
Citation: Song, Y.; Zhou, Y.; Cong, M.;

Deng, S.; Chen, Y.; Pang, X.; Liu, Y.;

Liao, L.; Yang, L.; Wang, J. New

24-Membered Macrolactines from an

Arctic Bacterium Bacillus

amyloliquefaciens SCSIO 41392 and

Their Anti-Pathogenicity Evaluation.

Mar. Drugs 2024, 22, 484. https://

doi.org/10.3390/md22110484

Academic Editors: Bin-Gui Wang and

Siwen Niu

Received: 1 October 2024

Revised: 21 October 2024

Accepted: 25 October 2024

Published: 28 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

marine drugs 

Article

New 24-Membered Macrolactines from an Arctic Bacterium
Bacillus amyloliquefaciens SCSIO 41392 and Their
Anti-Pathogenicity Evaluation
Yue Song 1,2,†, Yachun Zhou 3,† , Mengjing Cong 1,2, Shengyi Deng 1, Yushi Chen 1, Xiaoyan Pang 1,
Yonghong Liu 1,2 , Li Liao 4,5,* , Liang Yang 3,* and Junfeng Wang 1,2,*

1 CAS Key Laboratory of Tropical Marine Bio-Resources, Ecology/Guangdong Key Laboratory of Marine
Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou 510301, China; songyue202205@163.com (Y.S.); c3021632921@163.com (M.C.);
dengsy114514@outlook.com (S.D.); cyyyyys@outlook.com (Y.C.); xypang@scsio.ac.cn (X.P.);
yonghongliu@scsio.ac.cn (Y.L.)

2 University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
3 Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, Department

of Pharmacology, School of Medicine, Southern University of Science and Technology,
Shenzhen 518055, China; zhouyc@szu.edu.cn

4 Key Laboratory for Polar Science, Ministry of Natural Resources, Polar Research Institute of China,
Shanghai 200136, China

5 Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, Shanghai Key
Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University,
Shanghai 200030, China

* Correspondence: liaoli@pric.org.cn (L.L.); yangl@sustech.edu.cn (L.Y.); wangjunfeng@scsio.ac.cn (J.W.)
† These authors contributed equally to the work.

Abstract: Three new 24-membered macrolactines, amylomacrolactines A–C (1–3), along with two
known compounds 4 and 5, were isolated from the Arctic bacteria Bacillus amyloliquefaciens SCSIO
41392. The configurations of 1–3 were assigned by a combination of coupling constants, NOESY, and
analysis of MM2-optimized conformation, as well as by comparison with reports in the literature.
Compounds 1 and 2 showed quorum sensing (QS) inhibitory activities against the Pseudomonas
aeruginosa (P. aeruginosa) PQS system and suppressed PQS-regulated virulence factor pyocyanin
synthesis. In addition, compounds 3–5 affected the production of another essential virulence factor,
siderophore of pyoverdine (PVD), in P. aeruginosa. More importantly, compound 5 showed an
anti-biofilm activity against P. aeruginosa. Altogether, the isolated compounds displayed multiple
bacterial virulence inhibition activities, which is worthy of further exploration for novel analogues in
antimicrobial drug development.

Keywords: macrolactines; Bacillus amyloliquefaciens; arctic bacteria; bacterial virulence inhibition
activity

1. Introduction

Currently, polar regions have experienced climate changes, such as global warming
and an increase in the duration of ice-free periods [1]. Much effort has been focused on
research concerning microorganisms in polar regions. The e-book Microbial Communities
of Polar and Alpine Soils aimed to collect original and noteworthy research papers about
the diversity and functionality of soil microbial communities and their interactions with
the other biotic components, including their adaptation and resilience abilities in stressful
conditions and during environmental changes [2]. Because of their extreme environment,
polar marine microorganisms are considered to be an underexplored source of novel
antimicrobial compounds, which meet the need of confronting new multidrug-resistant
pathogens [3,4].
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Bacillus amyloliquefaciens SCSIO 41392 is a kind of marine bacteria isolated from Arctic
samples. Macrolactins are 22- to 25-membered polyketides that are usually isolated from
Bacillus sp. These compounds have obvious antimicrobial activity because of their specific
chemical structure [5]. Most macrolactins are 24-membered, including macrolactins A, F, G,
and I–L [6]. Their potent antibacterial activities against Staphylococcus aureus and Bacillus
subtilis have been reported [7,8]. In spite of this, bacteria develop resistance and aggres-
siveness through quorum sensing (QS), which is a crucial communication form between
bacteria via diffused signal molecules that enables global gene regulation and orchestrates
joint actions such as motility, biofilm formation, sporulation, and virulence [9–11]. QS is a
vital tool used by P. aeruginosa in leading nosocomial infections, which involved multiple
virulence systems, including 3 set of QS (Las, Pqs and rhl) and Gac-Rsm two-component
systems (TCSs). QS has a strong ability to form complex biofilms [12–14]. Siderophores are
specialized small molecules produced by bacteria and fungi to facilitate the acquisition of
iron from various environments, which play a vital role in the virulence of pathogens [15].
Pyoverdine (PVD), a siderophore produced by P. aeruginosa, is associated with biofilm
formation, host pathogenicity, and virulence [16,17]. Consequently, novel antimicrobial
therapies, including discovering and developing natural products that target the QS sys-
tem, PVD production, and biofilm formation, have been a promising approach to tackle
antimicrobial resistance in this organism [18,19].

During our ongoing investigations of the microorganisms inhabiting polar environ-
ments [3,20–22], a large scale of fermentation of a Bacillus amyloliquefaciens SCSIO 41392
collected from polar regions and subsequent purification has led to three new 24-membered
macrolactins, amylomacrolactines A–C (1–3), and two reported compounds, stellarine A
(4) [23] and 9 H-pyrido[3,4-b] indole-3-carboxylic acid (5) [24] (Figure 1). Herein, we report
the isolation, structure elucidation, and the quorum-sensing inhibitory (QSI) activity of
these compounds.
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Figure 1. Chemical structures of compounds 1–5.

2. Results and Discussion

Compound 1 was obtained as a yellow solid. The molecular formula C35H50O13 was
established upon analysis of the HRESIMS peak at m/z 677.3194 [M − H]−, indicating
11 degrees of unsaturation.

The UV absorptions at 228 and 260 nm implied the presence of an extended conjugated
system. The 1H and 13C NMR spectroscopic data, including DEPT, suggested the presence
of twelve sp2 olefinic methines, six sp3 methylenes, one sp3 methyl, four oxygenated
methines, a methoxy, a lactone carbonyl carbon, and a sugar moiety. The 13C NMR data
(Table 1) revealed two ester carbonyl carbon resonances at δC 167.8 and δC 174.5, twelve
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olefinic methine carbons between δC 117.5 and 146.0 assigned to six double bonds, nine
oxygenated methine carbons between δC 70.6 and 101.2, one oxygenated carbon at δC
64.6, and nine aliphatic carbons between δC 21.0 and 41.1. The NMR signals (Table 1)
of 1 resembled those of methoxy-macrolactin 3 [25], except for the addition of a succinic
acid. In the macrolactin ring, six double bonds, one ester carbonyl carbon, and its ring
accounted for a total of eight degrees of unsaturation and the remaining three degrees
of unsaturation, of which two were attributed to a succinic acid, leaving one degree of
unsaturation for the cyclic structure of glucose moiety, which together account for the
11 degrees of unsaturation required by the molecular formula of 1. A cross-peak between
H2-8′ and H2-9′ was observed in the COSY spectrum, while C-7′/C-8′/C-9′/C-10′ were
linked by the H2-8′/C-7′ (δC 174.5), H2-6′ (δH 4.24, 4.40)/C-7′, and H2-9′/C-10′ (δC 175.2)
HMBC correlation, indicating the presence of a succinic acid moiety (Figure 2). The
geometric configurations of double bonds were assigned as 2Z,10Z,17Z, 4E, 8E, and 15E by
the coupling constants of H-2 (J2,3 = 11.2 Hz), H-10 (J10,11 = 11.1 Hz), H-17 (J17,18 = 10.2 Hz),
H-4 (J4,5 = 15.3 Hz), H-8 (J8,9 = 15.4 Hz), and H-15 (J15,16 = 15.2 Hz), respectively. Although it
is controversial to assign the relative configuration of conformationally flexible macrorings
based on the nuclear Overhauser effect (NOE) correlation [26], the correlations observed
could provide evidence to support the relative configuration of 1, as depicted in Figure 3.
H-7α was assigned by correlations of H-7 with H-9 and H-5 [24,26,27]. In addition, H-
13α was assigned by correlations of H-13 with H-7, which was in agreement with the
MM2-optimized conformation of the macrocyclic nucleus [26,28] (Figure 3).

Table 1. 1H and 13C NMR Data of 1–3 (700, 175 MHz, CD3OD).

No.
1 2 3

δC, Type δH (J in Hz) δC, Type δH (J in Hz) δC, Type δH (J in Hz)

1 167.8, C 168.0, C 167.8, C
2 117.5, CH 5.56, d (11.2) 117.7, CH 5.53, d (11.4) 117.5, CH 5.56, d (11.3)
3 146.0, CH 6.63, t (11.2) 145.5, CH 6.59, dd (15.4, 11.4) 145.9, CH 6.62, t (11.3)
4 130.1, CH 7.34, dd (15.3, 11.3) 130.4, CH 7.29, t (15.4) 130.2, CH 7.31–7.37, m
5 142.1, CH 6.15–6.18, m 141.7, CH 6.08–6.12, dd (15.4, 4.8) 142.0, CH 6.16, s

6 41.1, CH2
2.37, m 40.6, CH2

2.46, m 41.0, CH2
2.38, m

2.58–2.67, m 2.62, m 2.59, m
7 80.3, CH 4.30, d (7.7) 79.8, CH 4.34, t (6.8) 80.2, CH 4.29, d (7.9)
8 133.8, CH 5.62, dd (15.4, 8.3) 133.6, CH 5.61, dd (11.1, 7.7) 133.8, CH 5.67, dd (15.3, 7.7)
9 130.1, CH 6.52, dd (15.4, 11.1) 130.0, CH 6.55, dd (11.1, 4.2) 130.2, CH 6.51, dd (15.3, 4.3)
10 130.7, CH 6.13, d (11.1) 130.6, CH 6.14, d (11.1) 130.7, CH 6.13, d (10.6)
11 129.7, CH 5.62, m 129.6, CH 5.59, m 129.6, CH 5.64, m

12 34.7, CH2
2.45, m 34.8, CH2 2.37, m 34.6, CH2

2.43, m
2.33, m 2.33, m

13 72.3, CH 3.69, dd (7.1, 5.3) 71.8, CH 3.76, d (5.7) 72.3, CH 3.69, m
14 40.5, CH2 2.26, tq (14.3, 7.6) 40.1, CH2 2.26, dd (14.3, 7.5) 40.3, CH2 2.24, m
15 131.8, CH 5.70, dt (15.2, 7.6) 131.5, CH 5.72, dt (15.2, 7.5) 131.1, CH 5.69, m
16 133.4, CH 6.08, dd (15.2, 10.3) 133.4, CH 6.05, dd (15.2, 10.5) 133.7, CH 6.04, t (13.0)
17 135.1, CH 6.19, d (10.2) 134.7, CH 6.17, d (15.3) 132.2, CH 6.13, d (10.8)
18 132.7, CH 5.31, q (8.5) 132.5, CH 5.35, dd (15.3, 7.9) 135.5, CH 5.50, m
19 83.9, CH 3.51, dd (15.0, 6.6) 83.3, CH 3.59, dd (13.2, 7.6) 73.8, CH 3.97, d (6.9)
20 35.5, CH2 1.53, dtt (13.4, 10.1, 5.7) 35.8, CH2 1.47, dt (13.7, 7.3) 36.9, CH2 1.55, m
21 22.3, CH2 1.36, m 22.0, CH2 1.34–1.38, q (7.7) 22.5, CH2 1.39, m
22 36.9, CH2 1.63, m 36.8, CH2 1.62, m 37.3, CH2 1.66, m
23 70.6, CH 5.03, ddd (9.6, 6.4, 3.3) 71.8, CH 5.01, ddd (9.9, 6.4, 4.0) 70.7, CH 5.05, d (6.3)
24 21.0, CH3 1.22, d (6.3) 20.8, CH3 1.24, d (6.3) 21.0, CH3 1.23, m
1′ 101.2, CH 4.31, d (7.8) 101.5, CH 4.33, d (7.8) 101.2, CH 4.31, d (7.8)
2′ 75.0, CH 3.23, d (7.9) 75.0, CH 3.23, d (7.9) 75.0 CH 3.24, d (8.1)
3′ 77.9, CH 3.35–3.37, m 77.9, CH 3.33, d (5.1) 77.9, CH 3.32, m
4′ 71.5, CH 3.32, m 71.6, CH 3.32, d (5.1) 71.5, CH 3.34, m
5′ 75.2, CH 3.35–3.37, m 75.3, CH 3.38, t (6.9) 75.3, CH 3.36, m

6′ 64.6, CH2
4.24, dd (11.7, 4.3) 64.8, CH2

4.24, dd (11.8, 5.6) 64.6, CH2
4.24, d (10.0)

4.40, d (11.7) 4.39, dd (11.8, 2.1) 4.40, d (11.6)
7′ 174.5, C 174.3, C 174.6, C
8′ 30.8, CH2 2.62, m 30.5, CH2 2.62, m 30.7, CH2 2.62, m
9′ 31.2, CH2 2.56, m 30.7, CH2 2.58, m 30.7, CH2 2.62, m
10′ 175.2, C 176.7, C 176.8, C
19-OCH3 56.3 3.21, s 56.3 3.21, s
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Appropriate 1H NMR resonances for a β-pyranose sugar, including the anomeric
(axial) proton at δH 4.33, were also observed. Coupling constants analysis revealed diaxial
couplings ranging from 7.8 to 7.9 Hz between all of the glycoside ring protons, thus defining
the presence of β-glucopyranosyl moiety, which was also supported by NOESY correla-
tions (H-1′/H-5′ and H-1′/H-3′) (Figure 3) [29–32]. The stereochemical configurations of
methoxy-macrolactin 3 were confirmed as 7S, 13S, and 23R by analyses of 13C-acetonide,
oxidative degradation, and chemical correlation [25–27]. As many macrolactin derivatives
were discovered and their absolute configurations are conserved in the family, the configu-
rations of C-7, C-13, and C-23 of 1 were suggested to be S, S, and R because of their similar
1H and 13C chemical shifts at the position and optical rotation values with the reported
macrolactins [25,27]. Hence, the structure of 1 was identified to be a novel derivative of
methoxy-macrolactin 3 with a succinic acid group at C-6′.

Compound 2 was isolated as a yellow solid with the molecular formula C35H50O13,
as determined by a HRESIMS peak at m/z 677.3182 [M − H]−, indicating 11 degrees of
unsaturation. The 1D NMR data (Table 1) of 2, together with 1H − 1H COSY and HSQC
data, were highly similar to those of methoxy-macrolactin 3 [25], except for the addition of
a succinic acid, and the J values at H-8 (J8,9 = 11.1 Hz) and H-17 (J17,18 = 15.3 Hz) were not
compatible with those of the reported macrolactin, indicating that 2 had different geometric
configurations of double bonds from that of methoxy-macrolactin 3. Accordingly, the
configurations of ∆8(9) and ∆17(18) double bonds were suggested to be Z and E, respectively.
The NOESY spectrum of 2 showed cross-peaks between H-13 (δH 3.76) and H-7 (δH 4.34)
that indicated H-13 and H-7 were on the same side (Figure 3) [26–28]. The 13C resonances
of C-23 (δC 71.8) and 1H resonances of H-23 (δH 5.01, ddd (9.9, 6.4, 4.0) were similar to those
of 1, meaning 1 and 2 were likely produced by a common biosynthetic pathway [8,33,34].
Therefore, it can be assumed that the absolute configuration of C-23 in 2 was R. Thus,
compound 2 was identified to be a novel geometric isomer of 1 with Z configuration at
∆8(9) double bond and E configuration at ∆17(18) double bond.

Compound 3 was obtained as a yellow solid and had a molecular formula of C34H48O13
as determined by HRESIMS (m/z 663.3039 [M − H]−), suggesting 11 degrees of unsatura-
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tion. Compound 3 was analogous to compound 1 except for the presence of a hydroxyl
group at C-19 (δC 73.8) as a replacement of the methoxy group at the same position in 1
(Table 1). Moreover, the absence of the methoxy group was confirmed by the 1D NMR data
(Table 1). Consequently, compound 3 was identified to be a new derivative of 1 as well.

Since macrolide antibiotics such as erythromycin and azithromycin have a Gac-Rsm-
dependent inhibitory effect on various virulence phenotypes of P. aeruginosa [35,36], we
next aimed to test the activity of compounds 1–5 by carried out a series of virulence assay
based on the regulatory network of Gac-Rsm, including QS, PVD production, and biofilm
formation [37,38]. As presented in Figure 4, both compounds 1 and 2 showed an excellent
inhibition activity of the PQS QS system (Figure 4A) and PQS-related virulence factor
pyocyanin of P. aeruginosa (Figure 4B). In addition, compounds 3, 4, and 5 had an active
inhibitory effect on PVD production of P. aeruginosa (Figure 4C). Furthermore, compound 5
exhibited an efficient anti-biofilm activity (Figure 4D). Our results strongly suggested that
all the compounds, especially 1 and 5, can be attractive candidates to develop resistant-
robust drugs and new antimicrobial treatments due to their anti-pathogenic activity.
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P. aeruginosa. (A) Activity of 1 and 2 on PQS QS system. (B) Effects of 1 and 2 on pyocyanin production.
(C) Impact of 3, 4 and 5 on pyoverdine production. (D) Anti-biofilm activity of 5. All compounds
were dissolved in DMSO and tested at final concentration of 50 µg mL−1. PAO1-∆lasI∆rhlI was used
as negative control. Error bars indicate means ± SDs. * = p < 0.05, **** = p < 0.0001, ns denotes no
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Although the antibacterial activities of macrolide derivatives were reported, no ob-
vious antimicrobial activities were detected for compounds 1–3. It was reported that the
position of a hydroxyl group at C-15 may play an important role in the antibacterial activity
of macrolactins [39]. However, none of the new compounds were hydroxylated at C-15,
which may be the reason why they did not display obvious antibacterial activities.

3. Materials and Methods
3.1. General Experimental Procedures

The UV and CD spectra were recorded on a Shimadzu UV-2600 PC spectrometer
(Shimadzu, Kyoto, Japan) and a Chirascan circular dichroism spectrometer (Applied Pho-
tophysics, Surrey, UK), respectively. The 1D and 2D NMR spectra were recorded on a
Bruker AC 500 and 700 NMR (Bruker, Falländen, Switzerland) spectrometer with TMS
as the internal standard. HRESIMS spectra were measured with a Bruker micro TOF-QII
(Bruker, Fallanden, Switzerland) mass spectrometer in positive/negative ion mode. Silica
gel GF-254 (10–40 mm) was used for thin-layer chromatography (TLC) (Qingdao Marine
Chemical Factory, Qingdao, China). HPLC was performed using an octadecylsilyl (ODS)
column (YMC-Pack ODS-A, YMC Co. Ltd. (Kyoto, Japan), 250 × 10 mm i.d., S-5 µm, 12 nm).
All solvents were analytical-grade (Tianjin Fuyu Chemical and Industry Factory, Tianjin,
China. The fermentation culture medium and reagents were obtained from Guangzhou
Haili Aquarium Technology Company, Guangzhou, China.

3.2. Bacteria Strain

The bacteria strain Bacillus amyloliquefaciens SCSIO 41392 was isolated from deep-sea
sediments over 2000 m below sea level in the Arctic Ocean (75◦00.507′ N 162◦01.744′ W).
The isolated bacteria strain was stored on ISP Medium 2 agar (yeast extract 6 g, malt extract
10 g, glucose 12 g, agar 18 g, sea salt 30 g, water 1 L, and pH 7.2) at 28 ◦C and deposited
in the CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China
Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China. The
16S sequence region (1490 base pairs (bp), GenBank Accession No. KY357290.1) of strain
SCSIO 41392 was amplified via the PCR process. DNA sequencing showed that it shared
significant identity (100%) with Bacillus amyloliquefaciens.

3.3. Fermentation and Extraction

A few loops of cells of the strain SCSIO 41392 were inoculated into a 1 L Erlenmeyer
flask containing 300 mL of seed medium (malt extract 1%, yeast extract 0.6%, glucose 1.2%,
sea salt 3%, and pH 7.2) and cultivated on a rotary shaker at 180 rpm and 28 ◦C for 48 h
as a seed culture. Then, a large-scale fermentation of the bacteria strain SCSIO 41392 was
incubated in 1 L conical flasks, containing a liquid medium (300 mL/flask) composed of 4 g
glucose, 4 g yeast extract, 10 g malt extract, 2 g CaCO3, and 1 L 3% (NaCl 3 g/H2O 100 mL)
artificial seawater. After cultivating on a rotary shaker at 180 rpm and 28 ◦C for 9 days, the
fermented material from each flask was extracted successively with EtOAc (700 mL/flask).
Finally, the EtOAc (52.5 L) solution was concentrated under reduced pressure to obtain a
dark chocolate-brown extract (43.3 g).

3.4. Isolation and Purification

Crude extract was separated using ODS silica gel chromatography eluted with a gradient
of MeOH/H2O (0–100%) to yield the fractions (Fr.1–Fr.7). Fr.5 was divided into 6 parts
(Fr.5.1–5.6) by using semi-preparative HPLC (34% MeCN/+0.6% FA H2O, 3.0 mL/min). Fr.5.3
was further purified with semi-preparative HPLC (30% MeCN/+0.6% FA H2O, 3.0 mL/min)
to gain 5 (7.46 mg, tR = 22 min). Fr.5.5 was further purified with semi-preparative HPLC
(55% MeCN/+0.6% FA H2O, 2.5 mL/min) to gain 4 (1.52 mg, tR = 13.1 min). Fr.5.4 was
further separated with semi-preparative HPLC (40% MeCN/+0.6% FA H2O, 3.0 mL/min)
to yield the fractions (Fr.5.4.1–Fr.5.4.7). With semi-preparative HPLC (42% MeCN/+0.6% FA
H2O, 3.0 mL/min), Fr.6 was further separated to gain 2 (2.93 mg, tR = 35.5 min) and other
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six fractions (Fr.6.1–Fr.6.6). Fr.6.6 was further purified with semi-preparative HPLC (35%
MeCN/+0.8% FA H2O, 3.0 mL/min) to gain 1 (1.1 mg, tR = 32.7 min). Compound 3 (0.86 mg,
tR = 10.5 min) was isolated from Fr.6.3 by semi-preparative HPLC (39% MeCN/+0.6% FA
H2O, 3.0 mL/min).

Amylomacrolactine A (1): yellow solid; [α]25
D − 54◦ (c, 0.1, MeOH); UV (MeOH) λmax

(log ε) 230 (3.18), 262 (2.81) nm; 1H and 13C NMR data, Table 1; HR-ESI-MS m/z 677.3194
[M − H]− (calcd for C35H49O13

−, 677.3179), 1355.6452 [2M − H]− (calcd for C70H99O26
−,

1355.6430).
Amylomacrolactine B (2): yellow solid; [α]25

D − 32◦ (c, 0.1, MeOH); UV (MeOH) λmax
(log ε) 228 (3.12), 260 (2.78) nm; 1H and 13C NMR data, Table 1; HR-ESI-MS m/z 677.3182
[M − H]− (calcd for C35H49O13

−, 677.3179).
Amylomacrolactine C (3): yellow solid; [α]25

D − 42◦ (c, 0.04, MeOH); UV (MeOH) λmax
(log ε) 228 (3.39), 262 (3.09) nm; 1H and 13C NMR data, Table 1; HR-ESI-MS m/z 663.3039
[M − H]− (calcd for C34H47O13

−, 663.3022), 699.2818 [M + Cl]− (calcd for C34H48ClO13
−,

699.2789).

3.5. P. aeruginosa QS Inhibition Assay

All the compounds were dissolved in DMSO with a stock concentration of 10 mg mL−1

unless otherwise stated. The QS inhibition assay was conducted as previously described
(Table S1). Briefly, the optical density at 600 nm (OD600) of an overnight culture of the PAO1-
pqsA-gfp strain (grown in LB broth medium at 37 ◦C, 200 rpm) was adjusted to 0.01 with
ABTGC medium in the 96-well microtiter plate and the compound was added with a final
concentration of 50 µg mL−1. Both the DMSO group and blank group were set as controls.
The microtiter plate was further incubated at 37 ◦C in a Tecan Infinite 200 Pro plate reader
(Tecan Group Ltd., Mannedorf, Switzerland) to measure OD600 and GFP fluorescence with
excitation at 485 nm and emission at 535 nm for 20 h. All experiments were performed
in triplicate.

3.6. Pyocyanin Quantification Assay

Both the OD600 of PAO1 and ∆lasI∆rhlI mutant strains were standardized to 0.01 in
the cell culture tube with a volume of 3.5 mL ABTGC medium; after the compounds was
added (50 µg mL−1), the mixture was further cultured at 37 ◦C with 200 rpm for 20 h.
The mutant strain ∆lasI∆rhlI and the DMSO group were used as negative control. The
cultures were then detected for cell density (OD600) followed by centrifugation for 10 min at
10,000 rpm. The resulting supernatant was used for pyocyanin extraction with chloroform
(3 mL) and 0.2 M HCl (1.5 mL). Finally, the top aqueous layer of HCl containing pyocyanin
was pipetted into a microtiter plate and measured at 520 nm. The pyocyanin value was
calculated as OD520/OD600.

3.7. Biofilm Formation Assay

Overnight cultures of PAO1 were diluted in ABTGC medium at a cell density of OD600
equal to 0.01 in 96-well microtiter plates. Then, the compound (50 µg mL−1) or DMSO
was added, and the plate was incubated at 37 ◦C without agitation for 24 hours. OD600
of suspended cultures was measured by Tecan Infinite 200 Pro plate reader (Tecan Group
Ltd., Mannedorf, Switzerland), after which we removed the liquid cultures and washed the
plate with phosphate-buffered saline (PBS) to remove remaining suspended cells. Then, the
biofilms were stained with 1.0% crystal violet for 15 min followed by washing twice with
PBS. The crystal violet-stained biofilms were eluted by 100% ethanol and the absorbance of
biofilm-associated dye was measured at 550 nm. The formation of biofilms was normalized
by the amount of suspended cells (OD at 600 nm).

3.8. Pyoverdine Production Assay

Pyoverdine level was determined according to a reported method with modify [40].
Overnight cultures of PAO1 were suspended in fresh ABTGC medium with compounds or
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DMSO at a cell density of OD600 = 0.01 in 96-well microtiter plates. Then, the plate was
put into a Tecan Infinite 200 Pro plate reader (Tecan Group Ltd., Mannedorf, Switzerland)
to record OD600 and the pyoverdine level with a parameter of excitation at 398 nm and
emission at 460 nm for 22 h. The production of pyoverdine was calculated by dividing
pyoverdine data by OD600.

3.9. Statistical Analysis

Statistical analysis was conducted by GraphPad Prism (GraphPad Prism 8.1.2; Graph-
Pad Software, San Diego, CA, USA). One-way ANOVA analysis was used to evaluate
the significance within groups. Statistical significance was determined at p < 0.05. All
experiments were performed in triplicate at minimum, and the results are shown as the
mean ± sd.

4. Conclusions

In conclusion, three new 24-membered macrolactones, macrolactins 1–3, were isolated
from the Arctic bacteria Bacillus amyloliquefaciens SCSIO 41392. Compounds 1–5 were
tested for various virulence phenotypes of P. aeruginosa, and the data showed that com-
pounds 1 and 2 exhibited PQS QS inhibitory activity, compounds 3–5 efficiently inhibited
the production of PVD, and compound 5 effectively impaired the formation of biofilm.
Together, our results showed that these compounds can serve as promising lead molecules
in antimicrobial drug development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md22110484/s1, Table S1: The tested P. aeruginosa strains used
in this study; Figure S1: 1H NMR spectrum of compound 1 (CD3OD, 700MHz); Figure S2: 13C
NMR spectrum of compound 1 (CD3OD, 175 MHz); Figure S3: 13C-DEPT135 NMR spectrum of
compound 1 (CD3OD, 175 MHz); Figure S4: HSQC spectrum of compound 1 (CD3OD); Figure S5:
1H-1H COSY spectrum of compound 1 (CD3OD); Figure S6: HMBC spectrum of compound 1
(CD3OD); Figure S7: NOESY spectrum of compound 1 (CD3OD); Figure S8: HR-ESI-MS spectrum
of compound 1; Figure S9: UV spectrum of compound 1; Figure S10: CD spectrum of compound 1;
Figure S11: 1H NMR spectrum of compound 2 (CD3OD, 700MHz); Figure S12: 13C NMR spectrum of
compound 2 (CD3OD, 175 MHz); Figure S13: 13C-DEPT135 NMR spectrum of compound 2 (CD3OD,
175 MHz); Figure S14: HSQC spectrum of compound 2 (CD3OD); Figure S15: 1H-1H COSY spectrum
of compound 2 (CD3OD); Figure S16: HMBC spectrum of compound 2 (CD3OD); Figure S17: NOESY
spectrum of compound 2 (CD3OD); Figure S18: HR-ESI-MS spectrum of compound 2; Figure S19: UV
spectrum of compound 2; Figure S20: CD spectrum of compound 2; Figure S21: 1H NMR spectrum of
compound 3 (CD3OD, 700MHz); Figure S22: 13C NMR spectrum of compound 3 (CD3OD, 175 MHz);
Figure S23: 13C-DEPT135 NMR spectrum of compound 3 (CD3OD, 175 MHz); Figure S24: HSQC
spectrum of compound 3 (CD3OD); Figure S25: 1H-1H COSY spectrum of compound 3 (CD3OD);
Figure S26: HMBC spectrum of compound 3 (CD3OD); Figure S27: NOESY spectrum of compound 3
(CD3OD); Figure S28: HR-ESI-MS spectrum of compound 3; Figure S29: UV spectrum of compound
3; Figure S30: CD spectrum of compound 3.
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