A–C (1–3).

No.
1 a 2 b 3 c

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

1 34.0 3.56, d (17.6)
3.09, d (17.6) 32.3 2.77, overlapped

2.48, overlapped 37.4 3.12, d (15.0)
2.66, d (15.0)

2 174.0 171.7 170.9
4 39.2 3.47, qd (7.2, 2.8) 37.5 2.77, overlapped 37.8 2.86, q (7.4)
5 52.2 3.73, d (2.8) 50.6 2.89, d (3.0) 51.7 2.46, dd (11.4, 7.4)
6 78.2 5.18, dd (3.4, 2.4) 76.6 4.74, t (3.0) 77.3 4.93, td (11.4, 4.8)

7 40.1 2.84, dd (15.2, 3.4)
2.70, dd (15.2, 2.4) 39.7 2.64, overlapped

2.54, overlapped 42.1 2.23, t (11.8)
3.03, dd (11.8, 4.8)

8 143.8 142.4 141.0
9 49.7 3.28, br d (10.0) 48.0 2.67, overlapped 48.0 2.35, m
10 50.9 48.8 50.7

11 26.5
2.31, m
1.91, m 24.8

1.70, m
1.40, m 23.5

1.75, m
1.42, m

12 40.2
2.48, m
2.26, m 38.8

2.25, m
1.96, m 39.8

2.35, m
2.07, m

13 158.6 158.4 162.1
14 118.5 6.16, d (1.3) 116.5 5.54, s 115.4 5.67, s
15 169.6 167.5 171.2
16 19.2 2.39, d (1.3) 18.3 2.05, s 19.4 2.18, s

17 116.1
5.07, s

115.3
5.03, s

114.0
5.18, s

5.05, s 4.88, s 4.83, s
18 178.2 174.9 178.5
19 14.0 1.47, d (7.2) 13.0 0.96, d (7.2) 10.1 1.06, d (7.4)
20 178.9 177.2 171.7
21 52.2 3.62, s 52.2 3.66, s
22 52.3 3.71, s

a Recorded in pyridine-d5. b Recorded in DMSO-d6. c Recorded in CDCl3.
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The relative configuration of the cyclohexane ring moiety in 1 was established by
analysis of the NOESY correlations (Figure 3) and coupling constants. The NOESY correla-
tion of H-9 with H-5 suggested that they were cofacial and in an axial arrangement with
an arbitrarily assigned α-orientation. Furthermore, NOESY correlations of H-5 with H-6
suggested that H-6 was also in the α-orientation. The small coupling constant of 3JH-5,H-6
(broad) confirmed that H-6 was in an equatorial arrangement and oriented cis to H-5. The
orientation of the carboxymethyl group must be α, cis-to H-6, because the alternative highly
strained “in–out” trans intrabridged structure is incompatible with a 6,20-γ-lactone-bridged
skeleton. The geometry of the double bond at C-13 in the side chain was assigned E because
of the NOE correlation of H2-12/H-14. The relative configurations of the C-4 and C-5
were determined by the analysis of JH,H, and JC,H coupling constants [26] and NOESY
correlations (Figure 4). Carbon–proton coupling constants (2,3JC,H) were measured by a
J-resolved HMBC experiment. A small coupling constant between H-4 and H-5 (2.8 Hz)
suggested that H-4 and H-5 were in the gauche orientation [27]. On the other hand, a
strong NOESY correlation between H-6/H-19 indicated a gauche orientation. Finally, large
3JC-6,H-4 (7.6 Hz) and 3JC-19,H-5 (7.0 Hz) indicated that C-6 and H-4 and C-19 and H-5 were
in the anti-orientation, respectively. Thus, the relative configuration of 1 was determined as
4S*, 5S*, 6R*, 9S*, 10S*, and the ∆13 double bond was determined as E-configuration. To
further ascertain the absolute configuration of 1, the electronic circular dichroism (ECD)
calculation was employed. ECD calculations for (4S, 5S, 6R, 9S, 10S)-1 and (4R, 5R, 6S,
9R, 10R)-1 were conducted using the time-dependent density functional theory (TDDFT)
at the B3LYP-D3(BJ)/6–31G* level. The calculated ECD spectra for (4S, 5S, 6R, 9S, 10S)-1
matched with the experimental curve well (Figure 5), which indicated that the absolute
configuration of 1 was 4S, 5S, 6R, 9S, and 10S.
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Talaroterpenoid B (2) was obtained as a colorless oil, and its molecular formula was
assigned as C20H26O8 by HRESIMS, requiring 8 degrees of unsaturation. The NMR data
of 2 (Table 1) were similar to those of 1 (1H and 13C NMR data in DMSO-d6), with the
significant difference being the presence of a methyl ester group (δC 52.2, δH 3.62) in 2.
The HMBC correlations (Figure 2) of O-Me/C-18 suggested that the structure of 2 was the
methylated derivative of 1. Detailed analysis of the 2D NMR data supported the proposed
planar structure for 2. Furthermore, the close similarity of 1H and 13C NMR shifts as
reported in Table S1, as well as the J values between 2 and 1, indicated that they shared the
same relative configuration. Compounds 2 and 1 showed similar ECD spectra (Figure 5),
indicating that they share the same absolute configuration, 4S, 5S, 6R, 9S, and 10S.
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Talaroterpenoid C (3) was obtained as a white powder. Its molecular formula was
determined as C21H28O8 on the basis of HRESIMS data at m/z 409.1868 [M + H]+ (calcd for
C21H29O8, 409.1862), which required 8 degrees of unsaturation. The NMR data resembled
those of 5 [13]. The observation of two additional methoxyl groups (δH/C 3.66/52.2 and
3.71/52.3), coupled with the oxidation of one of the methyl groups in 5 to an ester carbonyl
group (δC 171.7), collectively indicated that 3 was an oxidized derivative of 5. Furthermore,
HMBC correlations of H3-21 and H-5/C-20, H2-1 and H3-22/C-2, as well as H2-1 and
H-5/C-10, indicated that the methyl ester group (C-20) and a carboxymethyl group (C-1)
were attached to C-10. Based on the NMR data of 3 and 5 as reported in Table S2, along with
the NOESY correlations of 3, the relative configuration of 3 was determined. Furthermore,
the CD spectra of 3 and 5 showed a positive CE around 213 nm in the lactone absorbance
region (Figure 6), indicating that the absolute configuration of 3 would be 4S, 5S, 6S, 9S,
and 10S.
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Figure 6. Experimental ECD spectra of compounds 3, 5, and 6–9 (in MeOH).

Talaroterpenoid D (6) was obtained as a white solid. The molecular formula was
determined by HRESIMS analysis to be C25H34O9, with nine degrees of unsaturation.
Inspection of the NMR and HRESIMS data of 6 revealed the presence of the orthoester-
containing meroterpenoid skeleton. A detailed analysis of its NMR spectra revealed strong
similarities to those of fusariumin A (9) [23] as reported in Table S3. However, the acetyl
(δH 2.01; δC 21.2, 170.2 in 9) was absent in 6. Extensive analysis of 2D NMR revealed the
planar structure of 6 as described in Figure 1. The relative configuration of talaroterpenoid
D (6) was determined by comparison of its 1H and 13C NMR data with those of 9. The
absolute configuration of 6 (1S, 5R, 7S, 8S, 9S, 10S, 1′R, 2′S, 3′S, 4′S, 5′R, 6′S) was determined
(Figure 4) by X-ray diffraction analysis using Cu Kα radiation with a Flack parameter of 0.06
(9) (Figure 7). Talaroterpenoid D (6) was a polycyclic spiromeroterpenoid whose structure
possessed a congested heptacyclic skeleton with a 6/5/6/5/6/5/5 system.
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Talaroterpenoid E (7) was obtained as a white amorphous powder, possessing a
molecular formula of C25H36O9 with 8 degrees of unsaturation. The 1H and 13C NMR
spectra (Table 2) of 7 were similar to those of 6, with the main difference at the fission of the
tetrahydrofuran ring of 7 at C-1 (δH 4.16, δC 74.7 in 6; δH 1.80, 2.70, δC 26.0 in 7). Extensive
analysis of 2D NMR revealed the planar structure of 7 as described (Figure 2). The relative
structure of 7 was determined by comparing its NMR data with those of 6 and further
substantiated by a detailed analysis of NOESY data (Figure 3). Key NOESY correlations
of H-5/H-7, H-7/H-8, H-8/H-11β, H2-12/H-13, and H-13/H3-14 determined the relative
configuration of the A/C ring (Figure 1). Furthermore, the NOESY correlations of H-4′/H-
5′, H-5′/H-6′, H-4′/H3-8′, and H3-7′/H3-10′ indicated the relative configuration of the E/F
ring. Compounds 7 and 6 showed quite similar ECD spectra (Figure 6), with a positive
cotton effect (CE) at 210 nm, indicating that they share the same absolute configuration.
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The absolute configuration of 7 was established as 5R, 7S, 8S, 9S, 10S, 1′R, 2′S, 3′S, 4′S,
5′R, 6′S.

Table 2. The NMR data (400 MHz for 1H and 100 MHz for 13C in DMSO-d6) of talaroterpenoids
D–F (6–8).

No.
6 7 8

δC δH, (J in Hz) δC δH, (J in Hz) δC δH, (J in Hz)

1 74.7 4.16, d (4.2) 26.0
2.70, m

25.9
2.70, m

1.80, m 1.82, m

2 28.8
2.56, m

2.68, dd (15.8, 4.2) 29.1
2.36, m

29.1
2.39, m

2.37, m 2.33, m
3 170.0 173.3 173.3
4 79.6 73.1 73.1
5 50.5 1.57, d (8.2) 49.1 1.46, br d (12.4) 48.9 1.43, br d (12.8)

6 25.2 1.52, m 25.8 1.40, m
1.46, m 25.5 1.69, m

1.52, m
7 69.2 3.69, m 67.1 3.70, dt (11.2, 5.2) 71.7 4.81, dt (12.4, 5.0)
8 49.1 2.19, m 46.6 2.54, s 43.2 2.59, m
9 86.9 92.2 91.4

10 49.5 44.7 44.8

11 48.8 1.86, d (14.2)
2.41, d (14.2) 49.7 1.92, d (14.0)

2.03, d (14.0) 49.7 2.12, d (14.0)
1.95, d (14.0)

12 10.3 0.87, d (7.4) 10.2 0.89, d (7.4) 10.3 0.93, d (7.4)

13 65.5 4.45, d (13.0)
4.52, d (13.0) 66.1 4.26, d (12.2)

4.47, d (12.2) 66.5 4.53, d (12.2)
4.27, d (12.2)

14 21.9 0.98, s 34.3 1.19, s 34.1 1.19, s
15 30.9 1.18, s 25.8 1.14, s 25.9 1.14, s
16 169.9
17 20.9 1.99, s
1′ 46.8 47.0 47.0
2′ 127.8 128.0 128.0
3′ 107.3 107.3 107.3
4′ 78.2 5.04, d (8.4) 77.6 5.02, d (8.6) 77.6 5.02, d (8.4)
5′ 41.3 2.83, dd (8.4, 6.2) 41.3 2.81, dd (8.6, 6.0) 41.2 2.83, dd (8.4, 6.0)
6′ 38.9 2.07, m 40.4 2.02, m 39.1 2.02, m
7′ 18.4 0.74, s 18.6 0.87, s 18.6 0.87, s
8′ 21.9 1.62, s 22.1 1.63, s 22.0 1.62, s
9′ 175.1 175.5 175.3

10′ 11.8 1.04, d (7.4) 11.7 1.05, d (7.0) 11.8 1.05, d (7.0)

Talaroterpenoid F (8) was isolated as a colorless amorphous solid, and its molecular
formula was determined as C27H38O10 (nine degrees of unsaturation) on the basis of
HRESIMS. The 1H and 13C NMR spectra (Table 2) of 8 were very similar to those of 7,
except that 8 has one more acetyl group [C-16 (δC 169.9), CH3-17 (δH 1.99, δC 20.9) than 7.
The planar structure of 8 was mainly elucidated by 2D NMR. The absolute configuration of
8 was the same as that of 7, based on their comparable NMR data and CD spectra.

Structurally, talaroterpenoids A–C (1–3) are 3-nor-2,3-seco-labdane type diterpenes
with four carbonyl groups. The 3-nor-labdane-type compounds are rare in nature. There are
only four compounds with the 3-nor-2,3-seco-labdane skeleton having been reported from
nature sources, including penioxalicin [17], isolated from the fungus Penicillium oxalicum
TW01–1; penicichrysogene A [28], isolated from the endophytic fungus P. chrysogenum
MT-12; paecilomycine A [29], isolated from the insect pathogenic fungus Paecilomyces sp.
ACCC 37762; and 5-(4-carboxy-3-methyl-3-buten-1-yl)octahydro-4-(methoxycarbonyl)-3-
methyl-6-methylene-2-oxo-4-benzofuranacetic acid [22], isolated from the marine-derived
fungus Talaromyces sp. PSU-MF07. Talaroterpenoids D–F (6–8) and fusariumin A (9) are or-
thoester groups containing 3,4-seco-meroterpenoid featuring highly oxygenated seven/six-
membered rings, which bear three quaternary spirocarbons. Up to now, only 10 natural
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products containing an orthoester group have been reported from fungi. They are amaurone
E [30], asnovolins F and G [31], novofumigatonin [32], novofumigatonol, fumigatonoid
C [33], (+)-peniorthoesters A and B, and (–)-peniorthoesters A and B [34]. Among these
compounds, novofumigatonin was investigated for its biosynthetic pathway, and the key
enzymes for the orthoester formation have been identified by a series of gene-deletion
experiments [33]. Particularly, 1 and 2 featured an unusual 6,20-γ-lactone-bridged scaf-
fold. A plausible biogenetic pathway of 1 and 2 was proposed as shown in Scheme 1.
Talaroterpenoids A (1) and B (2) may be derived from the precursor of labdadienyl PP [17].
Oxidation of anticopalic acid could initiate an anticopalic acid analogue i, and a further
Baeyer–Villiger oxidation on i could give intermediate ii. The hydrolysis ring opening of
ii at C-3 delivers intermediate iii. Then, oxidation at C-2 could produce intermediate iv,
and dehydration and decarboxylation may afford intermediate v. subsequently, oxidation,
lactonization, and methylation could lead to the formation of talaroterpenoids A and B (1
and 2) with γ-lactone-bridged 3-nor-2,3-seco-diterpenes.
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Recent investigations have revealed that neuroinflammation, partially attributed to
deregulated microglial activation, contributes to the onset and progression of neurode-
generative conditions, notably AD and depressive-like manifestations [35]. In the central
nervous system (CNS), activated microglial cells are capable of generating nitric oxide
(NO). An excessive accumulation of NO within the CNS, stemming from the induction of
nitric oxide synthase (iNOS), can precipitate unchecked neuroinflammatory responses [36].
Hence, in order to identify potent anti-neuroinflammatory agents from the isolated com-
pounds, the cytotoxicity of 1–11 was evaluated in BV-2 cells. All compounds did not show
toxicity at the concentrations of 10 and 50 µM (Figure S1). We then assessed their capacity
to inhibit NO production employing an in vitro neuroinflammation model, wherein BV-2
cells were stimulated with LPS. The results showed that at a concentration of 50 µM, only
compounds 10 and 11 exhibited an inhibition rate greater than 80% (Figure S2). Subse-
quently, the IC50 values of these two compounds were determined to be 11.47 ± 0.39 and
11.32 ± 0.72 µM, respectively, surpassing the efficacy of the positive control minocycline
(IC50 = 22.9 ± 0.8 µM). This is the first report of the anti-neuroinflammatory activity of
compounds 10 and 11.

The antimicrobial activities of compounds 1–11 were also evaluated in vitro against
four plant pathogenic fungi (Alternaria alternata, Pestalotiopsis theae Steyaert, Thielaviopsis
paradoxa, and Colletotrichum capsici) and six bacteria (Staphylococcus aureus, Escherichia
coli, Enterococcus faecalis, Shigella dysentery, Vibrio parahemolyticus, and Bacillus subtilis).
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Compound 3 exhibited antifungal activities against A. alternata and P. theae Steyaert, with
the MIC (minimum inhibitory concentration) value of 50 µg/mL. Compound 5 exhibited
an effect on A. alternata with the MIC value of 50 µg/mL. All compounds (1–11) do not
exhibit antibacterial activity at a concentration of 100 µg/mL. Carbendazim was employed
as the positive control, exhibiting a MIC value of 25 µg/mL against A. alternata, whereas
P. theae Steyaert demonstrated a MIC value of 50 µg/mL.

3. Materials and Methods
3.1. General Experimental Procedures

Optical rotations were analyzed utilizing a JASCO P-2000 polarimeter (Jasco, Tokyo,
Japan). UV spectral measurements were conducted on a Cary 60 spectrophotometer (Jasco,
Tokyo, Japan). ECD spectra were acquired using a JASCO J-1500 spectropolarimeter (Jasco,
Tokyo, Japan). IR spectra were collected using KBr disks on a PerkinElmer Spectrum Two
FT-IR spectrometer (Bruker, Ettlingen, Germany). NMR spectra were recorded on a Bruker
AV-400 NMR spectrometer (Bruker, Bremen, Germany), with chemical shifts reported in δ
values relative to the residual solvent peak. High-resolution ESI-MS (HRESIMS) data were
collected on an Agilent 6545 Q-TOF LC-MS spectrometer (Agilent Technologies, Waldbronn,
Germany). The analytical instruments employed for the purified compounds and the
isolation procedure materials were consistent with those previously documented [37].

3.2. Biological Material

The fungal strain CGXWFNi1–24 was isolated from a sea sediment sample that was
collected by dredge from the South China Sea (latitude 108.2519 E, longitude 21.5074 N;
Figure S47) at a depth of −6 m. The fungus was identified according to a molecular biologi-
cal protocol by DNA amplification and sequencing of the ITS region. Its 558 base pair ITS
sequence (TTGATATGCTTAAGTTCAGCGGGTAACTCCTACCTGATCCGAG GTCAAC-
CGTGGTAAAACTGTGGTGGTGACCAACCTCCGCCGATCCGTCCCGAGCGATGACAA
AGCCCCATACGCTCGAGGACCAGACGGACGTCGCCGCTGCCTTT CGGACAGGTCC-
CCGGGGGGACCACGCCCAACACACAAGCCGGGCTTGAGGGCAG AAATGACGCTC
GGACAGGCATGCCCCCCGGAATGCCAGGGGGCGCAATGTGCGTTC AAAGATTC-
GATGATTCACGGAATTCTGCAATTCACATTACTTATCGCATTTCGCTGCG TTCTTCAT
CGATGCCGGAACCAAGAGATCCATTGTTGAAAGTTTTGACAATTTTCATT CGACTC
AGACAGCCCATCTTCATCAGGGTTCACAGAGCGCTTCGGCGGGCGCGGG CCCGGG
GACGGACGTCCCCCGGCGACCGGGTGGCCCCGGTGGGCCCGCCAAAGC AACAGG
TAGAGAGAGACACGGGGGGGGAGGTTGGGCCGCGAGGGCCCGCACTCG GTAAT-
GATCCTTCCGCAGG) had 99.64% sequence identity to that of Talaromyces aurantiacus
(MH857871). The strain was deposited in the State Key Laboratory for Chemistry and
Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, P.R.
China, with the GenBank (NCBI) access number OR016169.

3.3. Extraction and Isolation

The strain was inoculated into solid medium in 100 Erlenmeyer flasks (1 L), each flask
containing 80 g of rice, 0.9 g of sea salt, and 100 mL of water. The fungus was fermented at
28 ◦C for 4 weeks before harvesting.

A total of 100 flasks undergoing fermentation were extracted three times with an
equal volume of ethyl acetate (EtOAc). The organic solvent was then removed under
vacuum, yielding an extract of 65.1 g. The extract was subsequently processed through
vacuum-liquid chromatography (VLC) using a silica gel column. A gradient elution of
EtOAc-petroleum ether (10:90 to 100:0, v/v) was employed to fractionate the extract into
four subfractions (Fr.1–Fr.4). Fr.3 produced precipitation Fr.3.0 (353.0 mg). Supernatant was
separated into 23 subfractions (Fr.3.1–Fr.3.23) in an ODS column (MeOH-H2O, 30:70–100:0).
Fr.3.8 (234.0 mg) underwent purification by HPLC (MeCN-H2O, 30:70) to yield 4 (26.8 mg).
Similarly, Fr.3.10 (116.1 mg) was further separated by HPLC (MeCN-H2O, 33:67) to yield
1 (63.3 mg) and 2 (7.8 mg). Fr.3.12 (184.0 mg) was subjected to additional separation by
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HPLC (MeCN-H2O, 35:65) to yield 3 (9.3 mg) and 5 (31.7 mg). Fr.3.0 further subjected to
HPLC (MeCN-H2O, 30:70–80:20, 35 min) to yield 6 (10.0 mg), 7 (143.9 mg), 8 (50.3 mg), and
9 (37.3 mg). Fr.2 (10.0 g) was separated into 9 subfractions (Fr.2.1–Fr.2.9) in an ODS column
(EtOAc-petroleum, 30:70–100:0). Fr.2.3 (174.8 mg) was fractionated by an ODS column
(MeOH-H2O, 10:90–100:0). Subsequent purification of Fr.2.3.5 through ODS chromatogra-
phy yielded 10 (63.0 mg) and 11 (42.3 mg).

3.3.1. Talaroterpenoid A (1)

Colorless oil; [α]25
D: + 9.5 (c 0.1, MeOH); UV (MeOH) λmax (log ε): 211 (4.19); IR νmax

3419, 2927, 1709, 1644, 1392, and 1199 cm−1. CD (MeOH) λmax (∆ε): 204 (+6.82); 1H NMR
and 13C NMR data, see Table 1; HRESIMS m/z 403.1357 [M + Na]+ (calcd for C19H24O8Na+,
403.1363).

3.3.2. Talaroterpenoid B (2)

Colorless oil; [α]25
D: + 7.9 (c 0.1, MeOH); UV (MeOH) λmax (log ε): 215 (4.23); IR νmax

3419, 2926, 2854, 1771, 1730, 1396, and 1241 cm−1. CD (MeOH) λmax (∆ε): 204 (+11.46);
1H NMR and 13C NMR data, see Table 1; HRESIMS m/z 417.1521 [M + Na]+ (calcd for
C20H26O8Na+, 417.1520).

3.3.3. Talaroterpenoid C (3)

Colorless oil; [α]25
D: + 21.9 (c 0.1, MeOH); UV (MeOH) λmax (log ε): 202 (3.71), 216

(3.64); IR νmax 3422, 2966, 2856, 1730, 1444, and 1212 cm−1. CD (MeOH) λmax (∆ε): 216
(+4.98); 1H NMR and 13C NMR data, see Table 1; HRESIMS m/z 409.1868 [M + H]+ (calcd
for C21H29O8

+, 409.1857), 431.1683 [M + Na]+ (calcd for C21H28O8Na+, 431.1677).

3.3.4. Talaroterpenoid D (6)

White amorphous powder; [α]25
D: + 37.1 (c 0.1, MeOH); IR νmax 3433, 2942, 1714, 1621,

1239, and 1053 cm−1. CD (MeOH) λmax (∆ε): 214 (+ 15.38); 1H NMR and 13C NMR data,
see Table 2; HRESIMS m/z 479.2277 [M + H]+ (calcd for C25H34O9

+, 479.2281), 431.1683
[M + Na]+ (calcd for C21H28O8Na+, 501.2092).

3.3.5. Talaroterpenoid E (7)

White amorphous powder; [α]25
D: + 17.9 (c 0.1, MeOH); IR νmax 3436, 2922, 1734, 1631,

1242, and 1068 cm−1. CD (MeOH) λmax (∆ε): 212 (+ 10.33); 1H NMR and 13C NMR data,
see Table 2; HRESIMS m/z 503.2249 [M + Na]+ (calcd for C25H36O9Na+, 503.2257).

3.3.6. Talaroterpenoid F (8)

White amorphous powder; [α]25
D: + 20.6 (c 0.1, MeOH); IR νmax 3427, 2924, 1751, 1635,

1245, and 1027 cm−1. CD (MeOH) λmax (∆ε): 210 (+ 6.92); 1H NMR and 13C NMR data,
see Table 2; HRESIMS m/z 523.2531[M + H]+ (calcd for C27H39O10

+, 523.2543), 545.2375
[M + Na]+ (calcd for C27H38O10Na+, 545.2363).

3.4. Computational Section

Conformational analyses were performed utilizing the “systematic” approach incor-
porated into Sybyl-X 2.0, which made use of the MMFF94S force field and an energy
cutoff threshold set at 5 kcal/mol. This analysis uncovered nine conformers possessing
the lowest energy states. Following this, geometry optimizations and frequency analyses
were executed at the B3LYP-D3(BJ)/6–31G* level within the CPCM methanol solvation
model, all facilitated by ORCA5.0.1 [38]. Each conformer utilized in subsequent property
calculations was verified as a stable point on the potential energy surface (PES), confirmed
by the absence of imaginary frequencies. Excitation energies, oscillator strengths, and rota-
tional strengths (velocity) for the first 60 excited states were computed using the TD-DFT
method at the PBE0/def2-TZVP level in CPCM methanol, again employing ORCA5.0.1.
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The ECD spectra were generated by applying overlapping Gaussian functions, with a
half-bandwidth corresponding to 1/e of the peak height (sigma = 0.30 for all conform-
ers) [39]. Gibbs free energies for the conformers were determined by applying thermal
correction at the B3LYP-D3(BJ)/6–31G* level, and electronic energies were evaluated at the
wB97M-V/def2-TZVP level in CPCM methanol using ORCA5.0.1. The final spectra were
obtained by averaging the simulated spectra of the conformers, weighted according to the
Boltzmann distribution theory and their relative Gibbs free energy differences (∆G).

3.5. X-ray Crystallographic Analyses

The clear, colorless crystals of compounds 5 and 6 were obtained in MeOH by slow
evaporation. X-ray crystallographic data were collected utilizing a Rigaku Oxford Diffrac-
tion Supernova Dual Source instrument (Agilent SuperNova, Santa Clara, CA, America),
specifically the Cu at Zero configuration, which was equipped with an AtlasS2 CCD detec-
tor. Measurements for compounds 5 and 6 were conducted at a temperature of 297.00(10)
K, employing Cu Kα radiation with a wavelength of 1.54184 Å. The structures of these com-
pounds were determined through direct methods facilitated by the Olex2 software package
(Olex2-1.5) [40], followed by anisotropic refinement using SHELXL-2018 [41]. The refine-
ment process was carried out using a full-matrix least-squares approach based on F2. Crys-
tallographic data (Table S1, Supporting Information) have been deposited at the Cambridge
Crystallographic Data Center under deposition numbers CCDC 2264255 (5) and 2385763 (6).
These data can be obtained free of charge via the internet at www.ccdc.cam.ac.uk (accessed
on 20 May 2023 for 5 and 23 September 2024 for 6).

3.6. Anti-Neuroinflammatory Activity

Cell viability assessment was conducted utilizing a cell counting kit-8 (CCK8, sourced
from Beyotime Biotechnology, Shanghai, China) [42]. In brief, BV-2 cells were plated at a
density of 4 × 104 cells per well in a 96-well culture plate, each well containing 100 µL of
medium, and incubated for 24 h. Subsequently, the medium in both the normal control and
lipopolysaccharide (LPS) groups was exchanged with fresh medium, whereas the sample
groups were exposed to compounds at concentrations of 10 and 50 µM. After 1 h, fresh
medium was introduced to the normal control group, while the remaining groups received
medium supplemented with 200 ng/mL of LPS. To evaluate the inherent cytotoxicity of
the compounds, BV-2 cells were also treated with the compounds in the absence of LPS.
Following a 24 h incubation, 10 µL of CCK8 solution was administered to each group,
followed by an additional 30 min incubation at 37 ◦C. Absorbance at 450 nm (A450) was
then quantified using a microplate reader (BioTek, Winooski, VT, USA).

The capacity of compounds 10 and 11 to inhibit NO production was assessed utilizing
Griess reagents [42]. Briefly, a suspension of 4 × 104 BV-2 cells in 100 µL medium was
dispensed into each well of a 96-well cell culture plate. Following a 24 h incubation period,
the medium in both the normal control and LPS-treated groups was exchanged with fresh
medium, whereas the remaining groups received medium supplemented with varying
concentrations (10 and 50 µM for inhibition rate, and 1.56, 3.12, 6.25, 12.5, 25, 50, and
100 µM for IC50) of the compounds or the positive control (minocycline). Subsequent to a
1 h incubation at 37 ◦C, fresh medium was added to the normal control group, whereas the
other groups were exposed to 200 ng/mL of LPS. After an additional 24 h of incubation,
70 µL of the culture medium was transferred to a fresh 96-well plate, and 80 µL of Griess
reagents were added to each well. Following a 10 min incubation at 37 ◦C, A540 was
determined using a microplate reader.

3.7. Antimicrobial Activities

The antimicrobial activities of compounds 1–11 were assessed using the serial-dilution
method, in accordance with previously reported literature [43–45]. Briefly, the test com-
pounds were dissolved in DMSO and subsequently introduced into the nutrient media,
comprising beef extract broth for bacterial cultures and potato dextrose broth (PDB) for
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fungal cultures, to achieve the requisite concentrations spanning 6.25 to 100.0 µg/mL.
Inoculation of bacterial and fungal cultures, each with a density of 106 cells (or spores)
per milliliter, was then carried out in the respective media. The bacterial cultures were
incubated at 37 ◦C for 24 h, whereas the fungal cultures were maintained at 28 ◦C for
48–72 h. The growth of the microorganisms was monitored by assessing the turbidity of
the nutrient media. The MIC for each compound was defined as the lowest concentration
that resulted in the complete inhibition of visible microbial growth. As positive controls
for bacterial and plant pathogenic fungi, ciprofloxacin and carbendazim were utilized,
respectively.

4. Conclusions

Six new highly oxidized 3,4-seco-terpenoids, talaroterpenoids A–F (1–6), were isolated
from the marine-derived fungus T. aurantiacus. Compounds 1 and 2 were labdane type
diterpenes featuring an unusual 6,20-γ-lactone-bridged scaffold. Talaroterpenoids D–F
(6–8) possesses an orthoester group, which was rare reported from fungi. Verruculide A (10)
and pentacecilide A (11) showed significant NO production inhibition in lipopolysaccha-
ride (LPS)-induced BV-2 cells, while talaroterpenoid C (3) exhibited moderate antifungal
activities against the plant pathogenic fungi A. alternata and P. theae Steyaert, with the MIC
value of 50 µg/mL.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md22100475/s1, the NMR data of 1–3, 5, 6, and 9, anti-neuroinflammatory activity data, 1D
(1H NMR, 13C NMR) spectra, 2D (COSY, HSQC, HMBC, and J-HMBC) spectra, and HRESIMS of new
compounds 1–3 and 6–8.
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