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Abstract: Heterologous expression has emerged as an effective strategy in activating Streptomyces
cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterolo-
gous expression of the type II PKS gene cluster spi derived from marine Streptomyces sp. HDN155000
in the chassis host Streptomyces albus J1074. The structures with absolute configurations were eluci-
dated using extensive MS and NMR spectroscopic methods, as well as theoretical NMR calculations
and electronic circular dichroism (ECD) calculations. Interestingly, compound WS009 Z (2) contains a
rare thiomethyl group, angumycinone T (4) has a novel oxo-bridge formed between C12a and C4,
and angumycinone X (3) showed cytotoxicity toward K562 and NCI-H446/EP cell lines.
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1. Introduction

Angucyclines are a significant class of aromatic polyketide compounds biosynthesized
by type II polyketide synthases (PKS) via an iterative Claisen condensation to generate
Poly-β-ketone backbones [1]. So far, over 400 members of angucyclines have been re-
ported [2] and nearly half of them showed a wide range of biological activities, such as
antimicrobial and/or anticancer, glutamate receptor agonist, gastric mucosal protectant,
and platelet aggregation-inhibiting actions [3], which continually enhanced the importance
of expanding the chemical space and obtaining novel angucycline derivatives for drug
discovery and development purposes [4].

Streptomyces, a type of actinobacteria, is a Gram-positive bacterium with high GC
genomes, primarily isolated from soil and marine sediments and other habitat samples [5–8],
also known for its ability to produce a complex variety of secondary metabolites [9–11]. As
genome sequencing technology advances, an increasing number of gene clusters (BGC) for
natural products are being discovered [12]. However, only a limited number of natural prod-
ucts have been identified to date [13], making it essential to convert genomic information
into valuable compounds for drug discovery and also commercial production. Heterologous
expression of gene clusters is an effective strategy to address this problem by enabling
the activation of cryptic gene clusters in heterologous host strains and increasing the yield
of gene clusters expressed at low levels under laboratory conditions, as well as obtaining
new analogues other than wild-type [14–16]. However, the biosynthetic capacity of an
exogenous gene cluster is greatly affected by the metabolic characteristics of the chassis cells;
for example, the competitive consuming of precursors in the native biosynthetic pathways
will stop or drastically decrease the production of the desired compound. For this reason, it
is critical to select a proper surrogate host, because different hosts influence the yield and
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abundance of compounds, even possibly producing entirely distinct compounds [17,18].
Thus far, various Streptomyces species including S. coelicolor, S. lividans, S. venezuelae, S. albus,
S. fradiae, S. roseosporus, and S. toyocaensis have been specifically engineered and frequently
employed for heterologous expression [19].

During our ongoing research into bioactive chemicals from marine-derived microor-
ganisms, six angucycline derivatives, including one novel oxaspirocyclic structure, were
obtained by heterologous expression of a type II polyketide biosynthesis gene cluster spi
in Streptomyces coelicolor A3(2) [20]. In the current study, to further explore the metabolic
capacity of the BGC of spi and acquire more angucycline analogues, this cluster was ex-
pressed in another feasible heterologous host, S. albus J1074. A total of six angucycline
derivatives and two by-products were obtained from the heterologous strains. Here, we
will describe the construction of the recombinant strain, and the characterization of the
structures obtained from the culture.

2. Results
2.1. Heterologous Expression of spi BGC in S. albus J1074

A type II PKS gene cluster spi (GenBank accession number OP009365, Figure 1a),
which is responsible for angucyclines synthesis, has been previously identified and con-
firmed from the genome of a marine-derived actinobacteria strain of Streptomyces sp.
HDN155000 [20]. To develop the metabolic potential of the spi BGC and obtain more
angucycline analogues, we decided to have spi expressed in S. albus J1074, which has been
demonstrated as a friendly surrogate host for heterologously expressing actinobacteria
sourced genes due to its faster growth, small genome size, easy genetic manipulation pro-
cedure, and clear metabolic background [21–23]. The empty vector p15A was transferred
into S. albus J1074 as the negative control (Figure 1b, trace i), and a series of new peaks were
detected by HPLC analysis (Figure 1b, trace ii), demonstrating that the spi gene cluster
was successfully activated and that changing heterologous host would greatly develop the
metabolic capacity of the spi BGC (Figure S2).
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Figure 1. (a) The spi gene cluster in comparison to homologous gene clusters that encode 
saquayamycin, landomycin, frigocyclinone, and ossamine (oss). (b) ⅰ: HPLC analysis of heterologous 
expression strain J1074::spi; ⅱ: HPLC analysis of negative control host strain S. albus J1074::p15A. 

2.2. Isolation and Purification of Compounds from Recombinant Strain 
To specifically identify the compounds, we processed a larger-scale fermentation (20 

L) of the strain J1074::spi, and ethyl acetate extraction of the fermentation product yielded 
11.3 g crude extract. Subsequent stepwise separation by column chromatography (CC) 
with SiliaSphere C18 (ODS), medium pressure liquid chromatography (MPLC) and HPLC 
of the crude extract yielded a total of eight compounds, including four undescribed an-
gucyclinone analogues: angumycinone Z (1) (7.1 mg), WS009 Z (2) (5.6 mg), angumyci-
none X (3) (6.4 mg), and angumycinone T (4) (4.7 mg). Compounds 5–8 were identified by 
comparing their 1D NMR and MS data to previously published literature (Figure 2). 
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Figure 1. (a) The spi gene cluster in comparison to homologous gene clusters that encode
saquayamycin, landomycin, frigocyclinone, and ossamine (oss). (b) i: HPLC analysis of heterologous
expression strain J1074::spi; ii: HPLC analysis of negative control host strain S. albus J1074::p15A.

2.2. Isolation and Purification of Compounds from Recombinant Strain

To specifically identify the compounds, we processed a larger-scale fermentation (20 L)
of the strain J1074::spi, and ethyl acetate extraction of the fermentation product yielded
11.3 g crude extract. Subsequent stepwise separation by column chromatography (CC) with
SiliaSphere C18 (ODS), medium pressure liquid chromatography (MPLC) and HPLC of the
crude extract yielded a total of eight compounds, including four undescribed angucyclinone
analogues: angumycinone Z (1) (7.1 mg), WS009 Z (2) (5.6 mg), angumycinone X (3) (6.4 mg),
and angumycinone T (4) (4.7 mg). Compounds 5–8 were identified by comparing their 1D
NMR and MS data to previously published literature (Figure 2).
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Figure 2. Chemical structures of 1–8.

Compound 1 was separated as a pale brown powder. Its molecular formula, C19H18O8,
was identified by HR-ESIMS m/z 373.0916 [M − H]−, indicating eleven degrees of unsatura-
tion. The signals indicated in the 1H NMR data illustrate that there are one methyl (δH 1.93,
s), three methylenes (δH 2.89, 2.06; δH 1.98, 1.60; δH 2.28, 1.74), one vinyl methine (δH 5.71, s),
three aromatic methines (δH 7.34, d, J = 8.2 Hz; δH 7.76, t, J = 8.0 Hz; δH 7.60, d, J = 7.5 Hz),
and five exchangeable protons (δH 11.10, s; δH 6.32, s; δH 6.03, s; δH 7.01, s; δH 5.66, s)
(Table 1). The 13C NMR spectrum combined with the HSQC spectrum reveals the existence
of one methyl, three sp3 methylenes, four protonated sp2 carbons, and eleven quaternary
carbons (Table 2). These data imply that compound 1 has a tetracyclic benz[a]anthracene
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skeleton belonging to the angucycline analogue [24,25], which possibly resulted from the
expression of the spi BGC. The planar structure of 1 was subsequently identified through a
comprehensive analysis of 2D NMR data (Figure 3). Firstly, the 1H-1H COSY correlations
from H-9 (δH 7.34, d, J = 8.2 Hz) via H-10 (δH 7.76, t, J = 8.0 Hz) through H-11 (δH 7.60, d,
J = 7.5 Hz) indicate the presence of a 1,2,3-trisubstituted benzene ring (ring D) (Figure 3).
The HMBC spectrum correlations from 8-OH (δH 11.10) to C-8 (δC 159.9, s), C-9 (δC 123.6,
d), and C-7a (δC 116.3, s) showed a phenolic OH at C-8. The HMBC correlations from Me-13
to C-4 (δC 41.8, t), C-3 (δC 158.2, s), C-1 (δC 192.8, s), and C-2 (δC 122.9 d), from H-2 (δH 5.71,
s) to C-4 and C-12b (δC 76.2, s), as well as from H-4 (δH 2.06, d, J = 17.7 Hz) to C-4a (δC 75.5,
s) and C-12b (δC 76.2, s) identified the presence of the A ring. The B ring was determined
via the HMBC correlations from the active exchangeable protons 12a-OH (δH 7.01) to C-12a
(δC 76.4, s), C-12 (δC 194.1, s), and C-12b (δC 76.2, s), from 12b-OH (δH 5.66) to C-4a (δC 75.5,
s), C-12a (δC 76.4, s), and C-12b, from 4a-OH (δH 6.32) to C-4a, and C-5 (δC 28.2, t), and
from 6a-OH (δH 6.03) to C-6a (δC 77.6, s) and C-12a (δC 76.4, s). The HMBC correlations
from H-11 to C-12 and C-7 (δC 200.5, s) confirmed the connection of rings B and D via ring
C. Thus, the planar structure of 1 was identified (Figure 3).

Table 1. 1H Spectroscopic Data for 1–4 in DMSO-d6 (500 MHZ).

No.
1 2 3 4

δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz)

2 5.71, s 5.70, s 5.97, s 5.83, s
4 2.89, d (18.0) 2.94, d (18.0) 3.06, d (18.0) 3.98, d (1.3)

2.06, d (18.0) 2.13, d (18.0) 2.02, d (18.0) -
5 1.98, m 2.07, m 1.76, m 1.98, m

1.60, m 1.63, m 1.35, m -
6 2.28, m 2.36, m 2.53, m 2.24, m

1.74, m 1.84, m 2.38, m 2.14, m
9 7.34, d (8.0) 7.35, d (8.0) 7.31, m 7.35, dd (8.0, 1.0)
10 7.76, t (8.0) 7.73, t (8.0) 7.69, dd (8.2, 7.6) 7.76, dd (8.0, 7.6)
11 7.60, d (8.0) 7.58, d (8.0) 7.34, m 7.34, dd (7.6, 1.0)

12b - - - 3.14, s
4a-OH 6.32, s - 2.54, s 5.59, s
6a-OH 6.03, s - - 7.05, s

12a-OH 7.01, s - - -
12b-OH 5.66, s - - -

8-OH 11.10, s 11.17, s 11.06, s 11.72, s
13 1.93, s 1.96, s 1.81, s 2.33, d (1.2)

S-CH3 - 1.67, s - -
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Table 2. 13C Spectroscopic Data for 1–4 in DMSO-d6 (125 MHZ).

No.
1 2 3 4

δC, Type δC, Type δC, Type δC, Type

1 192.8, C 193.5, C 196.7, C 195.6, C
2 122.9, CH 122.7, CH 122.6, CH 124.6, CH
3 158.2, C 159.4, C 156.1, C 162.4, C
4 41.8, CH2 41.6, CH2 38.2, CH2 85.1, CH
4a 75.5, C 75.7, C 65.1, C 81.6, C
5 28.2, CH2 28.8, CH2 25.8, CH2 32.6, CH2
6 21.6, CH2 17.9, CH2 20.1, CH2 26.8, CH2
6a 77.6, C 61.2, C 74.2, C 78.0, C
7 200.5, C 195.5, C 194.5, C 201.6, C
7a 116.3, C 115.4, C 114.7, C 114.9, C
8 159.9, C 160.0, C 159.5, C 161.1, C
9 123.6, CH 124.4, CH 123.9, CH 123.7, CH
10 136.2, CH 136.0, CH 136.4, CH 137.7, CH
11 118.9, CH 119.0, CH 118.9, CH 118.3, CH

11a 133.0, C 131.5, C 132.7, C 135.3, C
12 194.1, C 191.0, C 189.6, C 192.1, C

12a 76.4, C 78.4, C 67.5, C 92.5, C
12b 76.2, C 75.7, C 73.7, C 52.7, CH
13 23.6, CH3 23.7, CH3 23.6, CH3 26.3, CH3

S-CH3 - 13.3, CH3 - -

The absolute configuration of 1 was determined by NOESY spectrum analysis and
ECD calculations. Analyzing the NOESY spectrum data revealed a correlation between
4a-OH (δH 6.32) and 12a-OH (δH 7.01), as well as a correlation between 4a-OH and 12b-OH
(δH 5.66), while there was no correlation with 6a-OH (δH 6.03), which indicated that 4a-OH,
12a-OH, and 12b-OH were all in the same plane and 6a-OH was on the opposite side. Thus,
the relative configuration of 1 was confirmed to be (6aS*, 4aR*, 12aR*, 12bR*)-1 or (6aR*,
4aS*, 12aS*, 12bS*)-1. ECD calculation demonstrated that the latter was more compatible
with the measured values, based on which the absolute configuration of compound 1 was
confirmed as (6aR, 4aS, 12aS, 12bS)-1 (Figure 4).
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Compound 2 is an even brown amorphous powder with a molecular formula of
C20H20O7S given based on HRESIMS data. One-dimensional NMR and HSQC spectra
showed that there were two methyl (δC 23.7 and 13.3), three sp3 methylenes (δC 17.9,
28.8, and 41.6), four protonated sp2 carbons (δC 119.0, 122.7, 124.4, and 136.0), and eleven
quaternary carbons including four non-protonated sp3 carbons (δC 61.2, 75.7, 75.7, and 78.4),
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four non-protonated sp2 carbons (δC 115.4, 131.5, 159.4, and 160.0), and three carbonyls (δC
191.0, 193.5, and 195.5) (Table 2). These signals all indicate that compound 2 has a backbone
highly similar to 1. The difference lies in the high-field chemical shift of C-6 (δC 17.9, t), C-6a
(δC 61.2, s), and C-7 (δC 195.5, s), recombined with the HMBC correlation from -SCH3 (δH
1.67) to C-6a (Figure 3) and the HR-ESIMS data, which determined that the hydroxyl signal
(6a-OH) in compound 1 was replaced by the thiomethyl group (δC 13.3, q) in 2. However,
the NOESY data could not determine the relative configuration of the thiomethyl group
and three hydroxyl groups. Compounds 2 and 1 are proposed to have originated from the
same epoxide precursor (discussed later in Scheme 1), which went through a ring opening
process probably promoted by hydrolysis or methane thiol addition, hence the absolute
configuration of 2 was tentatively assigned as 6aR, 4aS, 12aS, 12bS.
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Compound 3 is a yellowish solid powder. HR-ESIMS analysis established the chemical
formula as C19H16O7, with twelve degrees of unsaturation. The 1H and 13C NMR spectra
revealed that 3 contains one methyl, three methylene, four methenyl, and 11 quaternary
carbon signals (including three carbonyl and six aromatic quaternary carbons). The 1H
and 13C NMR spectra showed that 3 was highly similar to angumycinone A [26], with
the only difference being the low-field chemical shift at C-12a (δC 67.5), from which it
can be deduced that there is hydroxylation at this position, thus determining the planar
structure of compound 3. Nevertheless, the relative configuration was unable to be defined
by the NOESY data. The stereo-structure was determined based on NMR calculations,
DP4+ analysis, and ECD calculations, primarily NMR calculations and DP4+ probability
analyses of the four possible configurations (6aS*, 12aR*, 12bS*, 4aR*)-3a, (6aS*, 12aR*,
12bR*, 4aS*)-3b, (6aS*, 12aR*, 12bS*, 4aS*)-3c, and (6aS*, 12aR*, 12bR*, 4aR*)-3d at the
B3LYP/6-311+G(d,p) level using PCM model in DMSO. The calculated results for 3d
(R2 = 0.9958) were more consistent with the experimental data than others (Figure S3).
Furthermore, the DP4+ probability calculations identified 3d with a 99.90% probability
(Table S7). The absolute configuration of 3 was then determined to be 6aS,12aR,12bR,4aR
through ECD calculation at the B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) level was compared
with the experimental ECD curve (Figure 5).
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Compound 4 is a brown amorphous powder with molecular formula C19H16O7 de-
duced from HR-ESIMS, indicating 12 degrees of unsaturation. The 1H NMR spectrum of 4
displayed one methyl (δH 2.33, d, J = 1.2 Hz), two methylenes (δH 1.98; δH 2.24, 2.14), five
methines (δH 3.98, d, J = 1.3 Hz; δH 3.14, s; δH 7.35, dd, J = 8.6, 1.0 Hz; δH 7.76, dd, J = 8.3,
7.6 Hz; δH 7.34, d, J = 7.5, 1.0 Hz), a vinyl methine (δH 5.83, s), and three exchangeable pro-
tons (δH 5.59, s; δH 7.05, s; δH 11.72, s) (Table 1). The 13C NMR and HSQC spectrum showed
that 4 contains one methyl (δC 26.3, q), two methylene (δC 26.8 and 32.6), six methines
(δC 52.7, 85.1, 118.3, 123.7, 124.6, and 137.7), and ten quaternary carbons, including three
non-protonated sp3 carbons (δC 78.0, 81.6 and 92.5), four non-protonated sp2 carbons (δC
114.9, 135.3, 161.1, and 162.4), and three carbonyls (δC 192.1, 195.6, and 201.6) (Table 2). The
planar structure of 4 was then identified via a detailed analysis of 2D NMR (Figure 3). The
A ring was determined by the HMBC correlations from H-2 (δH 5.83, s) to C-1 (δC 195.6),
C-4 (δC 85.1), and C-12b (δC 52.7), from 13-CH3 (δH 2.33, d) to C-2 (δC 124.6), C-3 (δC 162.4),
C-4, and from H-4 (δH 3.98, d, J = 1.3 Hz) to C-4a (δC 81.6) and C-12b. The 1H-1H COSY
correlations from H-9 (δH 7.35, dd, J = 8.6, 1.0 Hz) via H-10 (δH 7.76, dd, J = 8.3, 7.6 Hz)
through H-11(δH 7.34, dd, J = 7.5, 1.0 Hz) suggested the presence of the 1,2,3-trisubstituted
benzene ring (ring D). HMBC correlation analyses from H-9 to C-7a (δC 114.9) and C-7 (δC
201.6), from H-10 to C-11a (δC 135.3) and C-8 (δC 161.1), and from H-11 to C-12 (δC 192.1)
extend ring D to ring C. Further analysis of the HMBC correlations from H-5 (δH 1.98, m) to
C-6a (δC 78.0) and C-12b and from H-6 (δH 2.14) to C-12a (δC 92.5) determined the presence
of ring B, closing the angular skeleton of compound 4. HMBC correlations from the active
exchangeable protons 4a-OH (δH 5.59) to C-4a, C-4 and C-5 (δC 32.6), from 6a-OH (δH 7.05,
s) to C-6a, C-7 and C-6, together with the fact that there are 12 degrees of unsaturation,
suggests that another unsaturation should be the presence of an epoxide between C-12a
and C-4 (δC 85.1). Thus, the planar structure of 4 was determined.

The stereo configuration of compound 4 was determined by NOESY spectral anal-
ysis and ECD calculations. The NOESY spectrum analysis revealed that H-12b (δH 3.14)
correlates with 4a-OH and 6a-OH, indicating that H-12b, 4a-OH, and 6a-OH are in the
same plane, resulting in only two possible structures: (4R*, 4aR*, 6aS*, 12aS*, 12bS*)-4 and
(4S*, 4aS*, 6aR*, 12aR*, 12bR*)-4. Finally, the absolute configuration of 4 was determined
to be 4S,4aS,6aR,12aR based on the results of ECD calculations (Figure 6). Angucyclines
carrying epoxide modifications on the skeletons were frequently discovered in nature [27],
however, this is the first example of angucycline derivative with the epoxidation-bridged
C-12a and C-4.
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Based on the comparison of NMR and MS data with those reported in the literature,
the six known compounds isolated in this study were identified as WP 3688-2 (5) [28],
gephyromycin (6) [29,30], SEK43 (7) [31], and SEK15 (8) [32].

All new angucyclines were evaluated for cytotoxicity against L-02, MDA-MB-231,
K562, ASPC-1, and NCI-H446/EP cell lines in vitro. Adriamycin was used as the positive
control. Compound 3 showed cytotoxicity toward five cancer cell lines and especially
strongly inhibited K562 and NCI-H446/EP cell lines with IC50 values of 11.72 and 8.92 µM,
respectively. It is worth mentioning that both compounds 3 and 4 possess an oxygen bridge
and two hydroxyl groups in the structure; however, compound 4 did not display obvious
cytotoxicity, which indicated that the oxidative modifications on rings A and B are very
important for their mode of actions.

2.3. Plausible Biosynthetic Pathways for Compounds 1–8 Produced by the Mutant Strain

The plausible biogenetic pathway of compounds 1–8 was determined based on the
bioinformatics analyses (Table S2) and literature surveys. First, the polyketide chain was
generated by an iterative Claisen condensation reaction of a starting unit malonyl-CoA
and nine extension unit malonyl-CoA under the action of the minimal PKS SpiA, SpiB
and SpiC, and was subsequently folded by cyclase SpiE and SpiD to form UWM6 [33,34],
a characteristic intermediate of angucyclines; however, if it is spontaneously folded, the
by-products 7 and 8 will be produced. Thereafter, UWM6 can achieve the oxidation of
C-12 catalyzed by monooxygenase SpiH2 [35] and subsequently undergo reduction at C-6,
dehydration and enoyl reduction at C-5 and C-6, and oxidation at C-12b to produce 5,
which could be converted into compounds 1 and 2 via a 6a, 12a-epoxide intermediate. The
methanethiol residue of 2 was probably derived from methionine which was incorporated
via methane thiol addition to the epoxide. In alternative routes, UWM6 may undergo
multi-step catalysis including oxidation, dehydration and oxo-bridge generation to give 3,
4 and 6 in the presence of relevant endogenous enzymes of the heterologous host.

3. Materials and Methods
3.1. General Experimental Procedures

High-quality actinobacteria genomes were obtained using methods previously de-
scribed in the literature [36,37]. Polymerase chain reaction (PCR) was performed using
2 × Phanta Flash Master Mix (P510, Vazyme, Nanjing, China). PCR analyses were con-
ducted with a 2 × Hieff® PCR Master Mix (with dye, Yeasen, Shanghai, China). Shanghai
Sangon DNA Technologies (Shanghai, China) offered custom oligonucleotide synthesis
and fragment sequencing services.
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NMR spectra were measured on an Agilent 500 MHz DD2 spectrometer with tetram-
ethylsilane (TMS) as an internal standard. Optical rotations in MeOH were recorded on a
JASCO-1020 digital polarimeter. A Thermo Scientific LTQ Orbitrap XL mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA) was used to collect HRESIMS data. UV-vis
spectra were acquired on the UFLC system (Shimadzu, Tokyo, Japan). The JASCO J-715
spectropolarimeter was used to record the ECD spectra. A UFLC system (Shimadzu, Tokyo,
Japan) with a C18 column (Shimadzu, 4.6 mm × 150 mm, 5 µm, 1 mL/min) coupled to an
LCMS-2020 mass spectrometer (Shimadzu, Tokyo, Japan) was used to perform LC-MS anal-
yses. Column chromatography (CC) was performed with SiliaSphere C18 (Octadecylsilyl,
ODS) monomeric (SiliCycle Inc., Quebec, QC, Canada, 50 µm, 120 A), and Sephadex LH-20
(GE Healthcare, Uppsala, Sweden). MPLC was performed using a C18 column (Welch
Materials Inc., Ultimate® XB-C18, 21.2 mm × 250 mm, 5 µm, 10 mL/min).

Prediction and analysis of gene clusters using the online tool antiSMASH. DNA and
protein sequence homology analysis using the online tool NCBI.

3.2. Materials and Culture Conditions

Streptomyces sp. HDN155000 was obtained from a marine sediment sample collected
from the South China Sea at coordinates 125◦28.550′ E and 29◦1.618′ N. The strain was iden-
tified via genome sequencing and submitted to GenBank (accession number MN822699).
S. albus J1074 was grown for 6 days at 28 ◦C on MS plates with 2% mannitol, 2% soya
bean flour, and 1.5% agar. For genome extraction, the strain was inoculated into 250mL
Erlenmeyer flasks containing 50 mL of TSB liquid medium (1.7% tryptone, 0.3% peptone,
0.25% glucose, 0.25% KH2PO4, and 0.3% NaCl) for 4 days.

Escherichia coli strains DH10B as the general host for cloning and E. coli ET12567/
pUZ8002 as the donor in intergeneric conjugation were cultured on Luria–Bertani plates or
liquid medium (1% tryptone, 0.5% yeast extract, and 1% NaCl) at 37 ◦C.

3.3. S. albus J1074 Intergeneric Conjugation

The intergeneric conjugation between E. coli and S. albus J1074 was performed as
previously described with some modifications [38]. The culture of the donor E. coli
ET12567/pUZ8002 containing the heterologous vector p15A::spi was incubated with ap-
propriate antibiotics LB liquid culture medium (containing 50 mg/L kanamycin, 15 mg/L
chloramphenicol, and 50 mg/L apramycin,) until the optical density at 600 nm (OD600) of
0.6–0.8. Bacteriophages were collected at 9000 rpm, rinsed three times with 1 mL 2× YT
medium [39] to remove antibiotics, and then resuspended in 0.2 mL of 2× YT (containing
10 mM MgCl2) as the donor cells. S. albus J1074 spores were washed three times and
suspended in 2× YT broth at a concentration of 109 per mL. Subsequently, spores obtained
in the previous step were heated at 50 ◦C for 10 min to serve as recipients. Donor and
recipient cells were mixed evenly on MS plates (containing 30 mM MgCl2 and 30 mM
CaCl2), and cultivated for 18 h at 30 ◦C. After incubation, plates were covered with 1 mL of
water with apramycin (50 µg/mL) and nalidixic acid (50 µg/mL) and then kept at 30 ◦C
for 4–6 days until exconjugants appeared. The conjugation frequency reached 7.8 × 10−5.

3.4. Fermentation and LC/LC-MS Analysis

Heterologous expression strains and negative control strains were cultured for 7 days
at 28 ◦C in 500 mL Erlenmeyer flasks with 100 mL of M1 medium (2 g/L peptone, 4 g/L
yeast extract, 10 g/L starch), after which the culture products were collected and extracted
three times with ethyl acetate. The organic phase was evaporated, and the residue was
re-dissolved in 150 µL MeOH, which was analyzed using HPLC (C18 column, Shimadzu,
4.6 mm × 150 mm, 5 µm, 1 mL/min), revealing a considerable change in metabolite syn-
thesis in the heterologous expression strain J1074::spi (Figure 1).

For the isolation of secondary metabolites, we scaled up cultures with the 500 mL
Erlenmeyer flask (total 20 L) according to the conditions used for small-scale analyses. The
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fermentation supernatant was extracted with ethyl acetate three times and then evaporated
to dryness, obtaining a total of 11.3 g of crude product.

3.5. Extraction, Isolation, and Purification

The crude extract was eluted using a step gradient of MeOH-H2O using metabolite
detection on a C18 column, yielding seven subfractions (Fr.1-Fr.7, 30% to 100%). Fr.2
was purified by semi-preparative HPLC (33:67 MeOH-H2O, 3 mL/min) to generate com-
pounds 1 (7.1 mg, tR = 15.1 min) and 6 (3.1 mg, tR = 16.7 min). Fr.3 was purified by a
semi-preparative C18 HPLC column (47:53 MeOH-H2O), producing compound 3 (6.4 mg,
tR = 14.7 min). Fr.4 was separated using preparative C18 HPLC column (58:42 MeOH-
H2O) to yield two sub-fractions (Fr.4.1 and Fr.4.2). Then, Fr.4.1 and Fr.4.2 were purified by
semi-preparative HPLC (53:47, 60:40, MeOH-H2O, 3 mL/min) to provide compounds 4
(4.7 mg, tR = 18.1 min), 5 (3.4 mg, tR = 20.7 min), 7 (3.8 mg, tR = 16.9 min), and 8 (3.0 mg,
tR = 19.4 min), respectively. Fr.5 was applied to a Sephadex LH-20 column and eluted with
methanol, obtaining compound 2 (5.6 mg).

Angumycinone Z (1): pale brown powder, [α]25
D + 19.5 (c 0.03, CH3OH); UV (DAD)

λmax 208 nm, 250 nm, 327 nm, 386 nm; CD (MeOH) λmax (∆ε) 210 (−19.06), 243 (+33.91),
283 (−4.88), 302 (+3.13), 336 (−3.39), 376 (+5.21); 1H and 13C NMR data, see Tables 1 and 2;
negative ion HRESIMS m/z 373.0916 [M − H]− (calcd. for C19H17O7

−, 373.0928).
WS009 Z (2): even brown amorphous powder, [α]25

D + 55.8 (c 0.03, CH3OH); UV (DAD)
λmax 249, 302, 352; 1H and 13C NMR data, see Tables 1 and 2; positive ion HRESIMS m/z
405.0996 [M + H]+ (calcd. for C20H21O7S+, 405.1003).

Angumycinone X (3): yellowish, solid powder, [α]25
D + 79.1 (c 0.03, CH3OH); UV (DAD)

λmax 206, 238, 309, 364; CD (MeOH) λmax (∆ε) 211 (−12.77), 242 (+25.31), 281 (−3.28), 300
(+2.63), 334 (−2.96), 372 (+4.21); 1H and 13C NMR data, see Tables 1 and 2; negative ion
HRESIMS m/z 355.0821 [M − H]− (calcd. for C19H15O7

−, 355.0823).
Angumycinone T (4): brown amorphous powder, [α]25

D + 31.0 (c 0.03, CH3OH); UV
(DAD) λmax 206, 236, 298, 350; CD (MeOH) λmax (∆ε) 207 (+3.30), 227 (+19.67), 243 (−11.30),
274 (+14.31), 332 (−2.67), 370 (+2.94); 1H and 13C NMR data, see Tables 1 and 2; negative
ion HRESIMS m/z 355.0815[M − H]− (calcd. for C19H15O7

−, 355.0823)

3.6. NMR and ECD Calculations

Conformation searches based on molecular mechanics with MMFF force fields were
performed for stereoisomers to obtain stable conformers. The Gaussian 16 programme
package [40] used the density functional theory (DFT) approach at the B3LYP/6-31G(d)
level to optimize all conformers. Gauge Independent Atomic Orbital (GIAO) calculations of
their 1H and 13C NMR chemical shifts were performed utilizing density functional theory
(DFT) at the mPW1PW91/6-311+G(d,p) level with the PCM model in DMSO [41]. The
calculated NMR data of these conformers were averaged using the Boltzmann distribution
theory and their respective Gibbs free energy. The 1H and 13C NMR chemical shifts for
TMS were computed using the same methodology and served as a reference. Following
calculation, the experimental and calculated data were compared using linear correlation
coefficients (R2) and the improved probability DP4+ technique [42].

All stable conformers were further optimized at the B3LYP/6-31G(d)-GD3BJ level
with the Gaussian 16 programme package. The ECD was computed using time-dependent
density functional theory (TDDFT) at a B3LYP/6-311+G(d,p) level with the IEFPCM model.
The calculated ECD curves were all generated using the SpecDis 1.71 computer package
and the calculated ECD data of all conformers were Boltzmann averaged using Gibbs free
energy [43].

3.7. Cytotoxicity Assay

The cytotoxic assay involved five human cancer cell lines: K562 (using the MTT
method), ASPC-1, NCI-H446/EP, MDA-MB-231, and L-02 (using the SRB method). Adri-
amycin (ADM) was employed as a positive control. The detailed procedures for biological
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testing were conducted as previously stated [20,44]. The cancer cell lines are purchased
from the National Collection of Authenticated Cell Cultures of China (Shanghai).

4. Conclusions

Secondary metabolites from actinobacteria have long been a valuable source of natural
medicines [45]. However, the success rate for identifying actinobacteria-derived novel com-
pounds is limited by gene cluster silencing or low expression under laboratory conditions,
especially for micro-organisms from special habitats such as marine actinobacteria. In
this study, the type II PKS gene cluster spi derived from Streptomyces sp. HDN155000 was
successfully heterologously expressed in S. albus J1074, and a total of eight compounds were
obtained through further fermentation, isolation, and purification. Based on the literature
and our previous study, we proposed a plausible biosynthetic pathway leading to those
new compounds [4,34]. Generally, compounds 3–6 were directly produced from UWM6
by a multi-step enzymatic reaction involving oxidation, dehydration, enoyl reduction, etc.
Compounds 1 and 2 were derived from compound 5 via dehydrogenation, hydrolysis,
methane thiol addition, and other processes. Angucyclines are a chemical family that has
been extensively explored in actinobacteria since the first structure was described in 1965 in
Streptomyces rimosus [2]. More than 400 cases have been recorded, with a range of skeleton
modifications; however, compound 4 is the first example of oxidized angucyclines with
an oxo-bridge between C-12a and C-4 [3]. Compound 3 showed cytotoxic to the K562 and
NCI-H446/EP cell lines, providing an alternative lead compound for the study of human
chronic myeloid leukemia and lung cancer. The above data enrich our understanding of
the type II PKS pathways and related aromatic products, and also indicate heterologous
expression as a promising strategy for maximizing the metabolic capability of Streptomyces.
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