New 24-Membered Macrolactines from an Arctic Bacterium Bacillus amyloliquefaciens SCSIO 41392 and Their Anti-Pathogenicity Evaluation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Bacteria Strain
3.3. Fermentation and Extraction
3.4. Isolation and Purification
3.5. P. aeruginosa QS Inhibition Assay
3.6. Pyocyanin Quantification Assay
3.7. Biofilm Formation Assay
3.8. Pyoverdine Production Assay
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zemp, M.; Haeberli, W.; Hoelzle, M.; Paul, F. Alpine glaciers to disappear within decades? Geophys. Res. Lett. 2006, 33, L13504. [Google Scholar] [CrossRef]
- Zucconi, L.; Buzzini, P. Editorial: Microbial Communities of Polar and Alpine Soils. Front. Microbiol. 2021, 12, 713067. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, Q.Y.; Cong, M.J.; Pang, X.Y.; Chen, B.; Liu, Y.H.; Liao, L.; Wang, J.F. Cytotoxic phenazine and antiallergic phenoxazine alkaloids from an arctic Nocardiopsis dassonvillei SCSIO 502F. Nat. Prod. Bioprospecting 2023, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhao, B.; Wang, L.; Liao, L.; Song, L.; Wang, X.; Liu, G. Complete genome of Nocardiopsis dassonvillei strain NOCA502F isolated from sediment of the Arctic Ocean. Mar. Genom. 2017, 34, 27–29. [Google Scholar] [CrossRef]
- Lu, X.; Xu, Q.; Liu, X.; Cao, X.; Ni, K.; Jiao, B. Marine Drugs—Macrolactins. Chem. Biodivers. 2008, 5, 1669–1674. [Google Scholar] [CrossRef]
- Karpinski, T.M. Marine Macrolides with Antibacterial and/or Antifungal Activity. Mar. Drugs 2019, 17, 241. [Google Scholar] [CrossRef]
- Nagao, T.; Adachi, K.; Sakai, M.; Nishijima, M.; Sano, H. Novel macrolactins as antibiotic lactones from a marine bacterium. J. Antibiot. 2001, 54, 333–339. [Google Scholar] [CrossRef]
- Schneider, K.; Chen, X.H.; Vater, J.; Franke, P.; Nicholson, G.; Borriss, R. Macrolactin is the Polyketide Biosynthesis Product of the pks2 Cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 2007, 70, 1417–1423. [Google Scholar] [CrossRef]
- De Kievit, T.R.; Gillis, R.; Marx, S.; Brown, C. Quorum-Sensing Genes in Pseudomonas aeruginosa Biofilms: Their Role and Expression Patterns. Appl. Environ. Microbiol. 2001, 67, 1865–1873. [Google Scholar] [CrossRef]
- De Kievit, T.R.; Iglewski, B.H. Bacterial Quorum Sensing in Pathogenic Relationships. Infect. Immun. 2000, 68, 4839–4849. [Google Scholar] [CrossRef]
- Moreno-Gámez, S.; Hochberg, M.E.; Doorn, G.S.V. Quorum sensing as a mechanism to harness the wisdom of the crowds. Nat. Commun. 2023, 14, 3415. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015, 6, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Lyczak, J.B.; Cannon, C.L.; Pier, G.B. Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect. 2000, 2, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Strateva, T.; Mitov, I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann. Microbiol. 2011, 61, 717–732. [Google Scholar] [CrossRef]
- Ellermann, M.; Arthur, J.C. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic. Biol. Med. 2017, 105, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Kirienko, D.R.; Revtovich, A.V.; Kirienko, N.V. A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence. mSphere 2016, 1, e00217-16. [Google Scholar] [CrossRef]
- Meyer, J.M.; Neely, A.; Stintzi, A.; Georges, C.; Holder, I.A. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 1996, 64, 518–523. [Google Scholar] [CrossRef]
- Harding, C.J.; Bischoff, M.; Bergkessel, M.; Czekster, C.M. An anti-biofilm cyclic peptide targets a secreted aminopeptidase from P. aeruginosa. Nat. Chem. Biol. 2023, 19, 1158–1166. [Google Scholar] [CrossRef]
- Imperi, F.; Massai, F.; Facchini, M.; Frangipani, E.; Visaggio, D.; Leoni, L.; Bragonzi, A.; Visca, P. Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc. Natl. Acad. Sci. USA 2013, 110, 7458–7463. [Google Scholar] [CrossRef]
- Cong, M.; Ren, X.; Song, Y.; Pang, X.; Tian, X.; Liu, Y.; Guo, P.; Wang, J. Ochrathinols A and B, two pairs of sulfur-containing racemates from an Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702 inhibit LPS-induced pro-inflammatory cytokines and NO production. Phytochemistry 2023, 208, 113593. [Google Scholar] [CrossRef]
- Li, Y.; Cong, M.; Wang, W.; Zhang, X.; Zhu, Y.; Song, Y.; Zhang, W.; Xiao, H.; Liu, Y.; Zhang, C.; et al. An Enzymatic Carbon-Carbon Bond Cleavage and Aldol Reaction Cascade Converts an Angular Scaffold into the Linear Tetracyclic Core of Ochraceopones. Angew. Chem. Int. Ed. 2024, 63, e202403365. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, X.; Qin, X.; Tian, X.; Liao, L.; Li, K.; Zhou, X.; Yang, X.; Wang, F.; Zhang, T. Antiviral Merosesquiterpenoids Produced by the Antarctic Fungus Aspergillus ochraceopetaliformis SCSIO 05702. J. Nat. Prod. 2016, 79, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Dong, B.; Peng, Y.; Peng, C.; Wang, M.; Li, X. Pharmacodynamics assessment of β-carboline from the roots of Psammosilene tunicoides as analgesic compound. J. Ethnopharmacol. 2022, 291, 115163. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, L.; Wang, C.; Liu, H.; Hao, J.; Zhu, W. Alkaloids produced by the coral fungus. Aspergillus sp. OUCMDZ-3658. Chin. Mar. Drugs 2015, 34, 11. [Google Scholar]
- Jae Shin, H.; Shahidullah Tareq, F.; Hye Kim, J.; Ah Lee, M.; Lee, H.-S.; Lee, Y.-J.; Lee, J.-S. Glycosylated Methoxy-Macrolactins from a Marine Sediment Bacterium Bacillus subtilis. Heterocycles 2013, 87, 307. [Google Scholar] [CrossRef]
- Gao, C.; Chen, X.; Yu, L.; Jiang, L.; Pan, D.; Jiang, S.; Gan, Y.; Liu, Y.; Yi, X. New 24-Membered Macrolactins Isolated from Marine Bacteria Bacillus siamensis as Potent Fungal Inhibitors against Sugarcane Smut. J. Agric. Food Chem. 2021, 69, 4392–4401. [Google Scholar] [CrossRef]
- Rychnovsky, S.D.; Skalitzky, D.J.; Pathirana, C.; Jensen, P.R.; Fenical, W. Stereochemistry of the macrolactins. J. Am. Chem. Soc. 1992, 23, 671–677. [Google Scholar] [CrossRef]
- Mondol, M.A.; Tareq, F.S.; Kim, J.H.; Lee, M.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Cyclic ether-containing macrolactins, antimicrobial 24-membered isomeric macrolactones from a marine Bacillus sp. J. Nat. Prod. 2011, 74, 2582–2587. [Google Scholar] [CrossRef]
- Bock, K.; Pedersen, C. Carbon-13 Nuclear Magnetic Resonance Spectroscopy of Monosaccharides. Adv. Carbohyd. Chem. Bi. 1983, 41, 27–66. [Google Scholar]
- Mansoor, T.A.; Shinde, P.B.; Luo, X.; Hong, J.; Lee, C.O.; Sim, C.J.; Son, B.W.; Jung, J.H. Renierosides, cerebrosides from a marine sponge Haliclona (Reniera) sp. J. Nat. Prod. 2007, 70, 1481–1486. [Google Scholar] [CrossRef]
- Mondol, M.A.; Kim, J.H.; Lee, H.S.; Lee, Y.J.; Shin, H.J. Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp. Bioorg. Med. Chem. Lett. 2011, 21, 3832–3835. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Tang, Y.; Knight, J.C. Antineoplastic agents. 545. Isolation and structure of turbostatins 1–4 from the Asian marine mollusk Turbo stenogyrus. J. Nat. Prod. 2005, 68, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Butcher, R.A.; Schroeder, F.C.; Fischbach, M.A.; Straight, P.D.; Kolter, R.; Walsh, C.T.; Clardy, J. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 2007, 104, 1506–1509. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Vater, J.; Piel, J.; Franke, P.; Scholz, R.; Schneider, K.; Koumoutsi, A.; Hitzeroth, G.; Grammel, N.; Strittmatter, A.W. Structural and Functional Characterization of Three Polyketide Synthase Gene Clusters in Bacillus amyloliquefaciens FZB 42. J. Bacteriol. 2006, 188, 4024–4036. [Google Scholar] [CrossRef]
- Duan, X.; Boo, Z.Z.; Chua, S.L.; Chong, K.H.C.; Long, Z.; Yang, R.; Zhou, Y.; Janela, B.; Chotirmall, S.H.; Ginhoux, F.; et al. A Bacterial Quorum Sensing Regulated Protease Inhibits Host Immune Responses by Cleaving Death Domains of Innate Immune Adaptors. Adv. Sci. 2023, 10, e2304891. [Google Scholar] [CrossRef]
- Perez-Martinez, I.; Haas, D. Azithromycin Inhibits Expression of the GacA-Dependent Small RNAs RsmY and RsmZ in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2011, 55, 3399–3405. [Google Scholar] [CrossRef]
- Frangipani, E.; Visaggio, D.; Heeb, S.; Kaever, V.; Camara, M.; Visca, P.; Imperi, F. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ. Microbiol. 2014, 16, 676–688. [Google Scholar] [CrossRef]
- Sonnleitner, E.; Haas, D. Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl. Microbiol. Biotechnol. 2011, 91, 63–79. [Google Scholar] [CrossRef]
- Mojid Mondol, M.A.; Shahidullah Tareq, F.; Hye Kim, J.; Ah Lee, M.; Lee, H.S.; Seok Lee, J.; Lee, Y.J.; Jae Shin, H. New antimicrobial compounds from a marine-derived Bacillus sp. J. Antibiot. 2013, 66, 89–95. [Google Scholar] [CrossRef]
- Ikarashi, K.; Kutsuna, R.; Tomida, J.; Kawamura, Y.; Morita, Y. Overexpression of the MexXY Multidrug Efflux System Correlates with Deficient Pyoverdine Production in Pseudomonas aeruginosa. Antibiotics 2021, 10, 658. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 167.8, C | 168.0, C | 167.8, C | |||
2 | 117.5, CH | 5.56, d (11.2) | 117.7, CH | 5.53, d (11.4) | 117.5, CH | 5.56, d (11.3) |
3 | 146.0, CH | 6.63, t (11.2) | 145.5, CH | 6.59, dd (15.4, 11.4) | 145.9, CH | 6.62, t (11.3) |
4 | 130.1, CH | 7.34, dd (15.3, 11.3) | 130.4, CH | 7.29, t (15.4) | 130.2, CH | 7.31–7.37, m |
5 | 142.1, CH | 6.15–6.18, m | 141.7, CH | 6.08–6.12, dd (15.4, 4.8) | 142.0, CH | 6.16, s |
6 | 41.1, CH2 | 2.37, m | 40.6, CH2 | 2.46, m | 41.0, CH2 | 2.38, m |
2.58–2.67, m | 2.62, m | 2.59, m | ||||
7 | 80.3, CH | 4.30, d (7.7) | 79.8, CH | 4.34, t (6.8) | 80.2, CH | 4.29, d (7.9) |
8 | 133.8, CH | 5.62, dd (15.4, 8.3) | 133.6, CH | 5.61, dd (11.1, 7.7) | 133.8, CH | 5.67, dd (15.3, 7.7) |
9 | 130.1, CH | 6.52, dd (15.4, 11.1) | 130.0, CH | 6.55, dd (11.1, 4.2) | 130.2, CH | 6.51, dd (15.3, 4.3) |
10 | 130.7, CH | 6.13, d (11.1) | 130.6, CH | 6.14, d (11.1) | 130.7, CH | 6.13, d (10.6) |
11 | 129.7, CH | 5.62, m | 129.6, CH | 5.59, m | 129.6, CH | 5.64, m |
12 | 34.7, CH2 | 2.45, m | 34.8, CH2 | 2.37, m | 34.6, CH2 | 2.43, m |
2.33, m | 2.33, m | |||||
13 | 72.3, CH | 3.69, dd (7.1, 5.3) | 71.8, CH | 3.76, d (5.7) | 72.3, CH | 3.69, m |
14 | 40.5, CH2 | 2.26, tq (14.3, 7.6) | 40.1, CH2 | 2.26, dd (14.3, 7.5) | 40.3, CH2 | 2.24, m |
15 | 131.8, CH | 5.70, dt (15.2, 7.6) | 131.5, CH | 5.72, dt (15.2, 7.5) | 131.1, CH | 5.69, m |
16 | 133.4, CH | 6.08, dd (15.2, 10.3) | 133.4, CH | 6.05, dd (15.2, 10.5) | 133.7, CH | 6.04, t (13.0) |
17 | 135.1, CH | 6.19, d (10.2) | 134.7, CH | 6.17, d (15.3) | 132.2, CH | 6.13, d (10.8) |
18 | 132.7, CH | 5.31, q (8.5) | 132.5, CH | 5.35, dd (15.3, 7.9) | 135.5, CH | 5.50, m |
19 | 83.9, CH | 3.51, dd (15.0, 6.6) | 83.3, CH | 3.59, dd (13.2, 7.6) | 73.8, CH | 3.97, d (6.9) |
20 | 35.5, CH2 | 1.53, dtt (13.4, 10.1, 5.7) | 35.8, CH2 | 1.47, dt (13.7, 7.3) | 36.9, CH2 | 1.55, m |
21 | 22.3, CH2 | 1.36, m | 22.0, CH2 | 1.34–1.38, q (7.7) | 22.5, CH2 | 1.39, m |
22 | 36.9, CH2 | 1.63, m | 36.8, CH2 | 1.62, m | 37.3, CH2 | 1.66, m |
23 | 70.6, CH | 5.03, ddd (9.6, 6.4, 3.3) | 71.8, CH | 5.01, ddd (9.9, 6.4, 4.0) | 70.7, CH | 5.05, d (6.3) |
24 | 21.0, CH3 | 1.22, d (6.3) | 20.8, CH3 | 1.24, d (6.3) | 21.0, CH3 | 1.23, m |
1′ | 101.2, CH | 4.31, d (7.8) | 101.5, CH | 4.33, d (7.8) | 101.2, CH | 4.31, d (7.8) |
2′ | 75.0, CH | 3.23, d (7.9) | 75.0, CH | 3.23, d (7.9) | 75.0 CH | 3.24, d (8.1) |
3′ | 77.9, CH | 3.35–3.37, m | 77.9, CH | 3.33, d (5.1) | 77.9, CH | 3.32, m |
4′ | 71.5, CH | 3.32, m | 71.6, CH | 3.32, d (5.1) | 71.5, CH | 3.34, m |
5′ | 75.2, CH | 3.35–3.37, m | 75.3, CH | 3.38, t (6.9) | 75.3, CH | 3.36, m |
6′ | 64.6, CH2 | 4.24, dd (11.7, 4.3) | 64.8, CH2 | 4.24, dd (11.8, 5.6) | 64.6, CH2 | 4.24, d (10.0) |
4.40, d (11.7) | 4.39, dd (11.8, 2.1) | 4.40, d (11.6) | ||||
7′ | 174.5, C | 174.3, C | 174.6, C | |||
8′ | 30.8, CH2 | 2.62, m | 30.5, CH2 | 2.62, m | 30.7, CH2 | 2.62, m |
9′ | 31.2, CH2 | 2.56, m | 30.7, CH2 | 2.58, m | 30.7, CH2 | 2.62, m |
10′ | 175.2, C | 176.7, C | 176.8, C | |||
19-OCH3 | 56.3 | 3.21, s | 56.3 | 3.21, s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhou, Y.; Cong, M.; Deng, S.; Chen, Y.; Pang, X.; Liu, Y.; Liao, L.; Yang, L.; Wang, J. New 24-Membered Macrolactines from an Arctic Bacterium Bacillus amyloliquefaciens SCSIO 41392 and Their Anti-Pathogenicity Evaluation. Mar. Drugs 2024, 22, 484. https://doi.org/10.3390/md22110484
Song Y, Zhou Y, Cong M, Deng S, Chen Y, Pang X, Liu Y, Liao L, Yang L, Wang J. New 24-Membered Macrolactines from an Arctic Bacterium Bacillus amyloliquefaciens SCSIO 41392 and Their Anti-Pathogenicity Evaluation. Marine Drugs. 2024; 22(11):484. https://doi.org/10.3390/md22110484
Chicago/Turabian StyleSong, Yue, Yachun Zhou, Mengjing Cong, Shengyi Deng, Yushi Chen, Xiaoyan Pang, Yonghong Liu, Li Liao, Liang Yang, and Junfeng Wang. 2024. "New 24-Membered Macrolactines from an Arctic Bacterium Bacillus amyloliquefaciens SCSIO 41392 and Their Anti-Pathogenicity Evaluation" Marine Drugs 22, no. 11: 484. https://doi.org/10.3390/md22110484
APA StyleSong, Y., Zhou, Y., Cong, M., Deng, S., Chen, Y., Pang, X., Liu, Y., Liao, L., Yang, L., & Wang, J. (2024). New 24-Membered Macrolactines from an Arctic Bacterium Bacillus amyloliquefaciens SCSIO 41392 and Their Anti-Pathogenicity Evaluation. Marine Drugs, 22(11), 484. https://doi.org/10.3390/md22110484