Hydroxytakakiamide and Other Constituents from a Marine Sponge-Associated Fungus Aspergillus fischeri MMERU23, and Antinociceptive Activity of Ergosterol Acetate, Acetylaszonalenin and Helvolic Acid
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Procedure
3.2. Isolation of the Compounds
Hydroxytakakiamide (4)
3.3. Antinociceptive Activity
3.3.1. Drugs and Reagents
3.3.2. Animals
3.3.3. Drug Administration
3.3.4. Acetic Acid-Induced Writhing Test
3.3.5. Formalin Test
3.3.6. Open-Field Test
3.3.7. Rotarod Test
3.3.8. Statistical Analysis
3.4. Molecular Docking Routines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patyshakuliyeva, A.; Falkoski, D.L.; Wiebenga, A.; Klaas Timmermans, K.; de Vries, R.P. Macroalgae-derived fungi have high abilities to degrade algal polymers. Microorganisms 2020, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- May Zin, W.W.; Prompanya, C.; Buttachon, S.; Kijjoa, A. Bioactive secondary metabolites from a Thai collection of soil and marine-derived fungi of the genera Neosartorya and Aspergillus. Curr. Drug Deliv. 2016, 13, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Orfali, R.; Aboseada, M.A.; Abdel-Wahab, N.M.; Hassan, H.M.; Perveen, S.; Ameen, F.; Alturkia, E.; Abdelmohsen, U.R. Recent updates on the bioactive compounds of the marine-derived genus Aspergillus. RSC Adv. 2021, 11, 17116–17150. [Google Scholar] [CrossRef] [PubMed]
- Cardona, H.R.A.; Froes, T.Q.; Souza, B.C.; Leite, F.H.A.; Brandão, H.N.; Buaruang, J.; Kijjoa, A.; Alves, C.Q. Thermal shift assays of marine-derived fungalmetabolites from Aspergillus fischeri MMERU 23against Leishmania major pteridine reductase 1 and molecular dynamics studies. J. Biomol. Struct. 2022, 40, 11968–11976. [Google Scholar] [CrossRef]
- Matta, C.B.B.; Souza, E.T.; Queiroz, A.C.; Lira, D.P.; Araújo, M.V.; Cavalcante-Silva, L.H.A.; Miranda, G.E.C.; Araújo-Júnior, J.X.; Barbosa-Filho, J.M.; Santos, B.V.O.; et al. Antinociceptive and anti-Inflammatory Activity from algae of the genus Caulerpa. Mar. Drugs 2011, 9, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante-Silva, L.H.A.; Matta, C.B.B.; Araújo, M.V.; Barbosa-Filho, J.M.; Lira, D.P.; Santos, B.V.O.; Miranda, G.E.C.; Alexandre-Moreira, M.S. Antinociceptive and anti-inflammatory activities of crude methanolic extract of red alga Bryothamnion triquetrum. Mar. Drugs 2012, 10, 1977–1992. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.K.F.S.; Fonseca, D.V.; Salgado, P.R.R.; Muniz, V.M.; Torres, P.A.; Lira, N.S.; Dias, C.S.; Pordeus, L.C.M.; Barbosa-Filho, J.M.; Almeida, R.N. Antinociceptive activity of Sargassum polyceratium and the isolation of its chemical componentes. Rev. Bras. Farmacogn. 2015, 25, 683–689. [Google Scholar] [CrossRef]
- Shih, C.C.; Hwang, H.R.; Chang, C.I.; Su, H.M.; Chen, P.C.; Kuo, H.M.; Li, P.J.; Wang, H.M.D.; Tsui, K.H.; Lin, Y.C.; et al. Anti-inflammatory and antinociceptive effects of ethyl acetate fraction of an edible red macroalgae Sarcodia ceylanica. Int. J. Mol. Sci. 2017, 18, 2437. [Google Scholar] [CrossRef]
- Hort, M.A.; Júnior, F.M.R.S.; Garcia, E.M.; Peraza, G.G.; Soares, A.; Lerner, C.; Muccillo-Baisch, A.L. Antinociceptive and anti-inflammatory activities of marine sponges Aplysina caissara, Haliclona sp. and Dragmacidon Reticulatum. Braz. Arch. Biol. Technol. 2018, 61, e18180104. [Google Scholar] [CrossRef]
- Souza, E.T.; Lira, D.P.; Queiroz, A.C.; Silva, D.J.C.; Anansa Bezerra de Aquino, A.B.; Mella, E.A.C.; Lorenzo, V.P.; Miranda, G.E.C.; Araújo-Júnior, J.X.; Chaves, M.C.O.; et al. The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar. Drugs 2009, 7, 689–704. [Google Scholar] [CrossRef]
- Costa, L.E.C.; Brito, T.V.; Damasceno, R.O.S.; Sousa, W.M.; Barros, F.C.N.; Sombra, V.G.; Júnior, J.S.C.; Magalhães, D.A.; Souza, M.H.L.P.; Medeiros, J.V.R.; et al. Chemical structure, anti-inflammatory and antinociceptive activities of a sulfated polysaccharide from Gracilaria intermedia alga. Int. J. Biol. Macromol. 2020, 159, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.S.; Cheng, H.J.; Chen, N.F.; Tang, S.H.; Kuo, H.M.; Sung, P.J.; Chen, W.F.; Wen, Z.H. Antinociceptive effects of aaptamine, a sponge component, on peripheral neuropathy in rats. Mar. Drugs 2023, 21, 113. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, Y.; Men, L.; Zhang, Y.; Liu, Z.; Sun, T.; Geng, Y.; Yu, Z. Secondary metabolites of the marine fungus Penicillium chrysogenum. Chem. Nat. Compd. 2014, 50, 405–407. [Google Scholar] [CrossRef]
- Santos, A.B.S.; Niero, R.; Filho, V.C.; Yunes, R.A.; Pizzolatti, M.G.; Monache, F.D.; Calixto, J.B. Antinociceptive properties of steroids isolated from Phyllanthus corcovadensis in mice. Planta Med. 1995, 61, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.I.B.; Oliveira, S.M.; Tonello, R.; Rossato, M.F.; Brum, E.S.; Ferreira, J.; Trevisan, G. Anti-nociceptive effect of stigmasterol in mouse models of acute and chronic pain. Naunyn Schmiedebergs Arch. Pharmacol. 2017, 390, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Şakul, A.A.; ve Okur, M.E. Beta-sitosterol and its antinociceptive mechanism action. J. Fac. Pharm. Ankara 2021, 46, 238–252. [Google Scholar] [CrossRef]
- Huang, L.; Cao, Y.; Xu, H.; Chen, G. Separation and purification of ergosterol and stigmasterol in Anoectochilus roxburghii (wall) Lindl by high-speed counter-current chromatography. J. Sep. Sci. 2011, 34, 385–392. [Google Scholar] [CrossRef] [PubMed]
- May Zin, W.W.; Buttachon, S.; Tida Dethoup, T.; Fernande, C.; Cravo, S.; Pinto, M.M.M.; Gales, L.; Pereira, J.A.; Silva, A.M.S.; Sekeroglu, N.; et al. New cyclotetrapeptides and a new diketopiperzine derivative from the marine sponge-associated fungus Neosartorya glabra KUFA 0702. Mar. Drugs 2016, 14, 136. [Google Scholar] [CrossRef]
- May Zin, W.W.; Buttachon, S.; Buaruang, J.; Gales, L.; Pereira, J.A.; Pinto, M.M.M.; Silva, A.M.S.; Kijjoa, K. A new meroditerpene and a new tryptoquivaline analog from the algicolous fungus Neosartorya takakii KUFC 7898. Mar. Drugs 2015, 13, 3776–3790. [Google Scholar] [CrossRef]
- Yin, W.B.; Grundmann, A.; Cheng, J.; Li, S.M. Acetylaszonalenin biosynthesis in Neosartorya fischeri: Identification of the biosynthetic gene cluster by genomic mining and functional proof of the genes bybiochemical investigation. J. Biochem. Chem. 2009, 284, 100–109. [Google Scholar] [CrossRef]
- Rukachaisirikul, V.; Rungsaiwattana, N.; Klaiklay, S.; Pakawatchai, C.; Saithong, S.; Phongpaichit, S.; Borwornwiriyapan, K.; Sakayaroj, J. Indole-benzodiazepine-2,5-dione derivatives from a soil fungus Aspergillus sp. PSU-RSPG185. Tetrahedron 2013, 69, 11116–11121. [Google Scholar] [CrossRef]
- Okuda, K.; Sakurada, C.; Takahashi, M.; Yamada, T.; Sakurada, T. Characterization of nociceptive responses and spinal releases of nitric oxide metabolites and glutamate evoked by different concentrations of formalin in rats. Pain 2001, 92, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Coderre, T.J.; Yashpal, K. Intracellular messengers contributing to persistent nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model. Eur. J. Neurosci. 1994, 6, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Hunskaar, S.; Hole, K. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 1987, 30, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Chichorro, J.G.; Lorenzetti, B.B.; Zampronio, A.R. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats. Br. J. Pharmacol. 2004, 141, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol. Biol. 2019, 1916, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Deacon, R.M.J. Measuring motor coordination in mice. J. Vis. Exp. 2013, 75, 2609. [Google Scholar] [CrossRef]
- Yam, M.F.; Loh, Y.C.; Tan, C.S.; Adam, S.K.; Manan, N.A.; Basir, R. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int. J. Mol. Sci. 2018, 19, 2164. [Google Scholar] [CrossRef]
- Rashid, H.; Martines, M.A.U.; Duarte, A.P.; Jorge, J.; Rasool, S.; Muhammad, R.; Ahmad, N.; Umar, M.N. Research developments in the syntheses, antiinflammatory activities and structure–activity relationships of pyrimidines. RSC Adv. 2021, 11, 6060–6098. [Google Scholar] [CrossRef]
- Mahesh, G.; Kumar, K.A.; Reddanna, P. Overview on the discovery and development of anti-Inflammatory drugs: Should the focus be on synthesis or degradation of PGE2? J. Inflamm. Res. 2021, 14, 253–263. [Google Scholar] [CrossRef]
- Burnett, B.P.; Levy, R.M. 5-Lipoxygenase metabolic contributions to NSAID-induced organ toxicity. Adv. Ther. 2012, 29, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.E. Inhaled phosphodiesterase 4 (PDE4) inhibitors for inflammatory respiratory diseases. Front. Pharmacol. 2020, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Matera, M.G.; Ora, J.; Cavalli, F.; Rogliani, P.; Cazzola, M. New avenues for phosphodiesterase inhibitors in asthma. J. Exp. Pharmacol. 2021, 13, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Ben-Aicha, S.; Diaz-Riera, E.; Lina Badimon, L.; Padró, T. Phytosterols and inflammation. Curr. Med. Chem. 2019, 26, 6724–6734. [Google Scholar] [CrossRef] [PubMed]
- León-Álvarez, E.; Pacheco, C.M.; Gesto-Borroto, R.; Acosta-Urdapilleta, M.L.; Maura Téllez-Téllez, M.; González, R.B.; Núñez-Aragón, P.N.; Villarreal, M.L.; Taketa, A.T.C. Anti-inflammatory, radical-scavenging, and chelating activities of nor-triterpenes from Galphimia species. Rev. Bras. Farmacogn. 2024, 1–11. [Google Scholar] [CrossRef]
- Sinha, S.; Doble, M.; Manju, S.L. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg. Med. Chem. 2019, 27, 3745–3759. [Google Scholar] [CrossRef] [PubMed]
- Szczypka, M. Role of phosphodiesterase 7 (PDE7) in T cell activity. Effects of selective PDE7 inhibitors and dual PDE4/7 inhibitors on T cell functions. Int. J. Mol. Sci. 2020, 21, 6118. [Google Scholar] [CrossRef]
- Paterniti, I.; Mazzon, E.; Gil, C.; Impellizzeri, D.; Palomo, V.; Redondo, M.; Perez, D.I.; Esposito, E.; Martinez, A.; Cuzzocrea, S. PDE 7 inhibitors: New potential drugs for the therapy of spinal cord injury. PLoS ONE 2011, 6, e15937. [Google Scholar] [CrossRef]
- Shinada, N.K.; Schmidtke, P.; Brevern, A.G. Accurate representation of protein-ligand structural diversity in the protein data bank (PDB). Int. J. Mol. Sci. 2020, 21, 2243. [Google Scholar] [CrossRef]
- Ponsaerts, L.; Alders, L.; Schepers, M.; Oliveira, R.M.W.O.; Prickaerts, J.; Vanmierlo, T.; Bronckaers, A. Neuroinflammation in ischemic stroke: Inhibition of cAMP-specific phosphodiesterases (PDEs) to the rescue. Biomedicines 2021, 9, 703. [Google Scholar] [CrossRef]
- Maione, F.; Minosi, P.; Di Giannuario, A.; Raucci, F.; Chini, M.G.; De Vita, S.; Bifulco, G.; Mascolo, N.; Pieretti, S. Long-lasting anti-inflammatory and antinociceptive effects of acute ammonium glycyrrhizinate administration: Pharmacological, biochemical, and docking studies. Molecules 2019, 24, 2453. [Google Scholar] [CrossRef]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef] [PubMed]
- Valasques Junior, G.L.; Lima, F.O.; Boffo, E.F.; Santos, J.D.G.; Silva, B.C.; Assis, S.A. Extraction optimization and antinociceptive activity of (1→3)-β-D-glucan from Rhodotorula mucilaginosa. Carbohydr. Polym. 2014, 105, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Collier, H.O.; Dinneen, L.C.; Johnson, C.A.; Schneider, C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br. J. Pharmacol. Chemother. 1968, 32, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Dubuisson, D.; Dennis, S.G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1997, 4, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.L.S.; Silva, G.L.; Mateussi, A.S.; Fernandes, E.S.; Miguel, O.G.; Yunes, R.A.; Calixto, J.B.; Santos, A.R.S. Involvement of monoaminergic system in the antidepressant-like effect of the hydroalcoholic extract of Siphocampylus verticillatus. Life Sci. 2002, 70, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Gewald, R.; Grunwald, C.; Egerland, T. Discovery of triazines as potent, selective and orally active PDE4 inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 4308–4314. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcome, M.E. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat. Chem. Biol. 2020, 16, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Chen, Y.; Robinson, H.; Ke, H. Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7. J. Biol. Chem. 2005, 280, 30949–30955. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Costanzo, L.D.; Duarte, J.M.; et al. RCSB Protein data bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef]
Position | δC, Type | δH (J in Hz) | COSY | HMBC |
---|---|---|---|---|
2 | 125.5, CH | 7.01, s | C-3, 8, 9 | |
3 | 107.2, C | - | ||
4 | 103.1, CH | 6.95, d (2.0) | H-6 | C-5, 6, 8 |
5 | 149.7, C | - | ||
6 | 111.9, CH | 6.79, dd (8.5, 2.0) | H-4, 7 | C-4, 8 |
7 | 110.5, CH | 7.16, d (8.5) | H-6 | C-5, 9 |
8 | 131.8, C | - | ||
9 | 128.5, C | - | ||
10a b | 24.1, CH2 | 3.14, dd (6.0, 15.5) 3.39, dd (8.0, 15.5) | H-10b, 11 H-10a, 11 | C-2, 3, 11, 17 |
11 | 52.7, CH | 4.08, dt (6.0, 8.0) | H-10a, 10b | C-3, 13 |
13 | 168.9, CO | - | ||
14 | 125.4, C | - | ||
15 | 135.7, C | - | ||
17 | 172.0, C | - | ||
18 | 120.9, CH | 6.99, d (8.0) | H-19 | C-14, 20 |
19 | 133.2, CH | 7.49, dd (8.0, 8.0) | H-18, 20 | C-15, 21 |
20 | 125.2, CH | 7.26, dd (8.0, 8.0) | H-19, 21 | C-14, 18 |
21 | 131.1, CH | 7.93, d (8.0) | H-20 | C-13, 15, 19 |
1′ | 44.3, CH2 | 4.58, d (7.0) | H-2′ | C-2, 2′, 3′, 8 |
2′ | 119.9, CH | 5.33, t (7.0) | H-1′ | C-4′, 5′ |
3′ | 136.1, C | - | - | |
4′ | 25.6, CH3 | 1.74, s | - | C-2′, 3′, 5′ |
5′ | 18.0, CH3 | 1.79, s | - | C-2′, 3′, 4′ |
NH-16 | - | 8.32, s | - | C-14, 15, 17 |
Receptor | RMSD (Å) | Energy (kcal/mol) |
---|---|---|
5-LOX (PDB ID: 6N2W) | 1.79 | −6.8 |
PDE 4 (PDB ID: 4K6P | 1.95 | −6.7 |
PDE7 (PDB: ID 1ZKL) | 0.94 | −5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias Cardona, H.R.; Cerqueira da Silva, B.; de Lima, F.O.; Andrade Leite, F.H.; de Souza, B.C.; Brandão, H.N.; David, J.M.; Alves, C.Q.; Kijjoa, A. Hydroxytakakiamide and Other Constituents from a Marine Sponge-Associated Fungus Aspergillus fischeri MMERU23, and Antinociceptive Activity of Ergosterol Acetate, Acetylaszonalenin and Helvolic Acid. Mar. Drugs 2024, 22, 97. https://doi.org/10.3390/md22030097
Arias Cardona HR, Cerqueira da Silva B, de Lima FO, Andrade Leite FH, de Souza BC, Brandão HN, David JM, Alves CQ, Kijjoa A. Hydroxytakakiamide and Other Constituents from a Marine Sponge-Associated Fungus Aspergillus fischeri MMERU23, and Antinociceptive Activity of Ergosterol Acetate, Acetylaszonalenin and Helvolic Acid. Marine Drugs. 2024; 22(3):97. https://doi.org/10.3390/md22030097
Chicago/Turabian StyleArias Cardona, Harol Ricardo, Bruno Cerqueira da Silva, Flávia Oliveira de Lima, Franco Henrique Andrade Leite, Bruno Cruz de Souza, Hugo Neves Brandão, Jorge Maurício David, Clayton Queiroz Alves, and Anake Kijjoa. 2024. "Hydroxytakakiamide and Other Constituents from a Marine Sponge-Associated Fungus Aspergillus fischeri MMERU23, and Antinociceptive Activity of Ergosterol Acetate, Acetylaszonalenin and Helvolic Acid" Marine Drugs 22, no. 3: 97. https://doi.org/10.3390/md22030097
APA StyleArias Cardona, H. R., Cerqueira da Silva, B., de Lima, F. O., Andrade Leite, F. H., de Souza, B. C., Brandão, H. N., David, J. M., Alves, C. Q., & Kijjoa, A. (2024). Hydroxytakakiamide and Other Constituents from a Marine Sponge-Associated Fungus Aspergillus fischeri MMERU23, and Antinociceptive Activity of Ergosterol Acetate, Acetylaszonalenin and Helvolic Acid. Marine Drugs, 22(3), 97. https://doi.org/10.3390/md22030097