Influence of Silicate Concentrations on Growth, Carotenoid, and Fatty Acid Profiles of the Marine Diatom Conticribra weissflogii
Abstract
:1. Introduction
2. Results
2.1. Growth and Biomass Concentration of C. weissflogii
2.2. Carotenoid and Fucoxanthin Contents of C. weissflogii
2.3. Fatty Acid Profile of C. weissflogii
2.4. Biomass Productivity and Fucoxanthin Productivity of C. weissflogii
3. Discussion
4. Materials and Methods
4.1. Algal Strain and Culture Conditions
4.2. Experimental Setup
4.3. Determination of Cell Density and Biomass Concentration
4.4. Carotenoid and Fucoxanthin Extraction and Analysis
4.5. FAME Test and GC Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kranzler, C.F.; Krause, J.W.; Brzezinski, M.A.; Edwards, B.R.; Biggs, W.P.; Maniscalco, M.; McCrow, J.P.; Van Mooy, B.A.S.; Bidle, K.D.; Allen, A.E.; et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. 2019, 4, 1790–1797. [Google Scholar] [CrossRef]
- Fu, W.; Shu, Y.; Yi, Z.; Su, Y.; Pan, Y.; Zhang, F.; Brynjolfsson, S. Diatom morphology and adaptation: Current progress and potentials for sustainable development. Sustain. Horiz. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Mann, D.G.; Vanormelingen, P. An inordinate fondness? the number, distributions, and origins of diatom species. J. Eukaryot. Microbiol. 2013, 60, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Malviya, S.; Scalco, E.; Audic, S.; Vincent, F.; Veluchamy, A.; Poulain, J.; Wincker, P.; Iudicone, D.; De Vargas, C.; Bittner, L.; et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. USA 2016, 113, E1516–E1525. [Google Scholar] [CrossRef]
- Delasoie, J.; Zobi, F. Natural diatom biosilica as microshuttles in drug delivery systems. Pharmaceutics 2019, 11, 102433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, H.; Ke, Y.; Li, B. Effect of the silica content of diatoms on protozoan grazing. Front. Mar. Sci. 2017, 4, 202. [Google Scholar] [CrossRef]
- Martin-Jézéquel, V.; Hildebrand, M.; Brzezinski, M.A. Silicon metabolism in diatoms: Implications for growth. J. Phycol. 2000, 36, 821–840. [Google Scholar] [CrossRef]
- Marella, T.K.; Tiwari, A. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresour. Technol. 2020, 307, 123245. [Google Scholar] [CrossRef]
- Rui, X.; Amenorfenyo, D.K.; Peng, K.; Li, H.; Wang, L.; Huang, X.; Li, C.; Li, F. Effects of different nitrogen concentrations on co-production of fucoxanthin and fatty acids in Conticribra weissflogii. Mar. Drugs 2023, 21, 106. [Google Scholar] [CrossRef]
- Kumarasinghe, H.S.; Gunathilaka, M.D.T.L. A systematic review of fucoxanthin as a promising bioactive compound in drug development. Phytochem. Lett. 2024, 61, 52–65. [Google Scholar] [CrossRef]
- Guihéneuf, F.; Stengel, D.B. LC-PUFA-enriched oil production by microalgae: Accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar. Drugs 2013, 11, 4246–4266. [Google Scholar] [CrossRef] [PubMed]
- Kanamoto, A.; Kato, Y.; Yoshida, E.; Hasunuma, T.; Kondo, A. Development of a method for fucoxanthin production using the haptophyte marine microalga Pavlova sp. OPMS 30543. Mar. Biotechnol. 2021, 23, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Amenorfenyo, D.K.; Rui, X.; Huang, X.; Li, C.; Li, F. Effect of iron concentration on the co-production of fucoxanthin and fatty acids in Conticribra weissflogii. Mar. Drugs 2024, 22, 106. [Google Scholar] [CrossRef] [PubMed]
- Benoiston, A.S.; Ibarbalz, F.M.; Bittner, L.; Guidi, L.; Jahn, O.; Dutkiewicz, S.; Bowler, C. The evolution of diatoms and their biogeochemical functions. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160397. [Google Scholar] [CrossRef]
- Jiang, Y.; Laverty, K.S.; Brown, J.; Brown, L.; Chagoya, J.; Burow, M.; Quigg, A. Effect of silicate limitation on growth, cell composition, and lipid production of three native diatoms to Southwest Texas desert. J. Appl. Phycol. 2015, 27, 1433–1442. [Google Scholar] [CrossRef]
- Yamada, K.; Yoshikawa, S.; Ichinomiya, M.; Kuwata, A.; Kamiya, M.; Ohki, K. Effects of silicon-limitation on growth and morphology of Triparma laevis NIES-2565 (Parmales, Heterokontophyta). PLoS ONE 2014, 9, e103289. [Google Scholar] [CrossRef]
- Silviananda, A.; Hadi, E. The influence of differences in silicate concentration on the growth of microalgae Thalassiosira sp. at the laboratory scale. J. Mar. Biotechnol. Immunol. 2024, 2, 10–14. [Google Scholar]
- Umiatun, S.; Carmudi, C.; Christiani, C. Hubungan antara kandungan silika dengan kelimpahan diatoma benthik di sepanjang sungai pelus kabupaten banyumas (The relationship between silica content and benthic diatom abundance along the Pelus River, Banyumas Regency). Scr. Biol. 2017, 4, 61–67. [Google Scholar] [CrossRef]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Asp. Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Muthuirulappan, S.; Francis, S.P. Anti-cancer mechanism and possibility of nano-suspension formulation for a marine algae product fucoxanthin. Asian Pac. J. Cancer Prev. 2013, 14, 2213–2216. [Google Scholar] [CrossRef]
- Kumar Singh, P.; Bhattacharjya, R.; Kiran Marella, T.; Saxena, A.; Mishra, B.; Savio, S.; Congestri, R.; Sindhu, R.; Binod, P.; Tiwari, A. Production of lipids and proteins from marine diatoms under changing pH and silica. Bioresour. Technol. 2022, 362, 127766. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, M. Carotenoid biosynthesis in diatoms. Photosynth. Res. 2010, 106, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Loredo, A.; Benavides, J.; Rito-Palomares, M. Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. J. Appl. Phycol. 2016, 28, 849–860. [Google Scholar] [CrossRef]
- Mao, X.; Chen, S.H.Y.; Lu, X.; Yu, J.; Liu, B. High silicate concentration facilitates fucoxanthin and eicosapentaenoic acid (EPA) production under heterotrophic condition in the marine diatom Nitzschia laevis. Algal Res. 2020, 52, 102086. [Google Scholar] [CrossRef]
- Yi, Z.; Su, Y.; Cherek, P.; Nelson, D.R.; Lin, J.; Rolfsson, O.; Wu, H.; Salehi-Ashtiani, K.; Brynjolfsson, S.; Fu, W. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum. Microb. Cell Fact. 2019, 18, 209. [Google Scholar] [CrossRef]
- Remize, M.; Brunel, Y.; Silva, J.L.; Berthon, J.Y.; Filaire, E. Microalgae n-3 PUFAs production and use in food and feed industries. Mar. Drugs 2021, 19, 113. [Google Scholar] [CrossRef]
- Bastos, C.R.V.; Maia, I.B.; Pereira, H.; Navalho, J.; Varela, J.C.S. Optimisation of biomass production and nutritional value of two marine diatoms (Bacillariophyceae), Skeletonema costatum and Chaetoceros calcitrans. Biology 2022, 11, 594. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Aschwin, E.; Varela, J. Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [PubMed]
- Guihéneuf, F.; Mimouni, V.; Ulmann, L.; Tremblin, G. Environmental factors affecting growth and omega 3 fatty acid composition in skeletonema costatum. the influences of irradiance and carbon source. Diatom Res. 2008, 23, 93–103. [Google Scholar] [CrossRef]
- Pennarun, A.L.; Prost, C.; Haure, J.; Demaimay, M. Comparison of two microalgal diets. 1. Influence on the biochemical and fatty acid compositions of raw oysters (Crassostrea gigas). J. Agric. Food Chem. 2003, 51, 2006–2010. [Google Scholar] [CrossRef]
- Houcke, J.; Medina, I.; Maehre, H.K.; Cornet, J.; Cardinal, M.; Linssen, J.; Luten, J. The effect of algae diets (Skeletonema costatum and Rhodomonas baltica) on the biochemical composition and sensory characteristics of Pacific cupped oysters (Crassostrea gigas) during land-based refinement. Food Res. Int. 2017, 100, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Wu, M.; Fu, Q.; Li, X.; Xu, J. A two-stage model with nitrogen and silicon limitation enhances lipid productivity and biodiesel features of the marine bloom-forming diatom Skeletonema costatum. Bioresour. Technol. 2019, 289, 121717. [Google Scholar] [CrossRef]
- Delaunay, F.; Marty, Y.; Moal, J.; Samain, J.F. The effect of monospecific algal diets on growth and fatty acid composition of Pecten maximus (L.) larvae. J. Exp. Mar. Bio. Ecol. 1993, 173, 163–179. [Google Scholar] [CrossRef]
- Volkman, J.K.; Jeffrey, S.W.; Nichols, P.D.; Rogers, G.I.; Garland, C.D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Bio. Ecol. 1989, 128, 219–240. [Google Scholar] [CrossRef]
- Fernández-Reiriz, M.J.; Perez-Camacho, A.; Ferreiro, M.J.; Blanco, J.; Planas, M.; Campos, M.J.; Labarta, U. Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 1989, 83, 17–37. [Google Scholar] [CrossRef]
- Rivero-Rodríguez, S.; Beaumont, A.R.; Lora-Vilchis, M.C. The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 2007, 263, 199–210. [Google Scholar] [CrossRef]
- Kaspar, H.F.; Keys, E.F.; King, N.; Smith, K.F.; Kesarcodi-Watson, A.; Miller, M.R. Continuous production of Chaetoceros calcitrans in a system suitable for commercial hatcheries. Aquaculture 2014, 420–421, 1–9. [Google Scholar] [CrossRef]
- Barve, K.H.; Kulkarni, Y.A.; Gaikwad, A.B. Nutraceuticals as therapeutic agents for inflammation. In Fruits, Vegetables, and Herbs: Bioactive Foods in Health Promotion; Academic Press: Cambridge, MA, USA, 2016; pp. 121–147. [Google Scholar]
- Pan, Y.; Amenorfenyo, D.K.; Dong, M.; Zhang, N.; Huang, X.; Li, C.; Li, F. Effects of salinity on the growth, physiological and biochemical components of microalga Euchlorocystis marina. Front. Mar. Sci. 2024, 11, 1–9. [Google Scholar] [CrossRef]
- Li, F.; Rui, X.; Amenorfenyo, D.K.; Pan, Y.; Huang, X.; Li, C. Effects of temperature, light and salt on the production of fucoxanthin from Conticribra weissflogii. Mar. Drugs 2023, 21, 495. [Google Scholar] [CrossRef]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. Determination of chlorophylls and total carotenoids: Spectrophotometric method—Science Direct. In A Manual of Chemical & Biological Methods for Seawater Analysis; Pergamon Press: Oxford, UK, 1984; pp. 101–104. [Google Scholar]
- Xu, R.; Gong, Y.; Cheng, W.; Li, S.; Chen, R.; Zheng, X.; Cheng, X.; Wang, H. Effects of LED monochromatic light quality of different colors on fucoxanthin content and expression levels of related genes in Phaeodactylum Tricornutum. Acta Opt. Sin. 2019, 39, 0917001. [Google Scholar]
- Ge, S.; Qiu, S.; Tremblay, D.; Viner, K.; Champagne, P.; Jessop, P.G. Centrate wastewater treatment with Chlorella vulgaris: Simultaneous enhancement of nutrient removal, biomass and lipid production. Chem. Eng. J. 2018, 342, 310–320. [Google Scholar] [CrossRef]
Fatty Acids | 0 mg/L | 30 mg/L | 60 mg/L | 120 mg/L |
---|---|---|---|---|
C8:0 | 61.19 ± 0.01 | 57.31 ± 0.24 | Not detected | Not detected |
C10:0 | 329.16 ± 0.27 d | 36.28 ± 0.27 a | 113.25 ± 0.26 c | 51.34 ± 0.28 b |
C11:0 | 171.59 ± 0.14 d | 162.44 ± 0.03 c | 125.16 ± 0.44 b | 114.85 ± 0.15 a |
C12:0 | 103.60 ± 0.53 d | 84.76 ± 0.02 c | 51.15 ± 0.24 b | 33.04 ± 0.44 a |
C14:0 | 8101.76 ± 0.32 d | 7850.14 ± 0.50 c | 1047.63 ± 0.36 a | 7479.86 ± 0.61 b |
C14:1n5 | 177.12 ± 0.31 c | 153.97 ± 0.33 b | Not detected | 134.68 ± 0.60 a |
C15:0 | 1244.84 ± 0.53 c | 1040.50 ± 1.05 b | 149.05 ± 0.38 a | 1378.94 ± 0.78 d |
C16:0 | 25,928.18 ± 0.2 c | 22,521.40 ± 0.80 b | 28,236.66 ± 1.37 d | 20,984.98 ± 0.19 a |
C16:1n7 | 20,985.50 ± 1.57 a | 26,213.11 ± 1.07 c | 30,546.97 ± 0.38 d | 24,523.56 ± 1.03 b |
C18:0 | 456.18 ± 0.59 a | 546.27 ± 0.76 d | 436.51 ± 0.82 a | 470.26 ± 0.64 c |
C18:1n9c | 1093.79 ± 1.01 d | 730.35 ± 0.75 c | 63.73 ± 0.56 a | 643.58 ± 1.20 b |
C18:2n6c | 366.31 ± 1.50 a | 778.82 ± 0.70 c | 556.34 ± 1.40 b | 953.53 ± 1.0 d |
C18:3n6 | 115.56 ± 0.11 a | 390.11 ± 0.64 c | 362.94 ± 0.59 b | 533.51 ± 0.45 d |
C18:3n3 | 208.35 ± 0.21 c | 155.63 ± 0.45 b | 35.46 ± 0.47 a | 221.29 ± 1.02 d |
C20:0 | 16.48 ± 0.89 c | 11.50 ± 0.34 b | 11.95 ± 0.45 a | 84.37 ± 0.58 d |
C20:2 | 155.92 ± 0.21 d | 39.98 ± 0.36 b | 24.93 ± 0.34 a | 89.82 ± 0.59 c |
C20:3n6 | 31.78 ± 0.64 a | 94.93 ± 0.53 c | 76.19 ± 0.35 b | 155.17 ± 0.68 d |
C20:4n6 | 221.13 ± 1.20 b | 982.72 ± 0.22 c | 22.74 ± 1.04 a | 1261.83 ± 0.21 d |
C20:3n3 | 191.68 ± 0.11 d | 154.65 ± 0.05 c | 23.02 ± 0.58 a | 80.04 ± 0.15 b |
C20:5n3 | 8121.98 ± 0.20 c | 7903.84 ± 0.23 b | 6944.49 ± 0.85 a | 11,354.37 ± 0.21 d |
C22:0 | 149.10 ± 0.1 b | 169.58 ± 0.74 d | 31.93 ± 0.26 a | 156.16 ± 0.24 c |
C22:6n3 | 2124.03 ± 0.24 c | 1767.99 ± 0.17 a | 1995.96 ± 0.57 b | 2516.46 ± 0.30 d |
C23:0 | 332.63 ± 0.49 c | 242.86 ± 0.30 a | 261.96 ± 0.12 b | 376.97 ± 0.25 d |
C24:0 | 811.28 ± 0.78 c | 786.57 ± 0.48 b | 680.98 ± 0.28 a | 907.18 ± 0.37 d |
SFA | 38,038.62 | 33,752.47 | 31,408.19 | 32,414.92 |
UFA | 34,249.33 | 39,912.37 | 41,089.28 | 42,938.10 |
TFA | 72,288.95 | 73,664.84 | 71,797.47 | 74,508.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amenorfenyo, D.K.; Li, F.; Rui, X.; Huang, X.; Li, C. Influence of Silicate Concentrations on Growth, Carotenoid, and Fatty Acid Profiles of the Marine Diatom Conticribra weissflogii. Mar. Drugs 2024, 22, 504. https://doi.org/10.3390/md22110504
Amenorfenyo DK, Li F, Rui X, Huang X, Li C. Influence of Silicate Concentrations on Growth, Carotenoid, and Fatty Acid Profiles of the Marine Diatom Conticribra weissflogii. Marine Drugs. 2024; 22(11):504. https://doi.org/10.3390/md22110504
Chicago/Turabian StyleAmenorfenyo, David Kwame, Feng Li, Xiangyu Rui, Xianghu Huang, and Changling Li. 2024. "Influence of Silicate Concentrations on Growth, Carotenoid, and Fatty Acid Profiles of the Marine Diatom Conticribra weissflogii" Marine Drugs 22, no. 11: 504. https://doi.org/10.3390/md22110504
APA StyleAmenorfenyo, D. K., Li, F., Rui, X., Huang, X., & Li, C. (2024). Influence of Silicate Concentrations on Growth, Carotenoid, and Fatty Acid Profiles of the Marine Diatom Conticribra weissflogii. Marine Drugs, 22(11), 504. https://doi.org/10.3390/md22110504