Moisturizing Effects of Alcalase Hydrolysate Fractions from Haliotis discus Viscera, a Marine Organism, on Human Dermal Fibroblasts, HaCaT Keratinocytes, and Reconstructed Human Skin Tissues
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield and Proximate Composition of H. discus Viscera Hydrolysates
2.2. Antioxidant and Hyaluronidase Inhibition Activities of H. discus Viscera Hydrolysates
2.3. Isolation of Bioactive Properties from H. discus Viscera Alcalase Hydrolysates
2.4. Effect of Al-Fr.1 on Collagen Synthesis in Human Dermal Fibroblasts
2.5. Moisturizing Effect of Al-Fr.1 on HaCaT Keratinocytes
2.6. Moisturizing Effect of Al-Fr.1 via the Mitogen-Activated Protein Kinase Signaling Pathway in HaCaT Keratinocytes
2.7. Moisturizing Effect of Al-Fr.1 in Reconstructed Human Skin Tissues
2.8. Peptide Profiling of Al-Fr.1
3. Materials and Methods
3.1. Materials
3.2. Preparation of H. discus Viscera Hydrolysates
3.3. Chemical Composition of H. discus Viscera Hydrolysates
3.4. Radical Scavenging Activities of H. discus Viscera Hydrolysates
3.5. Hyaluronidase Inhibition Activity of H. discus Viscera Hydrolysates and Its Fractions
3.6. Separation of Potential Bioactive Compounds via Gel Filtration Chromatography
3.7. Cells and Cell Culture
3.8. Cytotoxicity
3.9. Sample Treatment
3.10. Enzyme-Linked Immunosorbent Assay
3.11. Quantitative Polymerase Chain Reaction (qPCR)
3.12. Western Blotting
3.13. Production of Reconstructed Skin Tissues
3.14. Hematoxylin and Eosin Staining for Reconstructed Skin Tissues
3.15. Immunofluorescence Staining for Reconstructed Skin Tissues
3.16. Peptide Profiling
3.17. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay, R.; Augustin, M.; Griffiths, C.; Sterry, W.; Abuabara, K.; Airoldi, M.; Ajose, F.; Albert, S.; Armstrong, A.; Asgari, M.; et al. The global challenge for skin health. Br. J. Dermatol. 2015, 172, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The roles of vitamin C in skin health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.C.; Yumnam, S.; Kim, S.Y. Oral intake of collagen peptide attenuates ultraviolet B irradiation-induced skin dehydration in vivo by regulating hyaluronic acid synthesis. Int. J. Mol. Sci. 2018, 19, 3551. [Google Scholar] [CrossRef] [PubMed]
- Park, K. Role of micronutrients in skin health and function. Biomol. Ther. 2015, 23, 207. [Google Scholar] [CrossRef]
- Meyer, W.; Seegers, U. Basics of skin structure and function in elasmobranchs: A review. J. Fish Biol. 2012, 80, 1940–1967. [Google Scholar] [CrossRef]
- Yarkent, Ç.; Gürlek, C.; Oncel, S.S. Potential of microalgal compounds in trending natural cosmetics: A review. Sustain. Chem. Pharm. 2020, 17, 100304. [Google Scholar] [CrossRef]
- Dorni, A.I.C.; Amalraj, A.; Gopi, S.; Varma, K.; Anjana, S.N. Novel cosmeceuticals from plants—An industry guided review. J. Appl. Res. Med. Aromat. Plants 2017, 7, 1–26. [Google Scholar]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef]
- Mau, A.; Jha, R. Aquaculture of two commercially important molluscs (abalone and limpet): Existing knowledge and future prospects. Rev. Aquac. 2018, 10, 611–625. [Google Scholar] [CrossRef]
- Li, X.; Huang, D.; Pan, M.; Sahandi, J.; Wu, Z.; Mai, K.; Zhang, W. Nutrition and feeds for abalone: Current knowledge and future directions. Rev. Aquac. 2024, 16, 1555–1579. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, L.; Ren, Z.; Wei, P.; Weng, W. Antioxidant peptides obtained from abalone muscle hot water extract during in-vitro simulated digestion and Caco-2 cell absorption. Int. J. Food Sci. Technol. 2024, 59, 765–773. [Google Scholar] [CrossRef]
- Song, S.Y.; Park, D.H.; Lee, S.H.; Lim, H.K.; Park, J.W.; Jeong, C.R.; Kim, S.J.; Cho, S.S. Purification of phenoloxidase from Haliotis discus hannai and its anti-inflammatory activity in vitro. Fish. Shellfish. Immunol. 2023, 137, 108741. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zhang, B.; Wu, S.; Huang, L.; Ai, C.; Pan, J.; Su, Y.C.; Wang, Z.; Wen, C. Structural characterization and osteogenic bioactivity of a sulfated polysaccharide from pacific abalone (Haliotis discus hannai Ino). Carbohydr. Polym. 2018, 182, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Hao, G.; Chen, J.; Wang, J.; Weng, W. Structural characterization and immunostimulatory activity of a water-soluble polysaccharide from abalone (Haliotis discus hannai Ino) muscle. Food Sci. Hum. Wellness 2023, 12, 495–502. [Google Scholar] [CrossRef]
- Je, J.Y.; Park, S.Y.; Hwang, J.Y.; Ahn, C.B. Amino acid composition and in vitro antioxidant and cytoprotective activity of abalone viscera hydrolysate. J. Funct. Foods 2015, 16, 94–103. [Google Scholar] [CrossRef]
- Ai, C.; Duan, M.; Ma, N.; Sun, X.; Yang, J.; Wen, C.; Sun, Y.; Zhao, N.; Song, S. Sulfated polysaccharides from pacific abalone reduce diet-induced obesity by modulating the gut microbiota. J. Funct. Foods 2018, 47, 211–219. [Google Scholar] [CrossRef]
- Fujimura, Y.; Shimura, M.; Nagai, H.; Hamada-Sato, N. Evaluation of angiotensin-converting enzyme-inhibitory activity in abalone viscera fermented by Lactobacillus casei 001. J. Funct. Foods 2021, 82, 104474. [Google Scholar] [CrossRef]
- Chung, W.H.; Coorey, R.; Takechi, R.; Howieson, J. Compositional and nutritional evaluation of viscera from commercially harvested wild-caught Australian abalones (Haliotis spp.). LWT 2024, 191, 115590. [Google Scholar] [CrossRef]
- Jia, J.; Liu, Q.; Liu, H.; Yang, C.; Zhao, Q.; Xu, Y.; Wu, W. Structure characterization and antioxidant activity of abalone visceral peptides-selenium in vitro. Food Chem. 2024, 433, 137398. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem.-Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Kang, N.; Kim, E.A.; Kim, J.; Lee, S.H.; Heo, S.J. Identifying potential antioxidant properties from the viscera of sea snails (Turbo cornutus). Mar. Drugs 2021, 19, 567. [Google Scholar] [CrossRef] [PubMed]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.H.; Tavano, O.; Berenguer-Murcia, A.; Fernandez-Lafuente, R. Use of Alcalase in the production of bioactive peptides: A review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Qiao, Y.; Zou, Y.; Huang, M.; Kang, Z.; Zhou, G. Effect of Flavourzyme on proteolysis, antioxidant capacity and sensory attributes of Chinese sausage. Meat Sci. 2014, 98, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, M.; Mahmoodzadeh, K.; Habibi, Z.; Yousefi, M.; Brask, J.; Mohammadi, M. Immobilization of Bacillus amyloliquefaciens protease “Neutrase” as hybrid enzyme inorganic nanoflower particles: A new biocatalyst for aldol-type and multicomponent reactions. Int. J. Biol. Macromol. 2023, 230, 123140. [Google Scholar] [CrossRef]
- Pavan, R.; Jain, S.; Shraddha; Kumar, A. Properties and therapeutic application of bromelain: A review. Biotechnol. Res. Int. 2012, 2012, 976203. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative stress in the skin: Impact and related protection. Int. J. Cosmet. Sci. 2021, 43, 495–509. [Google Scholar] [CrossRef]
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018, 9, 392. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Zhong, W.; Liang, F.; Guo, Y.; Wang, Y.; Wang, Z. Moisturizing and antioxidant effects of Artemisia argyi essence liquid in HaCaT keratinocytes. Int. J. Mol. Sci. 2023, 24, 6809. [Google Scholar] [CrossRef]
- Ticona, L.A.; Sánchez-Corral, J.S.; Martín, C.D.G.; Jiménez, S.C.; González, A.L.; Estrada, C.T.E. Rubus urticifolius Compounds with Antioxidant Activity, and Inhibition Potential against Tyrosinase, Melanin, Hyaluronidase, Elastase, and Collagenase. Pharmaceuticals 2024, 17, 937. [Google Scholar] [CrossRef]
- Jiratchayamaethasakul, C.; Ding, Y.; Hwang, O.; Im, S.T.; Jang, Y.; Myung, S.W.; Lee, J.M.; Kim, H.S.; Ko, S.C.; Lee, S.H. In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish. Aquat. Sci. 2020, 23, 6. [Google Scholar] [CrossRef]
- Nantarat, N.; Mueller, M.; Lin, W.C.; Lue, S.C.; Viernstein, H.; Chansakaow, S.; Sirithunyalug, J.; Leelapornpisid, P. Sesaminol diglucoside isolated from black sesame seed cake and its antioxidant, anti-collagenase and anti-hyaluronidase activities. Food Biosci. 2020, 36, 100628. [Google Scholar] [CrossRef]
- Kanu, A. Recent developments in sample preparation techniques combined with high-performance liquid chromatography: A critical review. J. Chromatogr. A 2021, 1654, 462444. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, W.; Jayawardena, T.U.; Kang, N.; Kang, M.C.; Ko, S.C.; Lee, J.M.; Yim, M.J.; Lee, D.S.; Jeon, Y.J. Potential precursor of angiotensin-I converting enzyme (ACE) inhibitory activity and structural properties of peptide from peptic hydrolysate of cutlassfish muscle. J. Aquat. Food Prod. 2020, 29, 544–552. [Google Scholar] [CrossRef]
- Kim, E.A.; Kang, N.; Heo, J.H.; Park, A.; Heo, S.Y.; Ko, C.I.; Ahn, Y.S.; Ahn, G.; Heo, S.J. Potential Skin Health Benefits of Abalone By-Products Suggested by Their Effects on MAPKS and PI3K/AKT/NF-kB Signaling Pathways in HDF and HaCaT Cells. Foods 2024, 13, 2902. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kim, M. Structural and functional changes and possible molecular mechanisms in aged skin. Int. J. Mol. Sci. 2021, 22, 12489. [Google Scholar] [CrossRef]
- Jung, K.; Kim, S.H.; Joo, K.M.; Lim, S.H.; Shin, J.H.; Roh, J.; Kim, E.; Park, C.W.; Kim, W. Oral intake of enzymatically decomposed AP collagen peptides improves skin moisture and ceramide and natural moisturizing factor contents in the stratum corneum. Nutrients 2021, 13, 4372. [Google Scholar] [CrossRef]
- Xue, N.; Liu, Y.; Jin, J.; Ji, M.; Chen, X. Chlorogenic acid prevents UVA-induced skin photoaging through regulating collagen metabolism and apoptosis in human dermal fibroblasts. Int. J. Mol. Sci. 2022, 23, 6941. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, S.; Zhang, X.; Zhang, L.; Gong, J.; Han, T.; Chen, Y.; Wang, X.; Shi, J.S. Protective effect of ferulic acid-hyaluronic acid copolymer against UVB irradiation in a human HaCaT cell line. Int. J. Biol. Macromol. 2024, 279, 135570. [Google Scholar] [CrossRef]
- Oh, J.H.; Hur, W.; Li, N.; Jo, S.J. Effects of the epidermal growth factor receptor inhibitor, gefitinib, on lipid and hyaluronic acid synthesis in cultured HaCaT keratinocytes. Exp. Dermatol. 2022, 31, 918–927. [Google Scholar] [CrossRef]
- Kim, S.J.; Kwon, M.S.; Oh, S.R.; Jeon, S.H.; Lee, P.J.; Park, S.K.; Kim, T.J.; Kim, Y.M. Zerumbone Treatment Upregulates Hyaluronic Acid Synthesis via the MAPK, CREB, STAT3, and NF-κB Signaling Pathways in HaCaT Cells. Biotechnol. Bioprocess. Eng. 2022, 27, 51–60. [Google Scholar] [CrossRef]
- Ota, Y.; Yoshida, H.; Endo, Y.; Sayo, T.; Takahashi, Y. A connecting link between hyaluronan synthase 3-mediated hyaluronan production and epidermal function. Int. J. Mol. Sci. 2022, 23, 2424. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, R.; Singh, B. Insights into structural mechanisms of gating induced regulation of aquaporins. Prog. Biophys. Mol. Biol. 2014, 114, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.E.; Ngo, H.T.; Hwang, E.; Seo, S.A.; Park, S.W.; Yi, T.H. Dietary enzyme-treated Hibiscus syriacus L. protects skin against chronic UVB-induced photoaging via enhancement of skin hydration and collagen synthesis. Arch. Biochem. Biophys. 2019, 662, 190–200. [Google Scholar] [CrossRef]
- Ovaere, P.; Lippens, S.; Vandenabeele, P.; Declercq, W. The emerging roles of serine protease cascades in the epidermis. Trends Biochem. Sci. 2009, 34, 453–463. [Google Scholar] [CrossRef]
- Khan, T.A.; Bianchi, C.; Ruel, M.; Voisine, P.; Sellke, F.W. Mitogen-activated protein kinase pathways and cardiac surgery. J. Thorac. Cardiovasc. Surg. 2004, 127, 806–811. [Google Scholar] [CrossRef]
- Chen, M.; Li, L.; Wang, Z.; Li, P.; Feng, F.; Zheng, X. High molecular weight hyaluronic acid regulates P. gingivalis–induced inflammation and migration in human gingival fibroblasts via MAPK and NF-κB signaling pathway. Arch. Oral. Biol. 2019, 98, 75–80. [Google Scholar] [CrossRef]
- Lee, J.O.; Hwang, S.H.; Shen, T.; Kim, J.H.; You, L.; Hu, W.; Cho, J.Y. Enhancement of skin barrier and hydration-related molecules by protopanaxatriol in human keratinocytes. J. Ginseng Res. 2021, 45, 354–360. [Google Scholar] [CrossRef]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959. [Google Scholar]
- Jung, K.M.; Lee, S.H.; Jang, W.H.; Jung, H.S.; Heo, Y.; Park, Y.H.; Bae, S.; Lim, K.M.; Seok, S.H. KeraSkin™-VM: A novel reconstructed human epidermis model for skin irritation tests. Toxicol. Vitr. 2014, 28, 742–750. [Google Scholar] [CrossRef]
- Han, J.; Kim, S.; Lee, S.H.; Kim, J.S.; Chang, Y.J.; Jeong, T.C.; Kang, M.J.; Kim, T.S.; Yoon, H.S.; Lee, G.Y.; et al. Me-too validation study for in vitro skin irritation test with a reconstructed human epidermis model, KeraSkin™ for OECD test guideline 439. Regul. Toxicol. Pharmacol. 2020, 117, 104725. [Google Scholar] [CrossRef]
- Uhm, C.; Jeong, H.; Lee, S.H.; Hwang, J.S.; Lim, K.M.; Nam, K.T. Comparison of structural characteristics and molecular markers of rabbit skin, pig skin, and reconstructed human epidermis for an ex vivo human skin model. Toxicol. Res. 2023, 39, 477–484. [Google Scholar] [CrossRef]
- Lu, W.Y.; Li, H.J.; Li, Q.Y.; Wu, Y.C. Application of marine natural products in drug research. Bioorg. Med. Chem. 2021, 35, 116058. [Google Scholar] [CrossRef] [PubMed]
- Siahaan, E.A.; Agusman; Pangestuti, R.; Shin, K.H.; Kim, S.K. Potential cosmetic active ingredients derived from marine by-products. Mar. Drugs 2022, 20, 734. [Google Scholar] [CrossRef] [PubMed]
- Mkadem, H.; Kaanane, A. A comprehensive review on marine by-products use for the recovery of value-added products. Curr. Opin. Green. Sustain. Chem. 2024, 50, 100972. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Folin, O.; Denis, W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 1915, 22, 305–308. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Kim, E.A.; Kang, N.; Heo, S.Y.; Oh, J.Y.; Lee, S.H.; Cha, S.H.; Kim, W.K.; Heo, S.J. Antioxidant, antiviral, and anti-inflammatory activities of lutein-enriched extract of Tetraselmis species. Mar. Drugs 2023, 21, 369. [Google Scholar] [CrossRef]
- Müller, H.E. Detection of hydrogen peroxide produced by microorganisms on an ABTS peroxidase medium. Zentralblatt Bakteriol. Mikrobiol. Hyg. Ser. A Med. Microbiol. Infect. Dis. Virol. Parasitol. 1985, 259, 151–154. [Google Scholar] [CrossRef]
- Kang, N.; Kim, E.A.; Park, A.; Heo, S.Y.; Heo, J.H.; Lee, W.K.; Ryu, Y.K.; Heo, S.J. Antiviral Activity of Chlorophyll Extracts from Tetraselmis sp., a Marine Microalga, Against Zika Virus Infection. Mar. Drug 2024, 22, 397. [Google Scholar] [CrossRef]
- Ko, H.J.; Sim, S.A.; Park, M.H.; Ryu, H.S.; Choi, W.Y.; Park, S.M.; Lee, J.N.; Hyun, C.G. Anti-photoaging effects of upcycled Citrus junos seed anionic peptides on ultraviolet-radiation-induced skin aging in a reconstructed skin model. Int. J. Mol. Sci. 2024, 25, 1711. [Google Scholar] [CrossRef]
Hydrolysates | Yield (%) | Proximate Composition (%) | ||
---|---|---|---|---|
Protein | Polysaccharide | Total Polyphenol | ||
Alcalase | 88.01 ± 0.53 a | 38.77 ± 0.45 b | 6.69 ± 0.37 bc | 2.40 ± 0.01 a |
Bromelain | 74.21 ± 2.53 bc | 37.70 ± 0.26 c | 7.99 ± 1.03 ab | 2.07 ± 0.11 b |
Flavourzyme | 70.84 ± 2.11 c | 33.20 ± 0.25 d | 8.29 ± 0.59 a | 2.14 ± 0.06 b |
Neutrase | 76.21 ± 0.27 b | 42.42 ± 0.16 a | 6.15 ± 0.50 c | 2.32 ± 0.06 a |
Hydrolysates | Scavenging Activity (IC50, mg/mL) | ||
---|---|---|---|
DPPH Radical | Hydrogen Peroxide | ABTS Radical | |
Alcalase | 0.81 ± 0.03 a | 0.36 ± 0.07 b | 0.31 ± 0.00 b |
Bromelain | 1.11 ± 0.16 a | 0.49 ± 0.06 ab | 0.34 ± 0.00 a |
Flavourzyme | 0.88 ± 0.07 a | 0.51 ± 0.02 a | 0.33 ± 0.00 a |
Neutrase | 1.19 ± 0.46 a | 0.45 ± 0.04 ab | 0.31 ± 0.01 b |
Gene | Sequence | Primer |
---|---|---|
COL1A1 | 5’-AGCCCTGGTGAAAATGGAGC-3’ | Sense |
5’- TCATTTCCACGAGCACCAGC-3’ | Antisense | |
COL1A2 | 5’-GGCCCTCAAGGTTTCCAAGG-3’ | Sense |
5’-CACCCTGTGGTCCAACAACTC-3’ | Antisense | |
COL3A1 | 5’-TTGAAGGAGGATGTTCCCATCT-3’ | Sense |
5’-ACAGACACATATTTGGCATGGTT-3’ | Antisense | |
HAS1 | 5’-CCACCCAGTACAGCGTCAAC-3’ | Sense |
5’-CATGGTGCTTCTGTCGCTCT-3’ | Antisense | |
HAS2 | 5’-GTCGAGTTTACTTCCCGCCA-3’ | Sense |
5’-ATCACACCACCCAGGAGGAT-3’ | Antisense | |
HAS3 | 5’-GATTTCCTTCCTGAGCAGCG-3’ | Sense |
5’-TGTTGCGGTACATGCCCAAG-3’ | Antisense | |
AQP3 | 5’-TGCAATCTGGCACTTCGC-3’ | Sense |
5’-GCCAGCACACACACGATAA-3’ | Antisense | |
Filaggrin | 5’-GGCTAAGTGAAAGACTTGAAGAGA-3’ | Sense |
5’-AATAGACTATCAGTGGTGTCATAGG-3’ | Antisense | |
β-actin | 5’-CACTGTGCCCATCTACG-3’ | Sense |
5’-CTTAATGTCACGCACGATTTC-3’ | Antisense |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, N.; Kim, E.-A.; Heo, S.-Y.; Heo, J.-H.; Ahn, G.; Heo, S.-J. Moisturizing Effects of Alcalase Hydrolysate Fractions from Haliotis discus Viscera, a Marine Organism, on Human Dermal Fibroblasts, HaCaT Keratinocytes, and Reconstructed Human Skin Tissues. Mar. Drugs 2024, 22, 503. https://doi.org/10.3390/md22110503
Kang N, Kim E-A, Heo S-Y, Heo J-H, Ahn G, Heo S-J. Moisturizing Effects of Alcalase Hydrolysate Fractions from Haliotis discus Viscera, a Marine Organism, on Human Dermal Fibroblasts, HaCaT Keratinocytes, and Reconstructed Human Skin Tissues. Marine Drugs. 2024; 22(11):503. https://doi.org/10.3390/md22110503
Chicago/Turabian StyleKang, Nalae, Eun-A Kim, Seong-Yeong Heo, Jun-Ho Heo, Ginnae Ahn, and Soo-Jin Heo. 2024. "Moisturizing Effects of Alcalase Hydrolysate Fractions from Haliotis discus Viscera, a Marine Organism, on Human Dermal Fibroblasts, HaCaT Keratinocytes, and Reconstructed Human Skin Tissues" Marine Drugs 22, no. 11: 503. https://doi.org/10.3390/md22110503
APA StyleKang, N., Kim, E. -A., Heo, S. -Y., Heo, J. -H., Ahn, G., & Heo, S. -J. (2024). Moisturizing Effects of Alcalase Hydrolysate Fractions from Haliotis discus Viscera, a Marine Organism, on Human Dermal Fibroblasts, HaCaT Keratinocytes, and Reconstructed Human Skin Tissues. Marine Drugs, 22(11), 503. https://doi.org/10.3390/md22110503