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Abstract: Haliotis discus, an abalone, is a marine gastropod mollusk that has been cultivated globally
owing to its nutritional value and high market demand. However, the visceral parts of H. discus are
typically discarded as by-products, highlighting the need to explore their potential value in develop-
ing cosmeceuticals and pharmaceuticals. This study investigated the potential moisturizing effects of
H. discus visceral tissues. Various hydrolysates from H. discus viscera tissue were evaluated for proxi-
mate composition, radical scavenging, and hyaluronidase inhibition activities. Alcalase hydrolysate
was isolated using gel filtration chromatography (GFC), and its moisturizing effects were tested on
human dermal fibroblasts (HDF), HaCaT keratinocytes, and reconstructed human skin tissue. The
Alcalase hydrolysate showed the highest extraction yield, radical scavenging, and hyaluronidase
inhibition activities. The Alcalase hydrolysate GFC fraction 1 increased collagen synthesis-related
molecules, including procollagen type 1 in HDF and hyaluronic acid-related molecules in HaCaT
cells. These moisturizing effects were confirmed in reconstructed human skin tissues by increased
levels of aquaporin 3 and filaggrin. Fraction 1 consisted of two main peptides: DNPLLPGPPF and
SADNPLLPGPPE. In conclusion, H. discus Alcalase hydrolysate and its fractions have potential
moisturizing properties and can be used as cosmeceuticals.

Keywords: Haliotis discus; viscera; hydrolysate; moisturizing effect; cosmeceuticals; HDF; HaCaT;
reconstructed human skin tissue

1. Introduction

Human skin, the body’s largest organ, performs multiple functions, including sen-
sation, heat regulation, and water conservation. It also influences individual appearance
and identity [1,2]. Constant exposure to environmental factors such as solar ultraviolet
radiation, visible light, and pollutants causes the skin more stress than most organs, con-
tributing to early signs of aging, such as skin dehydration [2]. Skin hydration is critical for
maintaining healthy skin, and moisturizers are essential components of basic skin care [3].

The skin is composed of two main layers, the epidermis and dermis, each exhibiting
unique structural and physiological functions. As the epidermis is directly exposed to the
external environment, its primary function is to serve as a barrier and is mainly composed
of keratinocytes [4]. Keratinocytes are arranged in layers throughout the epidermis; as these
cells divide and proliferate away from the basal layer, which is closest to the dermis, they
begin to differentiate [4,5]. The dermis, located beneath the epidermis, is primarily com-
posed of complex extracellular matrix (ECM) proteins, including collagen, which provide
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structural support. Fibroblasts in the dermis synthesize extracellular matrix components,
including collagen fibers [5].

The term “cosmeceutical” refers to a cosmetic product exhibiting drug-like properties.
This blending of cosmetics and pharmaceuticals indicates the growing convergence of
these two fields [6]. Increasing interest in skin health and advances in understanding skin
structure, physiology, and aging have led to the identification of novel biomarkers of skin
health, including ECM, hyaluronic acid, aquaporin, and filaggrin. Chemical manipulation
of these targets has the potential to facilitate the restoration and maintenance of healthy
skin [7]. In recent decades, demand for cosmeceutical ingredients derived from natural
products has considerably increased. The search for novel natural ingredients in the
cosmetics industry has led to the accumulation of diverse plant materials from various
geographical regions. These include flowers, seeds, roots, leaves, twigs, and berries sourced
from various plant species [7]. The marine environment, rich in macroorganisms and
microorganisms, has evolved distinctive metabolic adaptations for survival in diverse,
challenging habitats. This has led to the synthesis of numerous secondary metabolites with
distinct functionalities, many of which are commercially valuable in the pharmaceutical
and cosmeceutical industries [8].

Haliotis discus, a species of abalone, is a marine gastropod mollusk that inhabits the
intertidal and subtidal zones of tropical and temperate coasts [9]. H. discus has been the
most harvested and studied species globally owing to its nutritional value and high market
demand [10]. Abalone has numerous biological properties, including antioxidant [11], anti-
inflammatory [12], osteogenic [13], and immunostimulatory [14] activities. In particular,
the visceral parts of abalone exhibit antioxidant [15], anti-obesity [16], and angiotensin-
converting enzyme inhibitory activities [17]. However, viscera accounting for 15-25% of the
total weight of the abalone are typically discarded as by-products, constituting a substantial
economic burden for producers [18,19]. Therefore, it is imperative to identify the potential
value of abalone viscera generated during fishing processing and investigate its use in
developing cosmeceuticals and pharmaceuticals.

To explore the potential use of H. discus, a marine mollusk, for cosmeceutical, we
investigated its moisturizing effects on human dermal fibroblasts (HDF) and HaCaT
keratinocytes, two skin cell types. Finally, we confirmed these moisturizing effects on
reconstructed human skin tissue, an advanced in vitro model.

2. Results and Discussion
2.1. Extraction Yield and Proximate Composition of H. discus Viscera Hydrolysates

Enzymatic hydrolysis is a method used to produce bioactive peptides by cleaving
peptide bonds in proteins [20]. Proteins are a major component of the viscera of marine
mollusks [21]. Thus, H. discus viscera was hydrolyzed using four commercial food-grade
proteases, including Alcalase, bromelain, Flavourzyme, and Neutrase, to extract a variety
of potential bioactive properties from the proteins. These proteases have been applied to
functional ingredients derived from marine animals [15,20,21], and each protease has dif-
ferent enzymatic characteristics: Alcalase, a serine endopeptidase; Bromelain, a mixture of
different thiol endopeptidases and other components; Flavourzyme, a mixture of exo- and
endopeptidases; Neutrase, a zinc metalloendo-protease [22-25]. The extraction yields and
proximate compositions of the four H. discus hydrolysates are summarized in Table 1. All
hydrolysates had >70% extraction yield and >30% protein content, whereas polysaccharide
and total phenolic contents were relatively low. Notably, the Alcalase hydrolysate showed
the highest extraction yield of 88.01 & 0.53% and a protein content of 38.77 £ 0.45%.
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Table 1. Extraction yield and the proximate composition of four hydrolysates from H. discus viscera.

Proximate Composition (%)

Hydrolysates Yield (%) Protein Polysaccharide = Total Polyphenol
Alcalase 88.01 +0.532 38.77 +0.45° 6.69 + 0.37 b¢ 240 +0.012
Bromelain 7421 4+253b¢ 37704+ 0.26° 7.99 +1.03 2P 2.074+0.11°
Flavourzyme 70.84 +2.11° 33.20 + 0.254 8.29 & 0.59 2 214 +0.06"
Neutrase 76.21 4+ 0.27 P 4242 4+0.162 6.15+0.50 © 2.32 +0.06 2

Values are expressed as the mean =+ SD of triplicate experiments. Different lowercase letters indicate significant
differences for each experiment.

2.2. Antioxidant and Hyaluronidase Inhibition Activities of H. discus Viscera Hydrolysates

Reactive oxygen species and oxidative stress in the skin can be induced by factors
such as solar ultraviolet radiation, visible light, pollutants, and psychological stress [26,27].
Oxidative stress also contributes to skin aging, including dermal-epidermal junction flat-
tening, reduced skin barrier function, and increased transepidermal water loss [28]. Thus,
several studies have evaluated radical scavenging and hyaluronidase inhibitory activities
to confirm the skin health effects of the candidates [29-31].

The antioxidant and hyaluronidase inhibitory activities of H. discus viscera hydrolysates
are shown in Table 2 and Figure 1. Alcalase and Flavourzyme hydrolysates showed higher
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity than bromelain and
Neutrase hydrolysates. Alcalase hydrolysate showed the highest hydrogen peroxide scav-
enging activity, with a half-maximal inhibitory concentration (ICsg) of 0.36 £ 0.07 mg/mL.
Additionally, Alcalase and Neutrase hydrolysates exhibited the highest 2,2"-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity with ICsy values
of 0.31 £ 0.00 and 0.31 £ 0.01 mg/mL, respectively. In particular, Alcalase hydrolysate
exhibited the highest hyaluronidase inhibition activity, with approximately 55% inhibition
at 0.5 mg/mL. Based on activity, extraction yield, and protein content, the viscera Alcalase
hydrolysate of H. discus was selected for further isolation experiments.

Table 2. Antioxidant activities of four hydrolysates from H. discus viscera.

Scavenging Activity (ICsp, mg/mL)

Hydrolysates DPPH Radical Hydrogen Peroxide ABTS Radical
Alcalase 0.81 £0.032 0.36 +0.07° 0.3140.00°
Bromelain 1.11+0.16% 0.49 + 0.06 20 0.34+0.002
Flavourzyme 0.88 £0.07 2 0.51 £0.022 0.33 £0.002
Neutrase 1.19+ 0467 0.45 + 0.04 2P 0.31 +0.01°

Values are expressed as the mean =+ SD of triplicate experiments. Different lowercase letters indicate significant
differences for each experiment.
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Figure 1. Hyaluronidase inhibition activity of four hydrolysates from H. discus viscera. Values are
expressed as the mean =+ SD of triplicate experiments. Different lowercase letters indicate significant
differences for each experiment.
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2.3. Isolation of Bioactive Properties from H. discus Viscera Alcalase Hydrolysates

Gel filtration chromatography is a technique used to separate protein enzymatic
hydrolysates based on molecular size [32,33]. The Alcalase hydrolysate was fractionated
into six fractions (Figure 2A). Among these, only fraction 1 (Al-Fr.1) exhibited higher
hyaluronidase inhibition activity than the Alcalase hydrolysate (Figure 2B).
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Figure 2. Hyaluronidase inhibition activities of Alcalase hydrolysates gel filtration chromatog-
raphy fractions. (A) Gel filtration chromatogram of Alcalase hydrolysates using Sephadex G-25.
(B) Hyaluronidase inhibition activities for each fraction. Values are expressed as the mean =+ SD of
triplicate experiments. Different lowercase letters indicate significant differences for each experiment.

2.4. Effect of Al-Fr.1 on Collagen Synthesis in Human Dermal Fibroblasts

Dermal fibroblasts synthesize and organize the ECM, including collagens (type 1 and
type 3 collagens, accounting for approximately 95%), which are essential components of
dermal tissue [34,35]. Collagen provides tensile strength and maintains cellular structure;
thus, a decrease in the number and length of collagen fibers in fibroblasts reduces der-
mal elasticity, causing deep wrinkles and dryness of the epidermal layer [36]. Thus, we
evaluated the effect of Al-Fr.1 on collagen synthesis in HDF (Figure 3). No cytotoxicity
was observed for Al-Fr.1 at concentrations of 12.5, 25, and 50 pug/mL in HDF, and cell
proliferation was noted at 25 and 50 ug/mL (Figure 3A). Al-Fr.1 increased procollagen
type 1 levels in a concentration-dependent manner, with a twofold increase at 50 pg/mL
compared to the control (Figure 3B). Al-Fr.1 also significantly upregulated the transcription
of Collagen Type I Alpha 1 chain (COL1A1), COL1A2, and COL3A1, the primary collagen
isotypes produced by fibroblasts, in a concentration-dependent manner (Figure 3C-E).
Transforming growth factor (TGF)-[3, a major pro-fibrogenic growth factor, induces SMAD2
to bind to the cytoplasmic receptor domain, leading to serine residue phosphorylation. The
phosphorylated SMAD2 subsequently translocates to the nucleus and binds to its promoter
sequence, activating procollagen synthesis [37]. Al-Fr.1 increased TGF-f3 expression and
SMAD?2 phosphorylation levels compared to the control. Therefore, our findings indicated
that Al-Fr.1 upregulates collagen synthesis in HDF cells via the TGF-3 /SMAD pathway.



Mar. Drugs 2024, 22, 503

50f 15

A s B 250 a
b
a -
—_ a —_
g p ab o < 200 .
z 100 ;g P
=1 =3
B Eé 100 :
= 50 8o
5] 2% 50
0
Control 125 25 50 Control12.5 25 50
Al-Fr.1 (pg/ml) AI-Fr.1 (pg/ml)
[ E
5 25 D 4s- = 1.54 2
= ) a [} ab
s 20 a c ab c ab
<82 ab <8 ¢ bc <2 b
Z0 Z5 Z0
[ bc ¥ 5 1.0 x g 1.0
g5 15 £ 2 £
L @ N 8 b lE
g 5 1.0 <z =
=2 49 49 -
[el7} o 0.5 oW 0.5
Ogos o9 o8
g g g
© 00 @ g0 @ 0.0-
Control 125 25 50 Control12.5 25 50 Control12.5 25 50
Al-Fr.1 (ug/mi) Al-Fr.1 (ug/ml) Al-Fr.1 (ug/ml)
- . 25
AVFLd (ugim) - 125 25 50 § - == Control
TGFR . —— % § 2.0 =3 12.5 pg/ml
:-‘w‘ - s % & s B3 25 pg/ml
o A ’ .
p-SMAD2 m. "‘ S §§ =3 50 pg/ml
o N
S 10
swapz D D () 3 5
[
S = ® 6 05
B-actin --- § £
: ' S

e
o

TGFB p-Smad/Smad

Figure 3. Collagen synthesis effects of Al-Fr.1 via the TGF[3/ SMAD signaling pathway in HDF. Cells
were treated with different Al-Fr.1 concentrations (12.5, 25, and 50 pug/mL) for 24 h. (A) Cell viability
was measured using an MTT assay. (B) Procollagen type 1 production levels were measured in
supernatants using the Procollagen Type 1 C-peptide Kit. (C-E) mRNA levels of COL1A1, COL1A2,
and COL3A1 were analyzed using qPCR. (F) Protein levels of TGF3, p-SMAD2, SMAD2, and (3-actin
were analyzed using Western blot analysis. Quantitative analysis was performed using Image] 1.54k
software. Values are expressed as the mean + SD of triplicate experiments. Different lowercase letters
indicate significant differences.

2.5. Moisturizing Effect of Al-Fr.1 on HaCaT Keratinocytes

Hyaluronic acid (HA), an anionic glycosaminoglycan, is a key component of the
ECM in basal keratinocytes, synthesized by HA synthase (HAS), and plays a role in skin
moisturizing [38-40]. Therefore, the effect of Al-Fr.1 on HA synthesis was evaluated in
HaCaT keratinocytes. Al-Fr.1 showed no cytotoxicity at 12.5, 25, and 50 pg/mL and induced
cell proliferation at 25 and 50 ng/mL (Figure 4A), similar to fibroblasts. Al-Fr.1 significantly
increased HA levels at all tested concentrations (12.5, 25, and 50 ug/mL) (Figure 4B). Al-Fr.1
also upregulated the transcription of HAS2 and HAS3, membrane-associated enzymes
responsible for HA synthesis (Figure 4C,D). As HAS2 and HAS3 are the most abundant
isotypes in keratinocytes [40,41], these results suggested that Al-Fr.1 induces HA synthesis.

Aquaporins 3 (AQP3) and filaggrin are key moisturizing factors involved in epidermal
homeostasis. Aquaporins are a ubiquitous family of membrane proteins that maintain
water homeostasis in all living cells by facilitating rapid water transport across cell mem-
branes [42]. Filaggrin, found in the stratum corneum (the outer layer of the epidermis),
contributes to water retention by incorporation into the lipid envelope or releasing free
amino acids [43,44]. As shown in Figure 4E,F, Al-Fr.1 increased the transcription levels
of AQP3 and filaggrin in HaCaT keratinocytes. Thus, these results indicated that Al-Fr.1
possesses a moisturizing effect by synthesizing HA and upregulating AQP3 and filaggrin
in keratinocytes.
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Figure 4. Moisturizing effect of Al-Fr.1 in HaCaT cells. Cells were treated with different Al-Fr.1
concentrations (12.5, 25, and 50 ug/mL) for 24 h. (A) Cell viability was measured using the MTT
assay. (B) Hyaluronic acid production levels were measured in supernatants using the hyaluronan Kit.
(C-F) mRNA levels of HAS2, HAS3, AQP3, and filaggrin were analyzed using qPCR. Values
are expressed as the mean + SD of triplicate experiments. Different lowercase letters indicate
significant differences.

2.6. Moisturizing Effect of Al-Fr.1 via the Mitogen-Activated Protein Kinase Signaling Pathway in
HaCaT Keratinocytes

The mitogen-activated protein kinase (MAPK) signaling pathway is involved in several
cellular functions, including cell growth, antioxidant activity, and inflammation [45,46]. To
analyze the relationship between the moisturizing effect of Al-Fr.1 and MAPK signaling, the
expression and phosphorylation levels of proteins, including extracellular signal-regulated
kinases (ERK), c-Jun NH2-terminal protein kinases (JNK), and p38, were measured in
HaCaT keratinocytes (Figure 5). Al-Fr.1 induced phosphorylation of both ERK and p38
compared with the control group, with a notable increase in p38 phosphorylation. In
contrast, Al-Fr.1 did not influence JNK phosphorylation levels. A relationship between
skin hydration and the MAPK signaling pathway has been reported. Activation of the ERK
signaling pathway is important for increasing HAS expression [40]. Protopanaxatriol, a
secondary metabolite of ginsenosides, upregulates filaggrin and HAS expression, which is
blocked by MAPK inhibitors [47]. Therefore, our findings indicated that Al-Fr.1 possesses a
moisturizing effect via the ERK and p38 pathways in HaCaT keratinocytes.
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% — = Control
2 E
3 ‘g = 12.5 pg/ml
o4 = 25 pug/ml
20
g9 = 50 pg/ml
SN
3w
cE
8E
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Figure 5. Effect of Al-Fr.1 via the MAPK signaling pathway in HaCaT cells. Cells were treated with
Al-Fr.1 at concentrations of 12.5, 25, and 50 pg/mL for 24 h. Protein levels of p-ERK, ERK, p-JNK,
JNK, p-p38, p38, and -actin were analyzed using Western blot analysis. Quantitative analysis was
performed using Image] software. Values are expressed as the mean =+ SD of triplicate experiments.
Different lowercase letters indicate significant differences.
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2.7. Moisturizing Effect of Al-Fr.1 in Reconstructed Human Skin Tissues

The Three Rules (3Rs: Replacement, Reduction, and Refinement), established in 1959,
guide the ethical use of animals in product testing and scientific research [48]. Animal
testing is controversial owing to the discomfort and pain experienced by animals, whether
mild or severe. Furthermore, interspecies differences raise doubts about the reliability
of animal testing for predicting human outcomes [49]. The European Commission and
other regulatory bodies worldwide have banned animal testing for cosmetics. Research
is actively developing alternative methods to replace animal testing in line with the ‘3R’s
Principle’ [50].

The application of a reconstructed human skin model, comprising a well-formed epi-
dermis and dermis, offers a promising alternative approach for evaluating cosmeceutical
candidates [51]. The moisturizing effect of Al-Fr.1 was confirmed by measuring AQP3
and filaggrin expression in reconstructed human skin tissues using hematoxylin and eosin
(H&E) and immunofluorescence staining techniques (Figure 6). The reconstructed human
skin tissues used demonstrated general morphology, with a well-formed epidermis and
dermis. The epidermis formed a hard stratum corneum and several other layers, and the
dermis formed collagen fibrils around the fibroblasts (Figure 6A). Al-Fr.1 increased protein
expression levels of AQP3 by 28.89% compared with the control in both the epidermis
and dermis, excluding the stratum corneum (Figure 6B). Al-Fr.1 also increased the protein
expression levels of filaggrin from the stratum granulosum to the stratum corneum of the
epidermis by 4.75% compared to the control; however, this difference was not significant
(Figure 6C). These results indicated that Al-Fr.1 enhances skin moisturization by regulat-
ing AQP3 and filaggrin expression levels, suggesting that reconstructed skin tissues are
advanced in vitro models that complement cell-based experimental techniques.
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Figure 6. Moisturizing effect of Al-Fr.1 in human artificial skin tissues. Skin tissues were treated
with Al-Fr.1 for 5 d, and tissue sections underwent H&E and immunofluorescence staining.
(A) Morphology of the human artificial skin tissues. Comparison of AQP3 (B) and filaggrin (C)
expression in human artificial skin tissues. Quantitative fluorescence analysis was performed using
Image] software. Values are expressed as the mean £ SD of triplicate experiments. Different lowercase
letters indicate significant differences.
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2.8. Peptide Profiling of Al-Fr.1

The peptide profiling of Al-Fr.1 is shown in Figure 7. Seven peptides > 1000 Da were
detected (KLPAITDPGPE, VVGTDDIELPPGIL, VVGTDDIE*LPPGIL, GGELEMPWSFDRL,
SYELPDGQVITIG, EDEFLGEEVEMI, DNPLLPGPPE, and SADNPLLPGPPF) in Al-Fr.1.
Notably, DNPLLPGPPF and SADNPLLPGPPF were repeatedly detected and thus identified
as indicator peptides for Alcalase-Fr.1.
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Figure 7. Two main peptides from Al-Fr.1.

Marine organisms synthesize a diverse range of secondary metabolites to adapt to
various ocean environments, including high salinity, high pressure, low hypoxia, and
low light, making them attractive sources of novel functional ingredients [52]. However,
sustainability is a critical consideration when developing such ingredients from marine
resources. Marine by-products offer an environmentally friendly and sustainable source of
materials [53,54].

In 2019, the production of H. discus reached 190,000 tons in China and South Korea, and
the viscera, which accounts for approximately 15-25% of total weight, is often discarded as
a by-product, contributing to environmental pollution and wasting economically valuable
resources [34]. Using abalone viscera is an effective eco-friendly strategy for expanding the
cosmeceutical industry. Hydrolysate fractions and peptides derived from H. discus viscera
have the potential to be sustainable materials for cosmeceutical product development.

To enhance the technology utilizing marine by-products, including abalone, compre-
hensive research should be conducted in relation to both food nutrition and medicinal
applications, extending beyond cosmeceuticals. A substantial body of prior research has
been conducted on functional ingredients derived from molluscan viscera [15-17]. H. discus
feeds on seaweeds containing various antioxidants, which are used in cosmeceuticals. How-
ever, there are currently no direct studies on the relationship between diet and the peptide
profiling and/or bioactivity of the viscera. Moreover, further investigation is necessary to
ascertain whether the moisturizing effects are also exhibited with dietary intake of abalone.
This should include additional research on hydrolysates using digestive enzymes such
as pepsin and trypsin, as well as an analysis of the potential interaction with the body
(Absorption, Distribution, Metabolism, Excretion, Toxicity).

3. Materials and Methods
3.1. Materials

Abalone (H. discus) was cultivated on a commercial scale at a fish farm in Wando,
South Korea, and subsequently purchased from a fishing village market. After separating
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the shell, muscle, and viscera, visceral tissue was carefully washed three times with tap
water and stored at —20 °C. Visceral tissues were freeze-dried and finely ground before
hydrolysis. Commercial proteases, including Alcalase 2.4 L FG, Flavourzyme 500 MG,
and Neutrase 0.8 L, were purchased from Novozyme Nordisk (Bagasvaerd, Denmark).
Bromelain was purchased from Sigma-Aldrich (St. Louis, MO, USA). All other chemicals
and reagents used were of analytical grade.

3.2. Preparation of H. discus Viscera Hydrolysates

Hydrolysates of H. discus viscera were prepared according to the method described by
Kang et al. [21]. Two grams of H. discus viscera powder was hydrolyzed in 100 mL of buffer
with hydrolytic protease in a substrate/enzyme ratio of 100:1 (w/w). Enzymatic hydrolysis
was performed for 24 h under optimal temperature and pH conditions: Alcalase (50 °C,
pH 8), bromelain (50 °C, pH 7), Flavourzyme (50 °C, pH 7), and Neutrase (50 °C, pH 6).
Each hydrolysate was boiled for 10 min at 95 °C to inactivate the enzyme and subsequently
centrifugated at 3200 rpm and 20 min at 4 °C to separate the residue. All hydrolysates were
freeze-dried and stored at —20 °C. The yields of each H. discus viscera hydrolysate were
calculated as the percentage of dry weight relative to the initial sample weight.

3.3. Chemical Composition of H. discus Viscera Hydrolysates

The protein content was analyzed using the bicinchoninic acid (BCA) protein assay
Kit (Thermo Scientific, Waltham, MA, USA). Total polysaccharide content was analyzed
using the phenol-sulfuric acid method [55], and total polyphenolic content was measured
using the Folin—Ciocalteu method [56]. Each assay used bovine serum albumin, glucose,
and gallic acid as reference standards.

3.4. Radical Scavenging Activities of H. discus Viscera Hydrolysates

Each hydrolysate of H. discus viscera was dissolved in distilled water at various
concentrations for radical scavenging assays. DPPH radical, hydrogen peroxide and ABTS
scavenging assays were performed using modified methods from Blois [57], Kim et al. [58],
and Muller [59], respectively. The IC5( of each hydrolysate was calculated for comparison.

3.5. Hyaluronidase Inhibition Activity of H. discus Viscera Hydrolysates and Its Fractions

Each hydrolysate of H. discus viscera and its fractions were dissolved in distilled
water at various concentrations for the hyaluronidase inhibition activity assay. The
hyaluronidase inhibitory effect was evaluated according to the method described by Ji-
ratchayamaethasakul et al. (2020) [30]. Samples and hyaluronidase in 0.1 M of acetate
buffer (pH 3.6) were combined in a test tube and incubated at 37 °C for 20 min. A 12.5 mM
calcium chloride was added to the mixture, followed by another incubation at 37 °C for
20 min. The activated mixture was treated with 2.4 mg/mL HA in 0.1 M acetate buffer
(pH 3.6) and incubated at 37 °C for 40 min. Thereafter, 0.4N sodium hydroxide and 0.4N
potassium tetraborate tetra-hydrated were added and incubated in a water bath at 100 °C
for 3 min. After cooling at 25 °C, a 10 mg/mL 4-(Dimethylamino)benzaldehyde solution
(composed of 35 mL acetic acid and 5 mL of 10N hydrochloric acid) was added to the
mixture and incubated at room temperature for 20 min. Absorbance was measured at
585 nm (Multiskan Go, Thermo Scientific).

3.6. Separation of Potential Bioactive Compounds via Gel Filtration Chromatography

Hydrolysates of H. discus viscera were separated by molecular size using gel filtration
chromatography, as previously described by Kang et al. [21]. The hydrolysate was dissolved
in distilled water, loaded onto a Sephadex G-25 gel filtration column (2.5 x 75 cm), and
equilibrated with distilled water. The column was eluted with distilled water at a flow rate
of 1.0 mL/min. The eluted samples were collected at 5 mL/tube, and elution peaks were
detected at 220 nm.
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3.7. Cells and Cell Culture

HDF (PCS-201-012) was purchased from the American Type Culture Collection (Man-
assas, VA, USA) and cultured for 5-9 passages. Dulbecco’s modified Eagle’s medium
(DMEM)/Nutrient Mixture F-12 (DMEM/F-12) mixed at a ratio of 3:1, supplemented
with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin, was used for HDF
maintenance. HaCaT keratinocytes (CLS300493) were purchased from Cytion (Eppelheim,
Germany) and cultured for 3545 passages. DMEM supplemented with 10% FBS and
1% penicillin/streptomycin was used to maintain HaCaT keratinocytes. These cells were
incubated at 37 °C in a 5% CO, humidified atmosphere.

3.8. Cytotoxicity

HDEF (2 x 10 cells/well in a 96-well plate) and HaCaT keratinocytes (2 x 10° cells/well
in a 24-well plate) were seeded. After 16 h of incubation, cells were treated with various
concentrations of test samples (12.5, 25, and 50 pg/mL) for 24 h. The cell viability was
measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasolium bromide (MTT)
(Invitrogen, Waltham, MA, USA) assay [60].

3.9. Sample Treatment

HDF (2 x 10 cells/well in a 96-well plate) and HaCaT keratinocytes (2 x 10° cells/well
in a 24-well plate) were seeded and incubated for 16 h. After washing twice with Dulbecco’s
Phosphate Buffered Saline (DPBS), new serum-free media (DMEM and DMEM/F-12 at a
ratio of 3:1 with 1% penicillin/streptomycin) was added to the cells. Thereafter, cells were
treated with various concentrations of test samples (12.5, 25, and 50 pg/mL) for 24 h, and
each supernatant media and protein were collected for the next experiments.

3.10. Enzyme-Linked Immunosorbent Assay

HDF and HaCaT keratinocytes treated with the test samples were prepared as de-
scribed in Section 3.9. Procollagen type 1 and HA levels were measured using the enzyme-
linked immunosorbent assay with the Procollagen Type I C-peptide Kit (Takara Bio Inc.
Shiga, Japan) and hyaluronan assay Kit (R&D Systems, Minneapolis, MN, USA), respec-
tively, according to the manufacturer’s instructions. Procollagen type 1 levels were mea-
sured in the supernatant media of HDF, and HA levels were measured in the supernatant
media of HaCaT keratinocytes.

3.11. Quantitative Polymerase Chain Reaction (JPCR)

HDF and HaCaT keratinocytes treated with the test samples were prepared as de-
scribed in Section 3.9. Thereafter, their mRNA levels were assessed. The qPCR was
performed according to the method described by Kang et al. [60]. Total RNA was isolated
using the TRIzol reagent (Invitrogen), and complementary DNA (cDNA) was synthesized
from 2 ug of total RNA using a High-Capacity RNA-to-cDNA Kit (Applied Biosystems,
Waltham, MT, USA). gPCR was performed using the Power SYBR Green PCR Master Mix
(Applied Biosystems) on a QuantStudio 3 Real-Time PCR System (Thermo Fisher Scientific).
Primers used in the present study are listed in Table 3.

Table 3. Primer information.

Gene Sequence Primer
5-AGCCCTGGTGAAAATGGAGC-3’ Sense
COL1A1
5- TCATTTCCACGAGCACCAGC-3’ Antisense
5-GGCCCTCAAGGTTTCCAAGG-3’ Sense
COL1A2
5-CACCCTGTGGTCCAACAACTC-3’ Antisense
5-TTGAAGGAGGATGTTCCCATCT-3’ Sense
COL3A1

5-ACAGACACATATTTGGCATGGTT-3’ Antisense




Mar. Drugs 2024, 22, 503 11 0of 15
Table 3. Cont.
Gene Sequence Primer

5-CCACCCAGTACAGCGTCAAC-3 Sense

HASI 5-CATGGTGCTTCTGTCGCTCT-3’ Antisense
5-GTCGAGTTTACTTCCCGCCA-3’ Sense

HAS2 5-ATCACACCACCCAGGAGGAT-3 Antisense
5-GATTTCCTTCCTGAGCAGCG-3’ Sense

HAS3 5-TGTTGCGGTACATGCCCAAG-3 Antisense
5-TGCAATCTGGCACTTCGC-3’ Sense

AQPS 5-GCCAGCACACACACGATAA-3’ Antisense
) ) 5-GGCTAAGTGAAAGACTTGAAGAGA-3’ Sense

Filaggrin 5-AATAGACTATCAGTGGTGTCATAGG-3’ Antisense
) 5-CACTGTGCCCATCTACG-3 Sense

P-actin 5-CTTAATGTCACGCACGATTTC-3' Antisense

3.12. Western Blotting

HDF and HaCaT keratinocytes treated with test samples were prepared as described
in Section 3.9 and assessed for protein expression levels. Western blotting was performed
following the method described by Kim et al. [34]. The cells were extracted using RIPA
cell lysis buffer (1x) with EDTA (R4100-010, GenDEPOT, Katy, TX, USA), and the protein
concentrations in the cell lysates were measured using the BCA Protein Assay Kit (Thermo
Scientific). The same concentrated proteins were separated by Bolt™ 12% Bis-Tris Plus Gels
electrophoresis and transferred to nitrocellulose membranes (iBlot 2 NC regular Stacks)
using an iBlot 2 gel transfer machine (Invitrogen). The membranes were then blocked
with a mixture of 3% BSA (A7906, Sigma-Aldrich) and 2% skim milk (232100, BD, Franklin
Lakes, NJ, USA) in tris-buffered saline (TBS) containing 0.1% tween 20 (TBST) for 1.5 h.
The membranes were washed with TBST three times, incubated with primary antibodies
in Pierce™ Clear Milk Blocking Buffer (Thermo Scientific) overnight at 4 °C, washed
with TBST three times, incubated with appropriate secondary antibodies, and washed
again. The primary antibodies against TGFf (3711), p-smad2 (8828), smad2 (8685), ERK
(4695), p-JNK (9251), JNK (9252), p-p38 (4511), and p38 (9690) were obtained from Cell
Signaling Technology (Beverly, MA, USA), and p-ERK (sc-7383) and (3-actin (sc-47778)
were purchased from Santacruz (Dallas, TX, USA), and were diluted at a 1:1000 ratio.
The secondary antibodies anti-mouse IgG (G21040) and anti-rabbit IgG (G21234) were
purchased from Invitrogen and diluted at a 1:3000 ratio. Protein bands were detected using
SuperSignal™ West Pico PLUS Chemiluminescent Substrate (34580, Thermo Scientific)
and FUSION SOLO (Vilber Lourmat, France), and the intensity of the protein bands was
quantified using Image] 1.54k software.

3.13. Production of Reconstructed Skin Tissues

In Korea, some companies are involved in the production of high-quality reconstructed
skin tissues and analyses using these tissues, with the objective of making advanced
models accessible to the wider scientific community. COSEED BIOPHARM Co., LTD
Jeju Branch handles high-quality reconstructed skin tissues composed of normal human
melanocytes (NHMs), normal human keratinocytes (NHKSs), and fibroblasts. Reconstructed
skin tissues were produced by COSEED BIOPHARM Co., LTD Jeju branch (Cheongju,
Korea), according to the method described by Ko et al. [61]. Dermal equivalents were
obtained after contraction at 37 °C during 5 d of incubation with a mixture containing
bovine type I collagen and fibroblasts. NHKs and NHMs were co-seeded at concentrations
of 2 x 10° and 2 x 10* cells/well, respectively, on the top of the shrunken dermal equivalent.
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The culture was then immersed in a co-culture growth medium (CGM) comprising 80%
keratinocyte growth medium containing 1.5 mM calcium and 20% melanocyte growth
medium for three days to facilitate monolayer formation (immersion phase). In the post-
immersion phase, cultures were raised to an air-liquid interface and maintained for at least
12 d for stratification and differentiation of the keratinocytes in CGM supplemented with
50 mg/mL L-ascorbic acid and 10 ng/mL epidermal growth factor.

3.14. Hematoxylin and Eosin Staining for Reconstructed Skin Tissues

H&E staining was performed following the modified method described by Ko et al. [61].
Tissues were treated with test samples (500 pg/mL) at 20 pL/1 time for 2 d and incubated
for 5 d. Tissues were fixed in 10% neutral formaldehyde for 24 h and transferred to
an Optimal Cutting Temperature compound to prepare frozen blocks. The tissues were
sectioned at 12 um for tissue slides. Tissue slides were stained with hematoxylin solution
for 2 min, washed, and subsequently stained with Eosin Y solution for 3 min. Tissue slides
were dehydrated with alcohol, cleared with xylene, and mounted with Canada balsam.
Tissue morphology was examined, and positively stained areas were quantified using
Image]J software.

3.15. Immunofluorescence Staining for Reconstructed Skin Tissues

Frozen block slides of reconstructed skin tissues treated with test samples were pre-
pared as described in Section 3.14. Tissue slides were covered with an anti-goat serum-
blocking buffer and subsequently incubated overnight with primary antibodies (Filaggrin
(1:100, Santacruz) and AQP3 (1:200 Santacruz)) at 4 °C. After washing the primary anti-
bodies with DPBS, tissues were incubated with secondary antibodies (goat anti-mouse IgG
Alexa Fluor 488 (1:500) and goat anti-rabbit IgG Alexa Fluor 555 (1:500); Abcam, Cambridge,
UK) at 25 °C for 1 h. Tissue slides were washed with DPBS and mounted with a mounting
medium containing DAPI. Protein expression in tissues was examined, and positively
stained areas were quantified using Image] software.

3.16. Peptide Profiling

The sample was desalted using a Sep-Pak C18 cartridge. The molecular mass of the
peptides was determined using a UHPLC Ultimate 3000 (Thermo Fisher Scientific) and
a Q-TOF mass spectrometer (TripleTOF 5600+; AB Sciex, Toronto, ON, Canada). Peptide
profiling data analysis was performed using protein pilot v5.0 software (AB Sciex). An AC-
QUITY UPLC BEH C18 column (130 A 17 pum, 2.1 x 50 mm, Waters Corporation, Milford,
MA, USA) was used at a column temperature of 50 °C and a flow rate of 0.3 mL/min. The
mobile phases consisted of distilled water with 0.1% formic acid (A) and acetonitrile with
0.1% formic acid (B): 0 min, 1% B; 0-5 min, 1% B; 5-95 min, 50% B; 95-100 min, 100% B;
100-105 min, 100% B; 105-106 min, 1% B; 106-120 min, 1% B.

3.17. Statistical Analyses

All data were generated in triplicate and are presented as means + standard deviations.
A Kruskal-Wallis test was conducted to compare the data, followed by Tukey’s post hoc test
using GraphPad Prism 10 software (GraphPad Software, San Diego, CA, USA). Statistical
significance was defined as p < 0.05.

4. Conclusions

Convergence science is evolving at the intersection of several fields in human health.
Cosmeceuticals, representative convergence science, have emerged as a substantial area of
interest in skin health. Advances in oceanographic science and technology have revealed
numerous natural marine-derived product candidates for use as cosmeceuticals. Addi-
tionally, sophisticated technologies are being developed to accurately and rapidly assess
the potential of these natural products. Furthermore, ongoing efforts are being made to
develop environmentally sustainable industries, including the utilization of by-products.
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This study aimed to explore the potential cosmeceutical use of H. discus, a marine mollusk,
especially its visceral parts as marine by-products. We confirmed the moisturizing effects of
the hydrolysate fraction of the visceral tissue of H. discus in HDF and HaCaT keratinocytes
by regulating collagen synthesis and HA production. Finally, the moisturizing effects were
further validated in reconstructed human skin tissue, an advanced in vitro model, which
showed increased levels of AQP3 and filaggrin. In conclusion, these results indicated that
the hydrolysate fraction of H. discus has potential moisturizing properties and can be used
as a cosmeceutical.
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