Reconstruction of Long-Chain Polyunsaturated Acid Synthesis Pathways in Marine Red Microalga Porphyridium cruentum Using Lipidomics and Transcriptomics
Abstract
:1. Introduction
2. Results
2.1. Growth and Morphological Characteristics of P. cruentum CCALA 415 under N-Limited and N-Replete Conditions
2.2. Lipid Accumulation of P. cruentum CCALA 415 Cultured under N-Limited and N-Replete Conditions
2.3. Fatty Acid Content of P. cruentum CCALA 415 Cultured under N-Limited and N-Replete Conditions
2.4. Profiles of Glycerolipids in P. cruentum CCALA 415
2.5. Proportion of Glycerolipid Species Containing ARA and EPA
2.6. Transcriptome Analysis
3. Discussion
4. Materials and Methods
4.1. Algae Species and Cultivation Methods
4.2. Experimental Design
4.3. Growth Measurement and Morphological Observation
4.4. Determination of Lipid Content
4.5. Determination of Fatty Acid Compositions and Contents
4.6. Lipidomics Analyses
4.7. Transcriptome Analyses
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Marine Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef]
- Matos, A.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Furigo, A.; Derner, R.B.; Sant’Anna, E.S. Chemical Characterization of Six Microalgae with Potential Utility for Food Application. J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Khozin, I.; Adlerstein, D.; Bigongo, C.; Heimer, Y.M.; Cohen, Z. Elucidation of the Biosynthesis of Eicosapentaenoic Acid in the Microalga Porphyridium cruentum 2. Studies with Radiolabeled Precursors. Plant Physiol. 1997, 114, 223–230. [Google Scholar] [CrossRef]
- Khozin, I.; Yu, H.Z.; Adlerstein, D.; Bigogno, C.; Cohen, Z. Triacylglycerols Participate in the Eukaryotic Pathway of PUFAs Biosynthesis in the Red Microalga Porphyridium cruentum. In Physiology, Biochemistry and Molecular Biology of Plant Lipids; Springer: Dordrecht, The Netherlands, 1997; pp. 90–92. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Iskandarov, U.; Cohen, Z. LC-PUFA from Photosynthetic Microalgae: Occurrence, Biosynthesis, and Prospects in Biotechnology. Appl. Microbiol. Biotechnol. 2011, 91, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Iskandarov, U.; Khozin-Goldberg, I.; Cohen, Z. Identification and Characterization of Δ12, Δ6, and Δ5 Desaturases from the Green Microalga Parietochloris incisa. Lipids 2010, 45, 519–530. [Google Scholar] [CrossRef]
- Peng, K.T.; Zheng, C.N.; Xue, J.; Chen, X.Y.; Yang, W.D.; Liu, J.S.; Bai, W.B.; Li, H.Y. Delta 5 Fatty Acid Desaturase Upregulates the Synthesis of Polyunsaturated Fatty Acids in the Marine Diatom Phaeodactylum tricornutum. J. Agric. Food Chem. 2014, 62, 8773–8776. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Lipids and Lipid Metabolism in Eukaryotic Algae. Prog. Lipid Res. 2006, 45, 160–186. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I. Lipid Metabolism in Microalgae. In The Physiology of Microalgae; Springer International Publishing: Cham, Switzerland, 2016; pp. 413–484. [Google Scholar] [CrossRef]
- Reis, A.; Gouveia, L.; Veloso, V.; Fernandes, H.L.; Empis, J.A.; Novais, J.M. Eicosapentaenoic Acid-Rich Biomass Production by the Microalga Phaeodactylum tricornutum in a Continuous-Flow Reactor. Bioresour. Technol. 1996, 55, 83–88. [Google Scholar] [CrossRef]
- Yao, L.; Gerde, J.A.; Lee, S.-L.; Wang, T.; Harrata, K.A. Microalgae Lipid Characterization. J. Agric. Food Chem. 2015, 63, 1773–1787. [Google Scholar] [CrossRef]
- Xu, J.; Li, T.; Li, C.; Zhu, S.; Wang, Z.; Zeng, E.Y. Lipid Accumulation and Eicosapentaenoic Acid Distribution in Response to Nitrogen Limitation in Microalga Eustigmatos vischeri JHsu-01 (Eustigmatophyceae). Algal Res. 2020, 48, 101910. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, M.; Pan, Y.; Hu, H.; Liu, J. Δ6 Fatty Acid Elongase is Involved in Eicosapentaenoic Acid Biosynthesis via the Ω6 Pathway in the Marine Alga Nannochloropsis oceanica. J. Agric. Food Chem. 2021, 69, 9837–9848. [Google Scholar] [CrossRef]
- Martin, G.J.O.; Hill, D.R.A.; Olmstead, I.L.D.; Bergamin, A.; Shears, M.J.; Dias, D.A.; Kentish, S.E.; Scales, P.J.; Botte, C.Y.; Callahan, D.L. Lipid Profile Remodeling in Response to Nitrogen Deprivation in the Microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS ONE 2014, 9, e103389. [Google Scholar] [CrossRef]
- Han, D.X.; Jia, J.; Li, J.; Sommerfeld, M.; Xu, J.; Hu, Q. Metabolic Remodeling of Membrane Glycerolipids in the Microalga Nannochloropsis oceanica under Nitrogen Deprivation. Front. Mar. Sci. 2017, 4, 242. [Google Scholar] [CrossRef]
- Xue, Z.; He, H.; Hollerbach, D.; Macool, D.J.; Yadav, N.S.; Zhang, H.; Szostek, B.; Zhu, Q. Identification and Characterization of New Δ-17 Fatty Acid Desaturases. Appl. Microbiol. Biotechnol. 2013, 97, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Bigogno, C.; Khozin-Goldberg, I.; Adlerstein, D.; Cohen, Z. Biosynthesis of Arachidonic Acid in the Oleaginous Microalga Parietochloris incisa (Chlorophyceae): Radiolabeling Studies. Lipids 2002, 37, 209–216. [Google Scholar] [CrossRef]
- Xin, Y.; Shen, C.; She, Y.T.; Chen, H.; Wang, C.; Wei, L.; Yoon, K.; Han, D.X.; Hu, Q.; Xu, J. Biosynthesis of Triacylglycerol Molecules with a Tailored PUFA Profile in Industrial Microalgae. Mol. Plant 2019, 12, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; King, R.D.; Altmann, T.; Fiehn, O. Application of Metabolomics to Plant Genotype Discrimination using Statistics and Machine Learning. Bioinformatics 2002, 18, 241–248. [Google Scholar] [CrossRef]
- Samburova, V.; Lemos, M.S.; Hiibel, S.; Kent Hoekman, S.; Cushman, J.C.; Zielinska, B. Analysis of Triacylglycerols and Free Fatty Acids in Algae Using Ultra-Performance Liquid Chromatography Mass Spectrometry. J. Am. Oil Chem. Soc. 2013, 90, 53–64. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Cao, X.P.; Yang, M.; Liu, J.; Yao, C.H.; Xue, S. Glycerolipid Remodeling Triggered by Phosphorous Starvation and Recovery in Nannochloropsis oceanica. Algal Res. 2019, 39, 101451. [Google Scholar] [CrossRef]
- Markou, G.; Angelidaki, I.; Georgakakis, D. Microalgal Carbohydrates: An Overview of the factors Influencing Carbohydrates Production, and of Main Bioconversion Technologies for Production of Biofuels. Appl. Microbiol. Biotechnol. 2012, 96, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Huerlimann, R.; Steinig, E.J.; Loxton, H.; Zenger, K.R.; Jerry, D.R.; Heimann, K. Effects of Growth Phase and Nitrogen Starvation on Expression of Fatty Acid Desaturases and Fatty Acid Composition of Isochrysis aff. galbana (TISO). Gene 2014, 545, 36–44. [Google Scholar] [CrossRef]
- Jiao, K.; Xiao, W.; Shi, X.; Ho, S.-H.; Chang, J.-S.; Ng, I.S.; Tang, X.; Sun, Y.; Zeng, X.; Lin, L. Molecular Mechanism of Arachidonic Acid Biosynthesis in Porphyridium purpureum Promoted by Nitrogen Limitation. Bioprocess Biosyst. Eng. 2021, 44, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Lellouche, J.P.; Shabtai, Y.; Arad, S. Fixed Carbon Partitioning in the Red Microalga Porphyridium sp. (Rhodophyta). J. Appl. Phycol. 2001, 37, 289–297. [Google Scholar] [CrossRef]
- Liang, J.B.; Wen, F.; Liu, J.H. Transcriptomic and Lipidomic Analysis of an EPA-Containing Nannochloropsis sp. PJ12 in Response to Nitrogen Deprivation. Sci. Rep. 2019, 9, 4540. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xu, J.; Gao, B.Y.; Xiang, W.Z.; Li, A.F.; Zhang, C.W. Morphology, Growth, Biochemical Composition and Photosynthetic Performance of Chlorella vulgaris (Trebouxiophyceae) under Low and High Nitrogen Supplies. Algal Res. 2016, 16, 481–491. [Google Scholar] [CrossRef]
- Cohen, Z.; Vonshak, A.; Richmond, A. Effect of Environmental-Conditions on Fatty Acid Composition of the Red Alga Porphyridium cruentum Correlation to Growth Rate. J. Phycol. 1988, 24, 328–332. [Google Scholar] [CrossRef]
- Shiran, D.; Khozin, I.; Heimer, Y.M.; Cohen, Z. Biosynthesis of Eicosapentaenoic Acid in the Microalga Porphyridium cruentum 1. The Use of Externally Supplied Fatty Acids. Lipids 1996, 31, 1277–1282. [Google Scholar] [CrossRef]
- Cohen, Z.; Shiran, D.; Khozin, I.; Heimer, Y.M. Fatty Acid Unsaturation in the Red Alga Porphyridium cruentum. Is the Methylene Interrupted Nature of Polyunsaturated Fatty Acids an Intrinsic Property of the Desaturases? BBA-Lipid Lipid Met. 1997, 1344, 59–64. [Google Scholar] [CrossRef]
- Huang, Z.; Zhong, C.; Dai, J.; Li, S.; Zheng, M.; He, Y.; Wang, M.; Chen, B. Simultaneous Enhancement on Renewable Bioactive Compounds from Porphyridium cruentum via a Novel Two-Stage Cultivation. Algal Res. 2021, 55, 102270. [Google Scholar] [CrossRef]
- Jiao, K.; Xiao, W.; Xu, Y.; Zeng, X.; Ho, S.-H.; Laws, E.A.; Lu, Y.; Ling, X.; Shi, T.; Sun, Y.; et al. Using a Trait-Based Approach to Optimize Mixotrophic Growth of the Red Microalga Porphyridium purpureum towards Fatty Acid Production. Biotechnol. Biofuels 2018, 11, 273. [Google Scholar] [CrossRef]
- Breuer, G.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H. The Impact of Nitrogen Starvation on the Dynamics of Triacylglycerol Accumulation in Nine Microalgae Strains. Bioresour. Technol. 2012, 124, 217–226. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Wu, H.; Jiang, P.; Chen, Z.; Xiang, W. Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations. Marine Drugs 2019, 17, 124. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, J.; Cui, J.; Feng, Y.; Cui, Q. Metabolic Profiles of Nannochloropsis oceanica IMET1 under Nitrogen-Deficiency Stress. Bioresour. Technol. 2013, 130, 731–738. [Google Scholar] [CrossRef]
- Tran, N.-A.T.; Padula, M.P.; Evenhuis, C.R.; Commault, A.S.; Ralph, P.J.; Tamburic, B. Proteomic and Biophysical Analyses Reveal a Metabolic Shift in Nitrogen Deprived Nannochloropsis oculata. Algal Res. 2016, 19, 1–11. [Google Scholar] [CrossRef]
- Buchanan, B.B.; Gruissem, W.; Jones, R.L. Biochemistry and Molecular Biology of Plants; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Carter, J.D.; Leblond, J.D. Red (Hot) Algae: Modulation of Mono- and Digalactosyldiacylglycerol-Associated Fatty Acids of Polysiphonia sp. and Porphyridium sp. in Response to Growth Temperature. Eur. J. Phycol. 2018, 53, 460–470. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Wang, W.; Chen, Z.; Li, C.; Wu, H.; Wu, H.; Xiang, W. A Novel Three-Step Extraction Strategy for High-Value Products from Red Algae Porphyridium purpureum. Foods 2021, 10, 2164. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Li, S.; Chen, C.; Jin, H.; Wu, H.; Fan, J. Physiological and Transcriptome Analysis Elucidates the Metabolic Mechanism of Versatile Porphyridium purpureum under Nitrogen Deprivation for Exopolysaccharides Accumulation. Bioresour. Bioprocess 2021, 8, 73. [Google Scholar] [CrossRef]
- Liu, W.; Sun, Z.; Chen, C.X.; Liu, J.G.; Zhou, Z.G. Novel Insights into Type 2 Diacylglycerol Acyltransferases in Microalga Myrmecia incisa. J. Appl. Phycol. 2021, 33, 25–35. [Google Scholar] [CrossRef]
- Laureano, G.; Figueiredo, J.; Cavaco, A.R.; Duarte, B.; Cacador, I.; Malho, R.; Silva, M.S.; Matos, A.R.; Figueiredo, A. The Interplay between Membrane Lipids and Phospholipase A family Members in Grapevine Resistance against Plasmopara viticola. Sci. Rep. 2018, 8, 14538. [Google Scholar] [CrossRef] [PubMed]
- Khozin-Goldberg, I.; Shrestha, P.; Cohen, Z. Mobilization of Arachidonyl Moieties from Triacylglycerols into Chloroplastic Lipids following Recovery from Nitrogen Starvation of the Microalga Parietochloris incisa. BBA-Mol. Cell Biol. L. 2005, 1738, 63–71. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Li, C.; Wang, W.; Wu, H.; Wu, H.; Xu, J.; Xiang, W. Reconstruction of Long-Chain Polyunsaturated Acid Synthesis Pathways in Marine Red Microalga Porphyridium cruentum Using Lipidomics and Transcriptomics. Mar. Drugs 2024, 22, 82. https://doi.org/10.3390/md22020082
Li T, Li C, Wang W, Wu H, Wu H, Xu J, Xiang W. Reconstruction of Long-Chain Polyunsaturated Acid Synthesis Pathways in Marine Red Microalga Porphyridium cruentum Using Lipidomics and Transcriptomics. Marine Drugs. 2024; 22(2):82. https://doi.org/10.3390/md22020082
Chicago/Turabian StyleLi, Tao, Chulin Li, Weinan Wang, Hualian Wu, Houbo Wu, Jin Xu, and Wenzhou Xiang. 2024. "Reconstruction of Long-Chain Polyunsaturated Acid Synthesis Pathways in Marine Red Microalga Porphyridium cruentum Using Lipidomics and Transcriptomics" Marine Drugs 22, no. 2: 82. https://doi.org/10.3390/md22020082
APA StyleLi, T., Li, C., Wang, W., Wu, H., Wu, H., Xu, J., & Xiang, W. (2024). Reconstruction of Long-Chain Polyunsaturated Acid Synthesis Pathways in Marine Red Microalga Porphyridium cruentum Using Lipidomics and Transcriptomics. Marine Drugs, 22(2), 82. https://doi.org/10.3390/md22020082