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Abstract: Paralytic shellfish toxins (PSTs) are widely distributed in shellfish along the coast of
China, causing a serious threat to consumer health; however, there is still a lack of large-scale
systematic investigations and risk assessments. Herein, 641 shellfish samples were collected from
March to November 2020, and the PSTs’ toxicity was detected via liquid chromatography–tandem
mass spectrometry. Furthermore, the contamination status and potential dietary risks of PSTs were
discussed. PSTs were detected in 241 shellfish samples with a detection rate of 37.60%. The average
PST toxicities in mussels and ark shells were considerably higher than those in other shellfish. The
PSTs mainly included N-sulfonylcarbamoyl toxins (class C) and carbamoyl toxins (class GTX), and
the highest PST toxicity was 546.09 µg STX eq. kg−1. The PST toxicity in spring was significantly
higher than those in summer and autumn (p < 0.05). Hebei Province had the highest average PST
toxicity in spring. An acute exposure assessment showed that consumers in Hebei Province had
a higher dietary risk, with mussels posing a significantly higher dietary risk to consumers. This
research provides reference for the green and sustainable development of the shellfish industry and
the establishment of a shellfish toxin prevention and control system.

Keywords: paralytic shellfish toxins; shellfish; liquid chromatography–tandem mass spectrometry
(LC–MS/MS); risk assessment; China

1. Introduction

Over the past few decades, the incidence and intensity of harmful algal blooms
(HABs) have increased globally, owing to rising ocean temperatures and increasing coastal
eutrophication [1]. Some harmful algae can produce shellfish toxins, which can be classified
according to the symptoms of poisoning as paralytic shellfish toxins (PSTs), amnesic
shellfish toxins (ASTs), diarrhetic shellfish toxins (DSTs), and neurotoxic shellfish toxins
(NSTs) [2,3]. Among them, PSTs are considered to be one of the algal toxins that can
seriously endanger human health [4]. PST poisoning incidents account for approximately
64% of shellfish poisoning incidents, resulting in around 2000 cases per year globally [5,6].
PST poisoning occurs when shellfish contaminated with any of the STX-group analogs
are ingested [7], and can be detected within minutes or hours [8]. Mild cases of PST
poisoning present symptoms such as numbness of the lips and mouth, localized tingling
sensations, paralysis of the body muscles, and fever, whereas severe cases can lead to
complete paralysis and death from respiratory failure [6,9]. The mechanism of PSTs’
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toxicity involves restraining the transduction of intracellular action potentials via the highly
specialized inhibition of voltage-gated sodium channels [10]. PSTs are usually not toxic to
shellfish themselves, but can be toxic to mammals by blocking cellular sodium channels [11].
PSTs are prevalent in marine and freshwater ecosystems throughout the world [12], and
the rise in the occurrence of PST-induced poisoning is linked to the warming of oceans
and the increase in HABs as a result of human activities [13]. Currently, the distribution
and detection rates of PSTs continue to expand globally [14], posing a significant threat to
human health.

PSTs possess a tetrahydropurine structure, and are primarily synthesized by di-
noflagellates (Alexandrium, Gymnodinium, Pyrodinium, etc.) and blue-green algae in fresh-
water environments [15–17]. Currently, researchers have identified over 60 types of
PST analogs [18], which can be divided into four categories based on the substituent
group in R4 (Table S1): carbamate toxins, including saxitoxin (STX), neosaxitoxin (NEO),
and gonyautoxin1-4 (GTX1-4); n-sulfocarbamoyl toxins, including GTX5, GTX6, and N-
sulfocarbamoylgonyautoxin1-4 (C1-C4); decarbamoyl toxins, including decarbamoyl sax-
itoxin (dcSTX), decarbamoyl neosaxitoxin (dcNEO), and decarbamoyl gonyautoxin 1-4
(dcGTX1-4); and deoxydecarbamoyl toxins, including deoxydecarbamoyl saxitoxin (doSTX)
and deoxydecarbamoyl gonyautoxin 2-3 (doGTX2-3). The filter-feeding characteristic of
marine shellfish results in the accumulation of toxins within the soft tissues from the feed-
ing of toxic algae [19], and the strong accumulation and biotransformation effect of PSTs
in shellfish increases the risk of PST poisoning in humans consuming PST-contaminated
shellfish. To manage the hazard of dietary poisoning caused by PSTs, the present inter-
national limit standard for PSTs in shellfish has been set at 800 µg STX eq. kg−1 by the
European Food Safety Authority (EFSA) [20,21]. The acute exposure reference dose (ARfD)
for PSTs established by the EFSA is 0.5 µg STX eq. kg−1 bw day−1 [22], while that set by the
Food and Agriculture Organization of the United Nations (FAO), the Intergovernmental
Oceanographic Commission (IOC), and the World Health Organization (WHO) is 0.7 µg
STX eq. kg−1 bw day−1 [23].

China is a large aquaculture country, and its marine shellfish aquaculture industry
ranks first in the world [24], with an annual marine shellfish production of about 1589 tons
in 2022 [25]. Marine shellfish possess high protein, high mineral, and low fat contents,
making them a healthy food option [26]. With the increase in the standard of living of
Chinese consumers, the demand for high-quality protein sourced from shellfish is also
rising. However, in recent years, Alexandrium and Gymnodinium HABs have frequently
occurred in China’s offshore areas, mainly in the Bohai Sea and part of the nearshore
sea areas in the East China Sea, resulting in recurrent PST poisoning incidents in many
places [27]. The most prevalent microalgae that produce PSTs in the coastal waters of
China are Alexandrium spp. [27], including A. fundyense in the Yellow Sea and Bohai Sea,
A. pacificum in the waters south of the Yangtze River Estuary [28–30], and G. catenatum,
mainly in the Bohai Sea, Lianyungang of Jiangsu Province, and the coastal waters of Fujian
Province [27]. Based on a survey of China’s coastal areas, the overall rate of PSTs has been
noted to be low and below the limits (800 µg STX eq. kg−1) in the Yellow Sea, East China Sea,
and South China Sea [31]. However, the Bohai Rim showed a high detection rate of PSTs,
reaching 98.0%, exceeding the limits by 12.0% [32], indicating a more severe contamination
status. In 2016, severe shellfish poisoning occurred in Qinhuangdao, where the toxin levels
surpassed the safety limit (800 µg STX eq. kg−1) by 65 times [33]. In recent years, there has
been a rise in the poisoning incidents resulting from the consumption of toxic shellfish. For
instance, from 1991 to 2003, 11 PST poisoning incidents were documented in Lianyungang
City [34]. In addition, 164 people in Fujian Province were poisoned by consuming PST-
contaminated shellfish [35]. PST contamination not only causes serious effects on human
health, but also hinders China’s economic progress, warranting significant attention.

Currently, research on PSTs primarily includes small-scale investigations and risk
assessments in specific areas [36,37], or monitoring long-term PST contamination in desig-
nated areas [38]. These studies have certain limitations and cannot fully and systematically
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reflect the overall distribution of PST contamination in China’s coastal areas and the di-
etary risk of consumers. Therefore, in the present study, a large-scale investigation of the
distribution of 13 EFSA-restricted PST analogs of high concern was performed using liquid
chromatography–mass spectrometry (LC-MS/MS). A total of 641 shellfish samples were
obtained from aquaculture locations in six coastal provinces of China during the spring,
summer, and autumn of 2020, and sequentially analyzed for PSTs. In addition, the potential
risk of dietary exposure of consumers in coastal areas of China to PSTs through shellfish
consumption was also assessed. The objectives of the present study were to (1) investigate
the differences in the toxicities and profiles of PSTs in shellfish; (2) analyze the spatial
and temporal distribution of PSTs and seasonal variations in different shellfish; and (3)
evaluate the risk of dietary exposure of consumers in urban coastal areas of China to PSTs
in shellfish.

2. Results
2.1. Difference in the Toxicities and Profiles of PSTs in Different Shellfish

A total of 14 shellfish species collected from offshore China were analyzed for 13 PSTs
via LC-MS/MS. Table 1 shows the toxicities and detection rates of PSTs in the five groups
of shellfish. The total overall detection rate was 37.60% the detection rates (>60.0%) of
PSTs in mussels, scallops, and ark shells were significantly higher than those (≤30%) in
clams and oysters. The average toxicity of PSTs in all the shellfish samples varied between
11.86 (LB) µg STX eq. kg−1 and 32.49 (UB) µg STX eq. kg−1. The highest range of average
PST toxicity was found in ark shells, ranging from 62.23 (LB) to 94.67 (UB) µg STX eq. kg−1.
Mussels presented the maximum PST toxicity, with their PST toxicity reaching up to
546.09 µg STX eq. kg−1 (LB)–576.02 µg STX eq. kg−1 (UB).

Table 1. Toxicities of PSTs in different shellfish.

Groups Number of
Analogs 1

Detection Rate
2 (%)

Average (µg STX eq. kg−1) Max (µg STX eq. kg−1)
LB 3 UB 4 LB UB

Clams 10 16.04 3.70 12.89 125.83 173.78
Oysters 7 22.50 12.67 24.04 70.39 117.92
Mussels 11 64.67 22.51 56.25 546.09 576.02
Scallops 12 81.48 15.95 61.72 133.32 161.72

Ark shells 11 75.00 62.23 94.67 233.20 247.20
Total 13 37.60 11.86 32.49 546.09 576.02

1: Number of analog of PSTs detected in the samples. 2: Percentage of shellfish with at least one analog of PSTs
above its detection limit. 3: Lower bound. 4: Upper bound. The EFSA has so far mainly used substitution methods,
i.e., for results below the LOD, a value equal to the LOD (upper bound), zero (lower bound), or half the LOD
(medium or middle bound) is commonly used.

The percentages of the different PST analogs accumulated in the five shellfish groups
are shown in Figure 1. The concentrations of the different PST analogs accumulated in the
five shellfish groups considerably varied. Among them, the major toxins accumulated in
clams and oysters were dcNEO and GTX1, respectively, with concentrations reaching more
than 70%. The major PSTs accumulated in mussels and scallops were C1, C2, and GTX5,
constituting more than 60% of the total PST analogs. In ark shells, the primary toxin was
C1, with the other PST analogs presenting relatively low concentrations.

2.2. Seasonal Variation in PSTs’ Toxicities in Different Shellfish Groups

To determine the seasonal variation in the PSTs’ toxicities in the five shellfish groups,
shellfish samples were collected across three seasons from March to November 2020, includ-
ing spring (March–May), summer (June–August), and autumn (September–November).
Figure 2 shows the seasonal variations in the average toxicities of the PSTs in the five
shellfish groups. Significant differences were noted in the average toxicities of PSTs in
shellfish in different seasons. Among them, mussels exhibited the highest average PST
accumulation during spring (79.30 µg STX eq. kg−1), which was significantly higher than
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those recorded during summer and autumn. Oysters and scallops exhibited the highest
average toxicity of PSTs (64.65 and 39.30 µg STX eq. kg−1, respectively) during summer,
while clams and ark shells showed the highest average toxicity of PSTs in autumn (27.23
and 213.47 µg STX eq. kg−1, respectively). Overall, except for mussels, the toxicity of PSTs
in most of the shellfish was significantly higher in summer and autumn.
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2.3. Spatial and Temporal Variation in PSTs’ Toxicities in Shellfish Samples

A total of 641 shellfish samples were collected from different provinces along the
Chinese coast in three seasons. Overall, the average PST toxicity was notably higher in
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spring (22.45 µg STX eq. kg−1) when compared with that in summer (7.17 µg STX eq. kg−1)
and autumn (10.22µg STX eq. kg−1) across all shellfish species (p < 0.05) (Figure 3). However,
there was no significant difference in the average PST toxicity in shellfish between summer
and autumn. Furthermore, there were variations in the average PST toxicities across
the provinces during different seasons. Hebei, Zhejiang, and Fujian Provinces presented
maximum average PST toxicities in spring, with Hebei Province exhibiting the highest
average PST toxicity of 546.09 µg STX eq. kg−1 in spring. The average PST toxicity in
Shandong and Jiangsu Provinces was low in all the three seasons and did not exceed
10.00 µg STX eq kg−1. Furthermore, the average PST toxicity in Liaoning Province was the
highest in autumn (30.77 µg STX eq. kg−1), which was significantly higher than those in
spring and summer.
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(a) Spring; (b) summer; (c) autumn. Based on the collected sample data, the PST toxicity distribu-
tion map across various seasons along the Chinese coast was generated using the spline function
interpolation method through ArcGIS 10.8.

2.4. Acute Dietary Exposure Assessment

The acute dietary exposure of consumers in the coastal areas of China to PSTs was
assessed based on the body weights and dietary intakes of shellfish in the exposed pop-
ulations comprising different gender and age groups, as well as the PST residues in the
shellfish samples collected (Table 2). The EDI (estimated daily intake) for different shellfish
groups ranged from 0 to 0.78 µg STX eq. kg−1 bw day−1. Among the five shellfish groups,
mussel consumption resulted in the highest dietary exposure to PSTs among all age groups,
with a maximum value of 0.78 µg STX eq. kg−1 bw day−1. In terms of mussel consumption,
the dietary exposure to PSTs for all age groups was less than 0.7 µg STX eq. kg−1 bw day−1,
except for the 2–7-year age group and the group of males over 65 years of age. The con-
sumption of the remaining four shellfish groups led to low dietary exposures to PSTs,
ranging from 0 to 0.33 µg STX eq. kg−1 bw day−1.

Table 2. Acute dietary exposure of consumers of different age groups to PSTs in shellfish.

Age Gender
EDI (µg STX eq. kg−1 bw day−1)

Clams Oysters Mussels Scallops Ark Shells

2~7 male/female 0.23 0.16 0.78 0.22 0.33

8~12 male/female 0.18 0.13 0.60 0.17 0.26

13~19
male 0.17 0.12 0.57 0.16 0.24

female 0.14 0.10 0.48 0.13 0.20

20~50
male 0.19 0.13 0.63 0.18 0.27

female 0.19 0.13 0.62 0.17 0.27

51~65
male 0.20 0.14 0.67 0.19 0.29

female 0.19 0.13 0.62 0.17 0.27

>65
male 0.23 0.16 0.77 0.22 0.33

female 0.19 0.13 0.64 0.18 0.27
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Figure 4 shows the dietary exposure of consumers in different coastal provinces of
China to PSTs, ranging from 0 to 0.78 µg STX eq·kg−1 bw day−1. The dietary exposure
risk for consumers in Hebei Province was significantly higher than that for consumers
in the other provinces, with children aged 2–7 years and elderly men aged over 65 years
presenting the highest dietary exposure to PSTs. Except for consumers in Hebei and
Liaoning Provinces, the dietary exposure of consumers in all the other provinces was
low, ranging from 0 to 0.16 µg STX eq·kg−1 bw day−1. In addition, when compared with
women, the dietary exposures of men to PSTs were generally higher across all age groups
in different provinces.
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0.5 µg STX eq. kg−1 bw, formulated by EFSA; ARfD2: 0.7 µg STX eq. kg−1 bw, formulated by
FAO/IOC/WHO. LN: Liaoning Province; HB: Hebei Province; SD: Shandong Province; JS: Jiangsu
Province; ZJ: Zhejiang Province; FJ: Fujian Province.

3. Discussion

The widespread occurrence of HABs producing PSTs has raised concerns among global
fisheries, aquaculture, and human health for several decades [39,40]. Although China has
a vast coastline with abundant fishery resources, the presence of PST contamination in
the seas has attracted attention. To establish a system for the prevention and control of
PSTs in the coastal areas of China and reduce the risk of PST poisoning from shellfish
consumption, investigation of coastal PST contamination and dietary risk assessment are
necessary. In the present study, the PST detection rate considerably varied, and the toxicities
and profile of PSTs in shellfish were significantly different among the five shellfish groups.
Contamination with PSTs was prevalent among farmed shellfish off the Chinese coast
with evident seasonal variance. During spring, mussels exhibited the highest average PST
toxicity and the most severe contamination, thereby posing a dietary hazard to young
children and the elderly.

There were significant differences in the toxicity of PSTs accumulated in different
shellfish species. The average toxicities of PSTs in mussels and ark shells were considerably
higher than those in oysters and clams, with mussels presenting the highest toxicity of
accumulated PSTs. The overall accumulation rate of PSTs in mussels, as observed in the
exposure experiment, reached 14.6%, which is higher than that found in oysters (8.3%) and
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Philippine clams (2.5%) [41]. Previous studies have also reported that Mytilus edulis and
Scapharca subcrenata have a higher average PST toxicity than Pacific oysters [32], consistent
with the results of the present study. The rate of toxin accumulation may account for
the differences in the toxicity of PSTs in different shellfish. A previous study comparing
the capability of oysters and mussels to accumulate and remove PSTs revealed that toxin
accumulation in mussels was three-fold higher than that in oysters [42], highlighting the
higher accumulation rate and toxicity of PSTs in mussels [43–45]. It must be noted that
mussel neural axons are insensitive to the STX toxin of PSTs [46], whereas oysters are highly
sensitive to PSTs [47]. Consequently, oysters accumulate lower levels of the toxin and swiftly
release it [47]. Furthermore, differences in the rate of filter-feeding and the uptake of toxic
algal cells by different shellfish can also lead to variations in the toxicity of PSTs in different
shellfish. Mussels accumulate toxins quickly as a result of their high filtration rate during
feeding [48]. Clams (80 µg per 100 g) have been reported to present a significantly lower
rate of accumulation and maximum load of PSTs following exposure to A. tamarense when
compared with mussels (1100 µg per 100 g), and the main toxin detected was C1/2 [49].
This could be due to the fact that mussels have a higher ingestion rate, whereas clams have
a lower uptake rate and tend to produce pseudofeces when filtering large amounts of algal
cells [50,51]. Moreover, the transcript levels of SODHSP70, catalase, ferritin, and various
pattern recognition receptor genes involved in the immune response have been reported to
significantly increase in mussels with increasing STX concentrations [52,53]. These findings
may explain the high PST accumulations in mussels.

Furthermore, significant differences in the concentration of each analog of PSTs were
detected in the five shellfish groups examined in this study. A previous work reported that
the Chinese coastal shellfish primarily consisted of N-sulfonylcarbamoyl toxins (class C)
and carbamoyl toxins (class GTX), accounting for over 50% of the total toxins present [54].
The current study noted that clams and oysters primarily accumulated dcNEO and GTX1
toxins, respectively, while mussels and scallops mainly accumulated C1, C2, and GTX5
toxins. This variation in the toxin accumulation and metabolic transformation abilities of
different PST analogs may account for the significant differences in PST analogs in various
shellfish. Additionally, the differences in the PST analogs in algae fed on by shellfish can also
lead to variations in PST analogs in the shellfish. It has been reported that the main toxins
found in A. fundyense and A. catenulatum in the Yellow Sea and Bohai Sea region were C1-2,
GTX2-3, and GTX5 [55], which closely resemble the primary analogs of PSTs in mussels and
scallops, as observed in the present study. A comparative research study on PST analogs
in A. tamarense and mussels revealed that the major toxins present in A. tamarense were
C2 and GTX4, and that the PST analogs in mussels during the early stages of exposure
were similar to those found in the algal cells [56]. Furthermore, C1-2 and GTX1 and 4
have been noted to be the common major toxin analogs in A. tamarense and M. edulis [57].
It must be noted that PSTs also undergo transformation reactions during cumulative
exposure in shellfish, and significant interspecific disparities in their biotransformation
capacity have been recorded [58]. The enzymes and bacteria found in shellfish can facilitate
the conversion of PSTs with varying structures and species, leading to distinct levels
of PST analogs in shellfish [59]. For example, GTX4 was predominant in A. tamarense,
while GTX1 was prominent in clams and oysters after the ingestion of A. tamarense [60].
Aminomethylhydrolase I, which was isolated and purified for the first time from the
hepatopancreas of Chinese clams, has been observed to catalyze the hydrolysis of the R4
group of carbamates or N-sulfocarbamoyl groups to generate deaminomethyl toxins [61].
The conversion of N-sulfocarbamoyl to carbamate toxins has also been reported to be
prevalent in shellfish, such as the conversion of class C to GTXs of PSTs in mussels exposed
to A. fundyense [62]. Furthermore, shellfish bacteria can also facilitate the transformation
of PSTs, and the bacteria in M. edulis could convert GTXs into the profoundly toxic STX
through a reduction reaction [63].

The present study observed obvious regional and seasonal differences in PST con-
tamination along the Chinese coastal areas, as well as seasonal differences in the average
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accumulation of PSTs in shellfish. The geographic variations in PST contamination levels
could be primarily attributed to the differences in harmful algal species found in distinct
marine regions [64,65]. China’s coastal area spans a large latitude range, resulting in sig-
nificant temperature variations across different sea regions within the same season and
between seasons. Consequently, the growth and disappearance patterns of various harmful
algae significantly differed between these areas. The accumulation of toxins in shellfish and
the growth of toxic algae are closely linked to temperature seasonality that is conducive
to toxic algal blooms. As shellfish filter-feed more toxic algae during the early stages of
algal blooms, they are more prone to accumulate higher levels of toxins. The results of
the present study showed that PST contamination was mainly observed in spring, with
higher PST levels detected in the Yellow Sea and Bohai Sea, and lower PST levels noted in
the East China Sea. Previous works have shown that shellfish in the Yellow Sea have the
highest levels of PST contamination in spring, followed by those in summer, autumn, and
winter [19], similar to the results of the present study. This finding may be attributed to the
fact that the spring water temperature in the Yellow Sea is suitable for the growth of toxin-
producing algae. For example, the optimal temperature range for A. tamarense proliferation
is 7.5 ◦C–9.0 ◦C [66], and the average temperature of spring water in the North Yellow Sea
ranges from 7.5 ◦C to 11.0 ◦C, providing an ideal environment for the growth of these
harmful algae [67], and thus resulting in the maximum total toxicity of PSTs in spring. In
contrast, water temperatures of 4.3 ◦C–8.5 ◦C in winter and 23.3 ◦C–27.8 ◦C in summer are
unfavorable for the growth of A. tamarense [68]. Similarly, the near-shore water temperature
in the Bohai Sea during spring ranges from 2.8 ◦C to 14.3 ◦C, providing optimum conditions
for the growth of PST-producing algae [32,69]. The PSTs found in the Qinhuangdao Sea dur-
ing spring are mainly produced by A. tamarense that could thrive at temperatures between
10 ◦C and 13 ◦C [33,70]. The growth of Prorocentrum is more favorable in the East China Sea
during spring, when compared with that in other seasons, because the water temperature
in the East China Sea during May is around 25 ◦C [71], which is conducive for achieving
the maximum proliferation rate of marine Prorocentrum [72]. In addition, this temperature
range has also been noted to be favorable for the occurrence of the Prorocentrum HAB [73].
In summary, temperature-induced disparities in the PST-producing dominant algal species
across diverse marine regions may contribute to the varied geographical distribution of
PST contamination [74,75].

China has an extensive record of PST contamination offshore, and despite the total
PSTs in shellfish remaining within the regulatory limit, consumers may still face a certain
risk of dietary exposure to PSTs owing the significant variation in shellfish intake [76]. The
present study assessed the dietary risks of various shellfish to consumers of all ages in
different provinces along the Chinese coast. The results showed significant differences in
the dietary exposures of consumers of different genders in each province to PSTs, with
male consumers of all age groups presenting a higher dietary risk than female consumers.
Furthermore, consumers in Hebei Province had a significantly higher dietary exposure
to PSTs when compared with those in other Provinces, and mussels posed a significantly
higher dietary risk to shellfish consumers than other shellfish. In the coastal regions of
China, with the exception of mussels, the dietary exposure of other shellfish groups was
below the EFSA-recommended ARfD of 0.5 µg STX eq. kg−1 bw day−1. Moreover, the
consumption of mussels within Hebei Province posed lower dietary exposure risks than
the ARfD recommended by the FAO/IOC/WHO (0.7 µg STX eq. kg−1 bw day−1) to
consumers, except for 2–7-year age group and the group of males over 65 years of age. In
a similar dietary exposure assessment conducted in a neighboring Asian country, Korea,
mussels exhibited the highest toxicity of PSTs, with an ARfD of 0.30 µg STX eq. kg−1 bw
day−1 [14], which is lower than that observed in the present study. The gender disparities
in dietary risks among consumers of all ages may be attributed to the larger diets of men.
Moreover, consumers of different ages may exhibit different sensitivities to PSTs. It must
be noted that the epithelial cells of the gastrointestinal tract become thinner and more
fragile with increasing age, thus raising the incidence of ulcers and sensitivity to toxins [77].
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Currently, PSTs remain widespread in the nearshore waters of Qinhuangdao and are
extensively distributed throughout seawater and marine organisms [78]. Therefore, the
long-term monitoring and management of PSTs in priority areas should be strengthened.
Furthermore, as the effects of PSTs on different populations can vary, more attention should
be paid to fish farmers and islanders, whose dietary intake of aquatic foods is higher than
that of the general population [79].

4. Materials and Methods
4.1. Sample Preparation

The survey period was from March to November 2020, and the samples were collected
from shellfish culture areas in China’s coastal provinces, including Liaoning (LN), Hebei
(HB), Shandong (SD), Jiangsu (JS), Zhejiang (ZJ), and Fujian (FJ) Provinces. A total of
641 diverse shellfish samples, including 318 clams (Ruditapes philippinarum, Mercenaria mer-
cenaria, Meretrix meretrix, Cyclina sinensis, Mactra chinensis, and M. veneriformis), 80 oysters
(Crassostrea gigas and C. ariakensis), 150 mussels (Mytilus coruscus and M. galloprovincialis),
81 scallops (Patinopecten yessoensis and Chlamys farreri), and 12 ark shells (Scapharca subcre-
nata and Tegillarca granosa), were collected at random from the local shellfish culture areas,
washed with clean water, kept in portable icy incubators below 4 ◦C, and transported to
the lab within 24 h. All the shellfish samples were homogenized at 24,000 rpm using a T18
basic Ultra-Turrax mixer (IKA, Königswinter, Germany) and stored at −20 ◦C before the
LC-MS/MS analysis.

4.2. Chemicals and Reagents

Chromatography-grade formic acid (≥98.0%) and ammonium formate (≥97.0%) were
purchased from Fluka, Buchs, Switzerland, and chromatography-grade ammonia and mass
spectrometry-grade acetic acid were obtained from Sigma, Mo, USA. Mass spectrometry-
grade acetonitrile was supplied by Merck, Darmstadt, USA. A graphitized carbon black
solid-phase extraction column (ENVI-CarbTM, 250 mg/3 mL) was obtained from Supelco,
Bellefonte, PA, USA. PST standards (STX, dcSTX, NEO, dcNEO, GTX1&GTX4, GTX2&GTX3,
GTX5, dcGTX2&dcGTX3, C1&C2) were provided by the National Research Council of
Canada (Halifax, Nova Scotia, Canada). Deionized water (18.2 MΩcm) was obtained
using the Milli-Q system (Millipore, Bedford, MA, USA) equipped with ion-exchange and
carbon filters.

4.3. PSTs Extraction

The PSTs were analyzed according to published methods [80,81], with minor adjust-
ments. In brief, 5 ± 0.05 g of homogenized shellfish samples were extracted with 5 mL of
an aqueous 1% acetic acid solution and vortexed for 90 s. The above-formed liquid was
collected, boiled at 100 ◦C for 5 min, cooled in cold water until it reached room temperature,
and centrifuged for 10 min at 4500 rpm. The supernatant (1 mL) obtained was removed,
mixed with 5 µL of ammonium hydroxide, and centrifuged again for 10 min at 10,000 rpm
for PST extraction using solid-phase extraction purification. An ENVI-Carb solid-phase
extraction column was activated with 3 mL of acetonitrile, 3 mL of a 20% acetonitrile aque-
ous solution (containing 1% acetic acid), and 3 mL of 0.1% ammonium hydroxide. After
activation, 500 µL of the supernatant was added to the column and 700 µL of ultrapure
water was used for washing. Finally, 1 mL of a 75% acetonitrile solution (containing 0.25%
formic acid) was employed for elution. All the extracts were filtered through a 0.22 µm
membrane filter prior to the LC-MS/MS analysis.

4.4. LC-MS/MS Analysis

An LC-MS/MS analysis of the PST extracts was performed using an LC system
(LC20ADXR, Shimadzu, Kyoto, Japan) coupled with a mass spectrometer (5500 QTRAP,
Sciex, Framingham, MA, USA) equipped with Turbo V source and electrospray ionization
(ESI) probe. In brief, a hydrophilic column (TSK-Amide-80, 150 mm × 2.0 mm, 3 µm) was
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held at 40 ◦C and a flow rate of 0.35 mL min−1, and used for the LC separation of the PSTs.
The A and B mobile phases consisted of water and 95% acetonitrile in water, respectively,
both containing 2 mM ammonium formate and 50 mM formic acid. The elution gradient
was as follows: 80% B, held for 3 min; linear gradient to 40% B for 5 min and held for
2 min; and then back to 80% B within 1 min and held for 2 min [80,81]. The LC-MS/MS
conditions are listed in Table S2, and the other parameters are provided in Table S3. In
addition, the linear ranges and LODs of the 13 PSTs are provided in Table S4. The shellfish
matrix absolute recovery of all target analytes was in the range of 82.5–92.2%. The precision
of the LC-MS/MS method was less than 15%.

4.5. Dietary Exposure Assessment

The shellfish consumption data for the different age groups were obtained from the
5th Chinese Total Diet Study and the monitoring report on the nutrition and health status
of Chinese residents (Table S5) [82,83]. The risks of acute dietary exposure to PSTs in the
diets of consumers of different genders and ages were calculated as follows [84,85]:

PST dietary exposure
(
µg kg−1 bw day−1

)
=

Toxicity of PSTs in shellfish (µg STX eq.kg−1) × Shellfish consumption(kg·day−1
)

Body weight (kg)

4.6. PST Toxicity Data

The toxicity of the PSTs in each shellfish sample was calculated by setting the toxicity
factor (TEF) for the STX toxin to 1 and determining the TEF for each of the other toxins
according to their toxicity relative to STX. The toxicity of PSTs in the samples was expressed
according to the TEF (Table S6), converted uniformly to the STX equation, and the toxicity
of the toxins in the shellfish samples was determined as the sum of the analogs of the PSTs.
The FAO/IOC/WHO (2004) scheme for assigning the toxicity values to non-detects (NDs)
was used in this study [23]. In the lower bound (LB) scenario, 0 was applied as a substitute
for ND results [76,86], while in the upper bound (UB) scenario, the limit of detection (LOD)
was employed as a substitute for the ND results. Shellfish samples with PSTs > 0 in the
LB were defined as positive shellfish. All the positive shellfish samples were analyzed for
differences in the composition of PSTs in different shellfish and for seasonal variations in
PST toxicity. In the UB scenario, shellfish samples with maximum PST levels were used for
the dietary exposure risk assessment.

4.7. Statistical Analysis

A statistical analysis of all the data was performed with Microsoft Excel 2016, and
statistical significance was evaluated through a one-way ANOVA with p < 0.05 using SPSS
22.0 (IBM Corporation, Armonk, NY, USA). Origin 2021 was employed for constructing
graphs and ArcGIS 10.8 was used for spatiotemporal toxin distribution mapping.

5. Conclusions

The toxicity and profile of 13 PSTs in different shellfish along the Chinese coast
were analyzed through LC-MS/MS. The results showed significant differences in the
accumulation and major analogs of PSTs in different shellfish, as well as obvious seasonal
variations in PST contamination along the Chinese coast. PST contamination was higher
in spring, and the PST detection rate and toxicity in shellfish in Hebei Province were
significantly higher than those in other provinces. Notably, mussels were more severely
contaminated with PSTs during spring, posing a risk to consumers. However, none of
the shellfish samples contained PSTs above the EU safety limit (800 µg STX eq. kg−1).
Furthermore, susceptible populations such as children and the elderly were found to
present relatively high dietary exposure risk. These findings suggested that it is crucial
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to strengthen the efforts to detect PST contamination in China’s coastal areas to improve
consumer dietary safety.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/md22020064/s1: Table S1: Classification and detailed structure
of PSTs; Table S2: LC–MS/MS conditions; Table S3: Mass spectrometric analysis parameters of
13 PSTs; Table S4: The linear range and LOD of 13 PSTs; Table S5: Body weight and consumption of
bivalve shellfish in different age groups; Table S6: The toxic factor of PSTs.
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