A Pharmacokinetic and Bioavailability Study of Ecklonia cava Phlorotannins Following Intravenous and Oral Administration in Sprague–Dawley Rats
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis of EK-ECP
2.1.1. 1H-NMR Analysis of EK-ECP
2.1.2. Identification of Individual Phlorotannins in EK-ECP
2.2. Pharmacokinetic Analysis
2.2.1. Group 1 (IV Bolus Administration)
2.2.2. Groups 2, 3, and 4 (Oral Administration)
2.2.3. Bioavailability (Oral Versus IV Bolus Administration)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Analytical Methods for Chemical Characterization of EK-ECP
4.3. Animals and Diets
4.4. Dose Formulation and Dosing
4.5. Blood Sampling and Bioanlysis
4.6. Pharmcokinetic Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, I.-P.; Bharat, S.-B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006, 23, 558–591. [Google Scholar] [CrossRef] [PubMed]
- Glombitza, K.-W.; Vogels, H.-P. Antibiotics from Algae. XXXV. Phlorotannins from Ecklonia maxima. Planta Med. 1985, 51, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Mu, T.; Sun, H.; Garcia-Vaquero, M. Phlorotannins: A review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. Algal Res. 2021, 60, 102484. [Google Scholar] [CrossRef]
- Simón, L.; Arazo-Rusindo, M.; Quest, A.F.G.; Mariotti-Celis, M.-S. Phlorotannins: Novel Orally Administrated Bioactive Compounds That Induce Mitochondrial Dysfunction and Oxidative Stress in Cancer. Antioxidants 2023, 12, 1734. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-J.; Kwon, O.-I.; Hwang, H.-J.; Shin, H.-C.; Yang, S. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Front. Mol. Neurosci. 2023, 18, 1193590. [Google Scholar] [CrossRef]
- Soleimani, S.; Yousefzadi, M.; Nezhad, S.B.M.; Pozharitskaya, O.N. Evaluation of fractions extracted from Polycladia myrica: Biological activities, UVR protective effect, and stability of cream formulation based on it. J. Appl. Phycol. 2022, 34, 1763–1777. [Google Scholar] [CrossRef]
- Erpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J.-R. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res. Int. 2020, 137, 109589. [Google Scholar] [CrossRef]
- Javed, A.; Hussain, M.-B.; Tahir, A.; Waheed, M.; Anwar, A.; Shariati, M.-A.; Plygun, S.; Laishevtcev, A.; Pasalar, M. Pharmacological Applications of Phlorotannins: A Comprehensive Review. Curr. Drug Discov. Technol. 2021, 18, 282–292. [Google Scholar] [CrossRef]
- Thomas, N.-V.; Kim, S.-K. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ. Toxicol. Pharmacol. 2011, 32, 325–335. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products. Safety of Ecklonia cava phlorotannins as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, e05003. [Google Scholar] [CrossRef]
- NDI 556-Ecklonia Cava Extract from Simply Health, LLC. Available online: https://www.regulations.gov/document/FDA-2009-S-0608-0017 (accessed on 31 October 2024).
- Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 2002, 50, 889–893. [Google Scholar] [CrossRef]
- Liao, M.; Wei, S.; Hu, X.; Liu, J.; Wang, J. Protective Effect and Mechanisms of Eckol on Chronic Ulcerative Colitis Induced by Dextran Sulfate Sodium in Mice. Mar. Drugs 2023, 21, 376. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, W.; Zhao, S.; Li, S.; Yan, D.; Wang, J. Eckol inhibits Reg3A-induced proliferation of human SW1990 pancreatic cancer cells. Exp. Ther. Med. 2019, 18, 2825–2832. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, P.; Lomartire, S.; Cotas, J.; Marques, J.-C.; Pereira, L.; Gonçalves, A.M.-M. Call the Eckols: Present and Future Potential Cancer Therapies. Mar. Drugs 2022, 20, 387. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yang, S.; Xiao, Z.; Hong, P.; Sun, S.; Zhou, C.; Qian, Z.-J. The Inhibition Effect of the Seaweed Polyphenol, 7-Phloroeckol from Ecklonia Cava on Alcohol-Induced Oxidative Stress in HepG2/CYP2E1 Cells. Mar. Drugs 2021, 19, 158. [Google Scholar] [CrossRef] [PubMed]
- Bak, S.-S.; Sung, Y.-K.; Kim, S.-K. 7-Phloroeckol promotes hair growth on human follicles in vitro. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014, 387, 789–793. [Google Scholar] [CrossRef]
- Ryu, Y.-B.; Jeong, H.-J.; Yoon, S.-Y.; Park, J.-Y.; Kim, Y.-M.; Park, S.-J.; Rho, M.-C.; Kim, S.-J.; Lee, W.-S. Influenza virus neuraminidase inhibitory activity of phlorotannins from the edible brown alga Ecklonia cava. J. Agric. Food Chem. 2011, 59, 6467–6473. [Google Scholar] [CrossRef]
- Rajan, D.-K.; Mohan, K.; Zhang, S.; Ganesan, A.-R. Dieckol: A brown algal phlorotannin with biological potential. Biomed. Phamacother. 2021, 142, 111988. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, M.H.; Kang, S.M.; Ko, S.C.; Kang, M.C.; Cho, S.; Park, P.J.; Jeon, B.T.; Kim, S.K.; Han, J.-S.; et al. Dieckol isolated from Ecklonia cava protects against high-glucose induced damage to rat insulinoma cells by reducing oxidative stress and apoptosis. Biosci. Biotech. Biochem. 2012, 76, 1445–1451. [Google Scholar] [CrossRef]
- Yang, Y.-I.; Shin, H.-C.; Kim, S.H.; Park, W.Y.; Lee, K.T.; Choi, J.-H. 6,6′-Bieckol, isolated from marine alga Ecklonia cava, suppressed LPS-induced nitric oxide and PGE (2) and inflammatory cytokine expression in macrophages: The inhibition of NF-κB. Int. Immunopharmacol. 2012, 12, 510–517. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Yang, K.; Tian, J. 6,6′-Bieckol induces apoptosis and suppresses TGF-beta-induced epithelial-mesenchymal transition in non-small lung cancer cells. Chin. Herb. Med. 2021, 14, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Sim, H.-H.; Shiwakoti, S.; Lee, J.-H.; Lee, I.-Y.; Ok, Y.; Lim, H.-K.; Ko, J.-Y.; Oak, M.-H. 2,7-Phloroglucinol-6,6′-bieckol from Ecklonia cava ameliorates nanoplastics-induced premature endothelial senescence and dysfunction. Sci. Total Environ. 2024, 949, 175007. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-L.; Xiao, Z.; Yang, S.; Zhou, C.; Sun, S.; Hong, P.; Qian, Z.-J. A Phlorotannin, 6,6′-bieckol from Ecklonia cava, Against Photoaging by Inhibiting MMP-1, -3 and -9 Expression on UVB-induced HaCaT Keratinocytes. Photochem. Photobiol. 2022, 98, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Son, M.; Jang, J.-T.; Park, C.-H.; Son, K.-H.; Byun, K. Pyrogallol-Phloroglucinol-6,6-Bieckol Restored Primary Cilia Length, Which Was Decreased by High-Fat Diet in Visceral Adipose Tissue, and Decreased Adipogenesis. Int. J. Endocrinol. 2022, 2022, 8486965. [Google Scholar] [CrossRef]
- Son, M.; Oh, S.; Jang, J.-T.; Son, K.-H.; Byun, K. Pyrogallol-Phloroglucinol-6 6-Bieckol on Attenuates High-Fat Diet-Induced Hypertension by Modulating Endothelial-to-Mesenchymal Transition in the Aorta of Mice. Oxid. Med. Cell. Longev. 2021, 2021, 8869085. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, S.; Park, S.; Park, J.-S.; Kim, Y.-H.; Yang, S.-Y. Slow-Binding Inhibition of Tyrosinase by Ecklonia cava Phlorotannins. Mar. Drugs 2019, 17, 359. [Google Scholar] [CrossRef]
- Fukuyama, Y.; Kodama, M.; Miura, I.; Kinzyo, Z.; Mori, H.; Nakayama, Y.; Takahashi, M. Anti-plasmin inhibitor. V. Structures of novel dimeric eckols isolated from the brown alga Ecklonia kurome OKAMURA. Chem. Pharm. Bull. 1989, 37, 2438–2440. [Google Scholar] [CrossRef]
- Yang, Y.-I.; Jung, S.-H.; Lee, K.-T.; Choi, J.-H. 8,8′-Bieckol, isolated from edible brown algae, exerts its anti-inflammatory effects through inhibition of NF-kappaB signaling and ROS production in LPS-stimulated macrophages. Int. Immunopharmacol. 2014, 23, 460–468. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Yoon, K.-D.; Min, S.-Y.; Lee, J.-S.; Kim, J.-H.; Kim, T.-G.; Kim, S.-H.; Kim, N.-G.; Huh, H.; Kim, J. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol. Pharm. Bull. 2004, 27, 544–547. [Google Scholar] [CrossRef]
- Ahmad, F.; Sachdeva, P.; Sachdeva, B.; Singh, G.; Soni, H.; Tandon, S.; Rafeeq, M.-M.; Alam, M.-Z.; Baeissa, H.-M.; Khalid, M. Dioxinodehydroeckol: A Potential Neuroprotective Marine Compound Identified by In Silico Screening for the Treatment and Management of Multiple Brain Disorders. Mol. Biotechnol. 2024, 66, 663–686. [Google Scholar] [CrossRef]
- Ahn, B.-N.; Karadeniz, F.; Kong, C.-S.; Nam, K.-H.; Jang, M.-S.; Seo, Y.; Kim, H.-S. Dioxinodehydroeckol Enhances the Differentiation of Osteoblasts by Regulating the Expression of Phospho-Smad1/5/8. Mar. Drugs 2016, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Ryu, B.; Ahn, B.-N.; Kang, K.-H.; Kim, Y.-S.; Li, Y.-X.; Kong, C.-S.; Kim, S.-K.; Kim, D.-G. Dioxinodehydroeckol protects human keratinocyte cells from UVB-induced apoptosis modulated by related genes Bax/Bcl-2 and caspase pathway. J. Photochem. Photobiol. B. 2015, 153, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Dasagrandhi, C.; Kim, S.-H.; Kim, B.-G.; Eom, S.-H.; Kim, Y.-M. In Vitro Antibacterial Activity of Phlorotannins from Edible Brown Algae, Eisenia bicyclis Against Streptomycin-Resistant Listeria monocytogenes. Indian J. Microbiol. 2018, 58, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.-S.; Kim, S.-K.; Ryu, B.; Ngo, D.-H.; Yoon, N.-Y.; Bach, L.-G.; Hang, N.T.-N.; Ngo, D.-N. The Suppressive Activity of Fucofuroeckol-A Derived from Brown Algal Ecklonia stolonifera Okamura on UVB-Induced Mast Cell Degranulation. Mar. Drugs 2018, 16, 1. [Google Scholar] [CrossRef]
- Dhanabalan, A.-K.; Kumar, P.; Vasudevan, S.; Chworos, A.; Velmurugan, D. Identification of a novel drug molecule for neurodegenerative disease from marine algae through in-silico analysis. J. Biomol. Struct. Dyn. 2024, 1–10. [Google Scholar] [CrossRef]
- Woo, H.; Kim, M.-K.; Park, S.; Han, S.-H.; Shin, H.-C.; Kim, B.-G.; Oh, S.-H.; Suh, M.-W.; Lee, J.-H.; Park, M.-K. Effect of Phlorofucofuroeckol A and Dieckol Extracted from Ecklonia cava on Noise-induced Hearing Loss in a Mouse Model. Mar. Drugs 2021, 19, 443. [Google Scholar] [CrossRef]
- Paudel, P.; Seong, S.-H.; Park, S.-E.; Ryu, J.-H.; Jung, H.-A.; Choi, J.-S. In Vitro and In Silico Characterization of G-Protein Coupled Receptor (GPCR) Targets of Phlorofucofuroeckol-A and Dieckol. Mar. Drugs 2021, 19, 326. [Google Scholar] [CrossRef]
- Kim, A.-R.; Lee, M.-S.; Shin, T.-S.; Hua, H.; Jang, B.-C.; Choi, J.-S.; Byun, D.-S.; Utsuki, T.; Ingram, D.; Kim, H.-R. Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-κB, Akt, p38, MAPK. Toxicol. In Vitro 2011, 25, 1789–1795. [Google Scholar] [CrossRef]
- Heo, S.-Y.; Jeong, M.-S.; Lee, H.S.; Kim, Y.J.; Park, S.-H.; Jung, W.-K. Phlorofucofuroeckol A from Ecklonia cava ameliorates TGF-β1-induced fibrotic response of human tracheal fibroblasts via the downregulation of MAPKs and SMAD 2/3 pathways inactivated TGF-β receptor. Biochem. Biophys. Res. Commun. 2020, 522, 626–632. [Google Scholar] [CrossRef]
- Shibata, T.; Ishimaru, K.; Kawaguchi, S.; Yoshikawa, H.; Hama, Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J. Appl. Phycol. 2008, 20, 705–711. [Google Scholar] [CrossRef]
- Glombitza, K.-W.; Gerstberger, G. Phlorotannins with dibenzodioxin structural elements from the brown alga Eisenia arborea. Phytochemistry 1985, 24, 543–551. [Google Scholar] [CrossRef]
- Men, X.; Han, X.; Lee, S.-J.; Oh, G.; Jin, H.; Oh, H.-J.; Kim, E.; Kim, J.; Lee, B.-Y.; Choi, S.-I.; et al. In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Mar. Drugs 2022, 20, 607. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Yoon, N.-Y.; Kim, S.-K. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 2010, 36, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-L.; Go, M.-J.; Lee, H.-S.; Heo, H.-J. Ecklonia cava Ameliorates Cognitive Impairment on Amyloid β-Induced Neurotoxicity by Modulating Oxidative Stress and Synaptic Function in Institute of Cancer Research (ICR) Mice. Antioxidants 2024, 13, 951. [Google Scholar] [CrossRef]
- Suryaningtyas, I.-T.; Lee, D.-S.; Je, J.-Y. Brown Algae Ecklonia cava Extract Modulates Adipogenesis and Browning in 3T3-L1 Preadipocytes through HO-1/Nrf2 Signaling. Mar. Drugs 2024, 22, 330. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Kim, H.-Y.; Jang, J.-T.; Hong, S. Preventive Effect of Ecklonia cava Extract on DSS-Induced Colitis by Elevating Intestinal Barrier Function and Improving Pathogenic Inflammation. Molecules 2023, 28, 8099. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ghosh, R.; Barik, S.; Mohapatra, S.-S.; Biswas, A.; Chowdhuri, S. Deciphering inhibitory activity of marine algae Ecklonia cava phlorotannins against SARS CoV-2 main protease: A coupled in-silico docking and molecular dynamics simulation study. Gene 2024, 926, 148620. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, K.-A.; Seo, H.-Y.; Kim, S.-H.; Lee, H.-M. Antioxidant and anti-hepatitis A virus activities of Ecklonia cava Kjellman extracts. Heliyon 2024, 10, e25600. [Google Scholar] [CrossRef]
- Cho, C.-H.; Yoo, G.; Kim, M.; Kurniawati, U.-D.; Choi, I.-W.; Lee, S.-H. Dieckol, derived from the Edible Brown Algae Ecklonia cava, Attenuates Methylglyoxal-Associated Diabetic Nephropathy by Suppressing AGE-RAGE Interaction. Antioxidants 2023, 12, 593. [Google Scholar] [CrossRef]
- Hwang, J.; Yang, H.-W.; Lu, Y.-A.; Je, J.-G.; Lee, H.-G.; Fernando, K.H.-N.; Jeon, Y.-J.; Ryu, B. Phloroglucinol and dieckol isolated from Ecklonia cava suppress impaired diabetic angiogenesis; A study of in-vitro and in-vivo. Biomed. Pharmacother. 2021, 138, 111431. [Google Scholar] [CrossRef]
- Xu, J.-W.; Yan, Y.; Wang, L.; Wu, D.; Ye, N.-K.; Chen, S.-H.; Li, F. Marine bioactive compound dieckol induces apoptosis and inhibits the growth of human pancreatic cancer cells PANC-1. J. Biochem. Mol. Toxico 2021, 35, e22648. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.-H.; Yang, Y.-I.; Lee, K.-T.; Choi, J.-H. Dieckol, isolated from the edible brown algae Ecklonia cava, induced apoptosis of ovarian cancer cells and inhibits tumor xenograft growth. J. Cancer Res. Clin. Oncol. 2015, 141, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Chen, T.; Nines, R.G.; Shin, H.-C.; Stoner, G.D. Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols. Int. J. Cancer 2006, 119, 2742–2749. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Park, Y.-J.; Hwang, H.-J.; Kim, S.-H.; Lee, J.-G.; Shin, H.-C. Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factor. Arch. Pharm. Res. 2003, 26, 286–293. [Google Scholar] [CrossRef]
- Shin, H.-C.; Hwang, H.-J.; Kang, K.-J.; Lee, B.-H. Antioxidative and anti-inflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch. Pharm. Res. 2006, 29, 165–171. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Qian, Z.-J.; Lee, S.-H.; Li, Y.-X.; Kim, S.-K. Dieckol from Ecklonia cava Regulates Invasion of Human Fibrosarcoma Cells and Modulates MMP-2 and MMP-9 Expression via NF-κB Pathway. Evid. Based Complement. Alternat. Med. 2011, 2011, 140462. [Google Scholar] [CrossRef]
- Ryu, B.; Li, Y.; Qian, Z.-J.; Kim, M.-M.; Kim, S.-K. Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, and MAPK signaling: Implication for chronic articular disease. Chem. Biol. Interact. 2009, 179, 192–201. [Google Scholar] [CrossRef]
- Yasuda, Y.; Tokumatsu, T.; Ueda, C.; Sakai, M.; Sasaki, Y.; Norikura, T.; Matsui-Yuasa, I.; Kojima-Yuasa, A. Ecklonia cava Polyphenols Have a Preventive Effect on Parkinson’s Disease through the Activation of the Nrf2-ARE Pathway. Nutrients 2024, 16, 2076. [Google Scholar] [CrossRef]
- Lee, J.-W.; Lee, J.-I.; Lim, S.-Y. Influence of Supplementation of Ecklonia cava Polyphenols on Learning, Memory, and Brain Fatty Acid Composition in Mice. Comb. Chem. High Throughput Screen. 2024, 27, 446–454. [Google Scholar] [CrossRef]
- Jo, S.-L.; Yang, H.; Jeong, K.-J.; Lee, H.-W.; Hong, E.-J. Neuroprotective Effects of Ecklonia cava in a Chronic Neuroinflammatory Disease Model. Nutrients 2023, 15, 2007. [Google Scholar] [CrossRef]
- Shin, Y.-S.; Kim, K.-J.; Park, H.; Lee, M.-G.; Cho, S.; Choi, S.-I.; Heo, H.-J.; Kim, D.-O.; Kim, G.-H. Effects of Ecklonia cava Extract on Neuronal Damage and Apoptosis in PC-12 Cells against Oxidative Stress. J. Microbiol. Biotechnol. 2021, 31, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.-W.; Lee, H.-S.; Shin, H.-C.; Lee, B.-H. Multifunctional activity of polyphenolic compounds associated with a potential for Alzheimer’s disease therapy from Ecklonia cava. Phytother. Res. 2015, 29, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Myung, C.-S.; Shin, H.-C.; Bao, H.-Y.; Yeo, S.-J.; Lee, B.-H.; Kang, J.-S. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res. 2005, 28, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, L.; Chao, J. Antiosteoporosis and bone protective effect of dieckol against glucocorticoid-induced osteoporosis in rats. Front Endocrinol. 2022, 13, 932488. [Google Scholar] [CrossRef]
- Oh, J.-H.; Ahn, B.-N.; Karadeniz, F.; Kim, J.-A.; Lee, J.-I.; Seo, Y.; Kong, C.-S. Phlorofucofuroeckol A from Edible Brown Alga Ecklonia cava Enhances Osteoblastogenesis in Bone Marrow-Derived Human Mesenchymal Stem Cells. Mar. Drugs 2019, 17, 543. [Google Scholar] [CrossRef]
- Kim, S.; Kang, S.-S.; Choi, S.-I.; Kim, G.-H.; Imm, J.-Y. Ecklonia cava Extract Containing Dieckol Suppresses RANKL-Induced Osteoclastogenesis via MAP Kinase/NF-κB Pathway Inhibition and Heme Oxygenase-1 Induction. J. Microbiol. Biotechnol. 2019, 29, 11–20. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2018/460 of 20 March 2018 Authorizing the Placing on the Market of Ecklonia Cava Phlorotannins as a Novel Food Under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Commission Implementing Regulation (EU) 2017/2470. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0460&qid=1725411913095 (accessed on 31 October 2024).
- Yuan, Y.; Song, Y.; Jing, W.; Wang, Y.; Yang, X.; Liu, D. Simultaneous determination of caffeine, gallic acid, theanine, (−)-epigallocatechin and (−)-epigallocatechin-3-gallate in green tea using quantitative 1H-NMR spectroscopy. Anal. Methods 2014, 6, 907–914. [Google Scholar] [CrossRef]
- Vasantha Rupasinghe, H.V. Chapter 1—Application of NMR Spectroscopy in Plant Polyphenols Associated with Human Health. In Applications of NMR Spectroscopy: Volume 2, 1st ed.; Rahman, A.U., Choudhary, M.I., Eds.; Bentham Science Publishers: Potomac, MD, USA, 2015; pp. 3–92. Available online: https://www.sciencedirect.com/book/9781608059997/applications-of-nmr-spectroscopy (accessed on 31 October 2024).
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.-B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Vázquez-Rodríguez, B.; Santos-Zea, L.; Heredia-Olea, E.; Acevedo-Pacheco, L.; Santacruz, A.; Gutiérrez-Uribe, J.-A.; Cruz-Suárez, L.-E. Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressa on human gut microbiota composition using an in vitro colonic model. J. Funct. Foods 2021, 84, 104596. [Google Scholar] [CrossRef]
- Takiishi, T.; Fenero, C.I.-M.; Câmara, N.O.-S. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers 2017, 5, e1373208. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.-J. Drug delivery to the lymphatic system. Crit. Rev. Ther. Drug Carrier Syst. 1997, 14, 333–393. [Google Scholar] [PubMed]
- Yáñez, J.-A.; Wang, S.-W.; Knemeyer, I.-W.; Wirth, M.-A.; Alton, K.-B. Intestinal lymphatic transport for drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 923–942. [Google Scholar] [CrossRef]
- Yang, Y.-I.; Woo, J.-H.; Seo, Y.-J.; Lee, K.-T.; Lim, Y.; Choi, J.-H. Protective Effect of Brown Alga Phlorotannins against Hyper-inflammatory Responses in Lipopolysaccharide-Induced Sepsis Models. J. Agric. Food Chem. 2016, 64, 570–578. [Google Scholar] [CrossRef]
- Gibaldi, M.; Perrier, D. Pharmacokinetics, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1982; pp. 409–417. [Google Scholar] [CrossRef]
Aanlyte a | Actual Constituent Dose (mg/kg) | C0 (ng/mL) | Tlast (h) b | AUCTlast (ng·h/mL) | AUC(0–24h) (ng·h/mL) | AUCINF (ng·h/mL) | T1/2 (h) | MRTlast (h) | Effective T1/2 (h) d | Cl (mL/h/kr) | Vz (mL/kg) | Vss (mL/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
8,8′-Bieckol | 1.075 | 7220 (15) | 36 (36–36) | 6620 (6) | 6540 (6) | 6670 (6) | 9.42 (9) | 1.88 (5) | 1.30 (5) | 162 (6) | 2200 (14) | 366 (14) |
Dieckol | 0.91 | 8890 (18) | 36 (36–36) | 5290 (49) | 5190 (49) | 5390 (49) | 11.9 (7) | 2.14 (16) | 1.48 (16) | 193 (35) | 3350 (36) | 570 (28) |
PFF-A | 0.805 | 12.8 (31) | 2 (1–2) | 7.81 (38) | 9.03 (36) | 10.1 (30) c | 0.731 (4) c | 0.520 (27) | 0.360 (27) | 84,000 (26) c | 89,200 (29) c | 77,600 (30) c |
Aanlyte a | Actual Constituent Dose (mg/kg) | Cmax (ng/mL) b | Tmax (h) d | Tlast (h) d | AUCTlast (ng·h/mL) | AUC(0–24h) (ng·h/mL) | AUCINF (ng·h/mL) | T1/2 (h) | MRTlast (h) | Effective T1/2 (h) j | Cl/F (mL/h/kr) | Vz/F (mL/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
8,8′-Bieckol | 0.92 | 0 (NC) | NA c | NA | NR e | NR e | NR | NA | NA | NA | NA | NA |
10.3 | 11.2 (68) | (0.25–4) | 8 (8–12) | 37.7 (26) | 41.5 (26) | 44.0 (22) f | 2.95 (24) f | 3.23 (33) | 2.24 (33) | 242,000 (22) f | 1,060,000 (45) f | |
102.8 | 795 (37) | 0.5 (0.5–0.5) | 36 (36–36) | 3170 (35) | 3050 (35) | 3210 (35) | 6.63 (9) | 5.93 (16) | 4.11 (16) | 35,100 (34) | 342,000 (43) | |
Dieckol | 0.27 | 0 (NC) | NA | NA | NR | NR | NR | NA | NA | NA | NA | NA |
8.79 | 6.67 (63) | (0.5–4) | 8 (6–8) | 24.3 (26) | 27.2 (25) | 31.4 (NC) g,h | 2.76 (NC) b,g | 3.40 (26) | 2.36 (26) | 287,000 (NC) b,g | 1,160,000 (NC) b,g | |
91.61 | 274 (42) | 0.5 (0.5–0.5) | 36 (36–36) | 1200 (31) | 1130 (30) | 1230 (31) | 6.61 (8) | 7.67 (8) | 5.31 (8) | 80,000 (28) | 768,000 (33) | |
PFF-A | 0.41 | 0 (NC) | NA | NA | NR | NR | NR | NA | NA | NA | NA | NA |
4.17 | 0 (NC) | NA | NA | NR | NR | NR | NA | NA | NA | NA | NA | |
41.33 i | 1.58 | 0.5 | 1 | NR | NR | NR | NA | NA | NA | NA | NA |
Group | Treatment | Dose Route | EK-ECP Content in Dose Formulation (mg/mL) | Dose Volume (mL/kg) | EK-ECP Dose Level (mg/kg) | Constituent Dose Level (mg/kg) a | Number of Rats |
---|---|---|---|---|---|---|---|
1 | EK-ECP | IV | 2 | 5 | 10 | 1.075/0.91/0.805 | 4 |
2 | EK-ECP | PO | 1 | 10 | 10 | 0.92/0.27/0.41 | 4 |
3 | EK-ECP | PO | 10 | 10 | 100 | 10.3/8.79/4.17 | 4 |
4 | EK-ECP | PO | 100 | 10 | 1000 | 102.8/91.61/41.33 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.-C.; Rosenfeld, C.; Guttendorf, R.J.; Wade, S.B.; Park, Y.J.; Kim, J.H.; Kim, S.H.; Lee, B.H.; Hwang, H.J. A Pharmacokinetic and Bioavailability Study of Ecklonia cava Phlorotannins Following Intravenous and Oral Administration in Sprague–Dawley Rats. Mar. Drugs 2024, 22, 500. https://doi.org/10.3390/md22110500
Shin H-C, Rosenfeld C, Guttendorf RJ, Wade SB, Park YJ, Kim JH, Kim SH, Lee BH, Hwang HJ. A Pharmacokinetic and Bioavailability Study of Ecklonia cava Phlorotannins Following Intravenous and Oral Administration in Sprague–Dawley Rats. Marine Drugs. 2024; 22(11):500. https://doi.org/10.3390/md22110500
Chicago/Turabian StyleShin, Hyeon-Cheol, Clint Rosenfeld, Robert J. Guttendorf, Susan B. Wade, Yong Ju Park, Ju Hee Kim, Seong Ho Kim, Bong Ho Lee, and Hye Jeong Hwang. 2024. "A Pharmacokinetic and Bioavailability Study of Ecklonia cava Phlorotannins Following Intravenous and Oral Administration in Sprague–Dawley Rats" Marine Drugs 22, no. 11: 500. https://doi.org/10.3390/md22110500
APA StyleShin, H. -C., Rosenfeld, C., Guttendorf, R. J., Wade, S. B., Park, Y. J., Kim, J. H., Kim, S. H., Lee, B. H., & Hwang, H. J. (2024). A Pharmacokinetic and Bioavailability Study of Ecklonia cava Phlorotannins Following Intravenous and Oral Administration in Sprague–Dawley Rats. Marine Drugs, 22(11), 500. https://doi.org/10.3390/md22110500