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Abstract: High blood cholesterol levels are a major risk factor for cardiovascular diseases. A purified
aqueous extract of Fucus vesiculosus, rich in phlorotannins and peptides, has been described for its
potential to inhibit cholesterol biosynthesis and intestinal absorption. In this work, the effect of this
extract on intestinal cells’ metabolites and proteins was analysed to gain a deeper understanding
of its mode of action on lipids’ metabolism, particularly concerning the absorption and transport
of exogenous cholesterol. Caco-2 cells, differentiated into enterocytes, were exposed to the extract,
and analysed by untargeted metabolomics and proteomics. The results of the metabolomic analysis
showed statistically significant differences in glutathione content of cells exposed to the extract
compared to control cells, along with an increased expression of fatty acid amides in exposed cells.
A proteomic analysis showed an increased expression in cells exposed to the extract compared to
control cells of FAB1 and NPC1, proteins known to be involved in lipid metabolism and transport. To
the extent of our knowledge, this study is the first use of untargeted metabolomics and a proteomic
analysis to investigate the effects of F. vesiculosus on differentiated Caco-2 cells, offering insights into
the molecular mechanism of the extract’s compounds on intestinal cells.

Keywords: Fucus vesiculosus; proteomics; metabolomics; NPC1; Caco-2 cell line

1. Introduction

Atherosclerosis, a chronic inflammatory disease of the blood vessels [1,2], is the
major cause of cardiovascular disease, the leading cause of death in Europe [3]. Hyper-
cholesterolemia is a risk factor for atherosclerosis because elevated plasma cholesterol
concentrations and cholesterol accumulation in various tissues lead to the formation of
arterial plaques [3,4]. One of the main approaches to reduce the risk of atherosclerosis is to
lower the blood cholesterol levels, either through increased physical activity and dietary
changes, such as reducing the intake of saturated fat, or through prescribed medication [3].
Recently, there has been increased scientific interest in new therapeutic strategies using
functional foods to reduce hypercholesterolemia, leading to the search for new bioactive
natural products.
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Different seaweeds have been characterised by their high hypocholesterolemic poten-
tial [5]. Brown seaweeds are one of the world’s most consumed seaweeds and one of the
most studied seaweeds in this field [6]. Several studies with different compounds, such
as phlorotannins, carotenoids, and polysaccharides extracted from brown algae species,
have already reported their hypocholesterolemic effect [7–9]. Phlorotannins, a class of
bioactive polyphenolic compounds produced by brown algae, have been characterised
for their potential to prevent atherosclerosis, with several studies reporting their ability to
reduce blood lipid levels and total cholesterol, particularly through their ability to decrease
cholesterol synthesis and intestinal absorption [9–12]. Specifically, an aqueous extract of
the brown algae F. vesiculosus, purified by solid-phase extraction (SPE), characterised by
Liquid Chromatography High-Resolution Mass Spectrometry (LC-HRMS/MS) as rich in
phlorotannins and peptides, stood out for its in vitro inhibitory effect on the synthesis
and absorption of cholesterol, as well as for its ability to reduce the hepatic expression of
NPC1L1, which can lead to the increased biliary excretion of cholesterol [10,11,13].

F. vesiculosus is one of the species of brown algae consumed in Europe and used in
traditional medicine to treat or prevent various diseases such as obesity, arthritis, arthrosis,
hypothyroidism, atherosclerosis, hypercholesterolemia, mineral deficiency, and anaemia,
among others [14–17]. Previous studies have demonstrated the potential of this seaweed
in various biological activities, namely hypercholesterolemia [10,11,18], antidiabetic ac-
tivities [19], anticancer activities [20,21], prevention of atherosclerosis [10], and antiviral
activities [22,23], among others. This seaweed is considered to be an excellent natural
source of iodine, so its consumption is contraindicated in cases of hyperthyroidism [14].

The intestine is known to play an important role in cholesterol homeostasis in terms of
absorption, with cholesterol uptake and secretion by enterocytes [24]. Previous studies have
reported that the dietary incorporation of seaweed-derived polysaccharides, polyphenols,
and peptides has the potential to modulate mammalian gut microbiota, leading to changes
in lipid transport [25]. Therefore, the aim of this work was to study the effect on intestinal
cells of a purified aqueous extract of F. vesiculosus, previously characterised as rich in
phlorotannins and peptides, in order to better understand the mechanism of action of the
extract in the different processes that regulate cholesterol homeostasis at the intestinal
level. To achieve this, the intestinal barrier was simulated in vitro using a Caco-2 cell
line. These cells have been widely used as a model of the intestinal barrier, as they can
spontaneously differentiate after approximately 21 days into a monolayer of polarized
cells with morphological and functional characteristics of small intestinal enterocytes [8].
Thus, differentiated Caco-2 cells were exposed to the extract and subsequently analysed by
two different omics techniques, namely a gel-based proteomics analysis and untargeted
metabolomics analysis. These two techniques are considered to be promising tools that
have led to remarkable results in the investigation of molecular mechanisms associated
with various diseases [26–28]. Given the robust results obtained through metabolomic
and proteomic analyses, this study has contributed to the understanding of the extract’s
mechanism of action not only in the prevention of hypercholesterolemia and atherosclerosis,
but also in the management of other lipid-related conditions.

2. Results and Discussion
2.1. Effect of the Purified F. vesiculosus Aqueous Extract in Enterocyte-Like Caco-2 Cells

Before the metabolomic and proteomic studies, Caco-2 cells differentiated into
enterocyte-like cells were exposed to 0.25 mg/mL of a F. vesiculosus aqueous extract for
24 h to assess the cytotoxic effect of the extract on the cells under study. The F. vesiculosus
extract showed no cytotoxic effect on differentiated Caco-2 cells. When the cells were
exposed to different concentrations of the extract (0.2–0.8 mg/mL), cell viability was always
approximately 100%.
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2.1.1. Metabolomic Analysis

To study the effect of the purified F. vesiculosus aqueous extract on the metabolites of
Caco-2 cells differentiated into enterocyte-like cells, an untargeted metabolomic analysis
was performed by LC-HRMS/MS. A total of 2217 metabolites were detected in this analysis.
Although a large number of metabolites were detected, we specifically identified only those
with a p-value of less than 0.05 and available MS/MS spectra. On the basis of the criterion,
twelve metabolites were putatively identified by comparison with databases (Table 1).

Table 1. Proposed identification of the metabolites detected by LC/HRMS/MS in ESI positive mode
with increased intensity in the differentiated Caco-2 cells treated with F. vesiculosus aqueous extract
compared to control cells. The tentative identification was based on exact mass, MS/MS spectra, and
reference standard mass spectral databases. * Compounds without FC below 2 are not significant
based on t-test at a confidence level of 98%.

Name Rt [M − H]+

m/z
Molecular
Formula ∆ m/z (Da) p-Value FC

(Extract/Control)

Heptadec-2-enamide * 17.54 268.2636 C17H33NO 0.0001 1.24 × 10−3 1.91
(Z)-2-ketoctadec-9-enamide * 14.57 296.2583 C18H33NO2 −0.00008 0.50 × 10−4 1.78
Linoleic acid hydroxamate * 13.11 278.2478 C18H33NO2 −0.00008 8.42 × 10−3 1.64

Choline * 1.12 104.10703 C5H13NO −0.16 1.50 × 10−5 1.61
3-Hetosphingosine * 15.47 298.2739 C18H35NO2 −0.00010 1.05 × 10−3 1.59

Palmitoleoyl ethanolamide * 13.62 280.26334 C18H35NO2 −0.00006 0.1 × 10−5 1.54
Myristamide * 16.28 228.23232 C14H29NO 0.00012 2.5 × 10−5 1.49
Linoleamide * 14.33 280.2633 C18H33NO −0.00001 1.73 × 10−4 1.47

Dodecanamide * 14.13 200.2008 C12H25NO 0.00013 4.68 × 10−4 1.40
Glutathione oxidized * 1.92 613.1532 C20H32N6O12S2 1.61 2.35 × 10−3 1.35

C16 phytosphingosine * 11.47 290.2691 C16H35NO3 −1.07 0.10 × 10−5 1.22

Glutathione 1.94 308.0908 C10H17N3O6S 0.0016 1.17 × 10−3 −50.45

The results of the metabolomic analysis were interpreted using an unsupervised
principal component analysis (PCA). The PCA assessed the degree of metabolic differences
between control cells and cells exposed to the extract, but also the similarity between
replicates. Two principal components, PC1 and PC2, were extracted and in the PCA score
plot (Figure 1A), a distinct separation between the control cells and extract-exposed cells
was achieved at a 98% confidence level, highlighting the metabolic differences between
them. Furthermore, although the PCA loading plot (Figure 1B) showed high overlap for
many of the metabolites, suggesting no significant differences in the intensities of most of
the detected metabolites, on the left side, eleven putatively identified metabolites (Table 1,
positive FC) were recognised as the most significant in extract-exposed cells, while on the
right side, glutathione (GSH) was shown to be the most prominent in control cells.

A further statistical analysis was conducted using a t-test at a confidence level of 98%
(Figure 2). Volcano plots were represented as the log2 fold changes in the metabolite’s
abundance between the extract-exposed cells and control cells plotted against −log10
(p-value). A positive FC indicates an up-regulation of the metabolite in extract-exposed
cells, whereas a negative FC signifies a down-regulation relative to the control cells.

Among the metabolites with proposed identifications, GSH emerged as the compound
with a negative value of FC, shown on the left of the volcano plot, with log2 fold changes
below −1 (Figure 2), indicating that a significant decrease in GSH occurred in cells exposed
to the extract compared to control cells. However, the F. vesiculosus extract at 100 µg/mL
showed approximately 76% antioxidant activity in a previous in vitro study, using the
DPPH method [10]; the current results show that exposure of differentiated Caco-2 cells to
the extract at 0.25 mg/mL induces oxidative stress and consequent glutathione depletion.
This could be seen as a potential adverse effect as oxidative stress has been associated with
the development of several diseases, including atherosclerosis [29], but it is worth noting
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that therapeutic agents causing glutathione depletion have been investigated for cancer
treatment [30,31]. GSH depletion has been shown to improve the therapeutic efficacy of
ROS-based therapy ferroptosis and chemotherapy by making cancer cells more susceptible
to chemotherapeutic agents [30].
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Figure 1. PCA analysis using Pareto scaling of LC/MS/MS untargeted metabolomic data analysis of
control differentiated Caco-2 cells (Caco dif.) and cells exposed (24 h) to F. vesiculosus aqueous extract
(0.25 mg/mL) (Caco dif + extract). (A) PCA score plot of PC2 versus PC1 illustrating the clustering
at 98% confidence level of triplicate analysis of metabolites from control differentiated Caco-2 cells
(Caco dif.—red points) and the triplicate analysis of metabolites from differentiated Caco-2 cells
exposed to the extract (Caco dif. + extract—blue points). (B) PCA loading plot of PC2 versus PC1 of
the detected compounds, with the metabolites identified in Table 1 highlighted in green.
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Figure 2. Volcano plot statistical untargeted metabolomics comparison between the control differenti-
ated Caco-2 cells and differentiated Caco-2 cells exposed to 0.25 mg/mL of the F. vesiculosus aqueous
extract, during 24 h. The volcano plot combines fold change and t-tests, where the X-axis represents
log2(fold change), and the Y-axis represents −log10 (p-value). Grey dots indicate metabolites present
at the same intensity in both cells. Right and left orange dots are up- and down-regulated metabolites
in cells exposed to the extract vs. control cells, respectively.

Among the metabolites identified in Table 1, seven were identified as fatty acid amides
(2-ketoctadec-9-enamide, heptadec-2-enamide, linoleic acid hydroxamate, palmitoleoyl
ethanolamide, myristamide, linoleamide, and dodecanamide). While their FC values were
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below 2, indicating modest changes, they exhibited a trend of increased expression in
extract-exposed cells compared to control cells. These compounds are recognized for their
potential health benefits and their involvement in managing various conditions, including
important roles in the gastrointestinal system. Fatty acid amides have been associated with
the inhibition of the enzyme ACAT, responsible for cholesterol esterification, potentially
leading to the inhibition of cholesterol absorption in the intestine [11]. Moreover, the
increase in fatty acid amides has also been associated with potential anti-inflammatory
health benefits [32]. Previous research has suggested that the presence of this group of
compounds has health benefits in the gastrointestinal tract, highlighting the benefits of an
anti-inflammatory diet in obese individuals, who are at higher risk of developing cardiovas-
cular diseases [33]. Furthermore, a similar modest trend of the increased expression of C16
phytosphingosine was also observed in cells exposed to the extract. This increase might
also be related to the anti-inflammatory properties of this extract, as phytosphingosine
compounds derived from natural-derived products have been reported to possess anti-
inflammatory potential against chronic disorders, including cardiovascular diseases [34].

A previous untargeted metabolomic study using HepG2 cells also demonstrated that
this extract led to a significant increase in the expression of several fatty acid amides [11]. As
Caco-2 cells are known to be more resistant, it is possible that the changes in the expression
of these lipid compounds in Caco-2 cells were less pronounced than the effects previously
reported in HepG2 cells [11]. Previous results also showed that in the presence of 0.4 mg/mL
of the extract, approximately 100% cell viability was obtained for differentiated Caco-2 cells,
whereas only 60% cell viability was observed for HepG2 cells under the same conditions [11],
highlighting that Caco-2 cells are more resistant to the effects of extract compounds.

2.1.2. Proteomic Analysis

The effect of the purified F. vesiculosus aqueous extract on proteins from differentiated
Caco-2 cells was investigated by a gel-based proteomic analysis. Firstly, the effect of the ex-
tract on the membrane proteins of differentiated cells was evaluated using one-dimensional
polyacrylamide gel electrophoresis (SDS-PAGE) for the separation and visualization of
proteins prior to identification. As can be seen in Figure 3, several changes in the intensity
of various protein bands were observed when proteins from control cells were compared
with those from cells exposed to the extract. The determined fold changes (FCs) and
p-values allowed us to identify differences in bands’ intensity between extract-exposed
cells and the control cells (Table 2). As can be seen in Table 2, ten protein bands presented a
p-value < 0.05, indicating statistically significant variations in protein intensity between
the extract-exposed cells and control cells. Additionally, a positive FC signifies a higher
intensity of the protein band in cells exposed to the F. vesiculosus extract, while a negative
fold change represents a higher intensity in the control cells.

Among this set of proteins, five bands were chosen for the proteomic analysis based
on their FC values. Specifically, band 19, which exhibited the highest FC value, was
selected and also bands 3, 7, 9, and 10, which displayed the lowest FC values. Additionally,
the zone corresponding to band 1 was also selected. In our previous study with liver
cells, this extract showed the ability to decrease the mRNA and protein expression of
Niemann–Pick C1-like 1 protein (NPC1L1), which has a molecular weight of approximately
145 kDa [13], corresponding to the location of band 1. NPC1L1 is the key player in dietary
cholesterol uptake, transporting dietary and bile cholesterol from the intestinal lumen
to the enterocyte [35]. Therefore, these six zones were excised from the SDS-PAGE of
membrane proteins from both control cells and extract-exposed cells and subjected to in-gel
trypsin digestion.
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Table 2. The p-values of and fold changes in the protein band intensity.

Band Fold Change
(Extract/Control) p-Value

1 −0.051 0.306
2 0.157 0.369
3 −0.715 0.009
4 −0.236 3.26 × 10−4

5 −0.198 0.057
6 −0.044 0.390
7 −0.393 0.011
8 −0.357 0.044
9 −0.527 1.18 × 10−4

10 −0.415 0.001
11 0.024 0.412
12 0.146 0.231
13 −0.362 0.008
14 −0.317 0.002
15 −0.158 0.124
16 −0.065 0.349
17 −0.099 0.273
18 −0.359 0.005
19 1.382 4.97 × 10−6

20 0.028 0.334
21 0.040 0.232
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Peptides resulting from gel digestion were analysed in duplicate by nLC-ESI-MS/MS,
followed by an Andromeda® database search. In the results analysis, proteins identified in
the two technical replicates were selected, and protein identification was carried out with
at least two peptides and a protein FDR < 1%. The data analysis allowed the identification
of 119 proteins detected only in cells exposed to the extract, 84 proteins detected only in
control cells, and a total of 507 proteins present in both groups of cells.

Proteins detected exclusively in cells exposed to the extract (Table S2) and those de-
tected in the control cells (Table S1) were submitted to an analysis using ClueGo Cytoscape
for the gene ontology (GO) terms related to the biological process (BO) and molecular func-
tion (MP). The network from ClueGo enrichment, shown in Figure 4, illustrates that proteins
present only in cells exposed to the extract share 16 statistically significant (p-value < 0.05)
enrichment terms.
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molecular function (term p-value corrected with Bonferroni step down, p-value < 0.05), representing
the enrichment terms of proteins from differentiated Caco-2 control cells (red) and proteins from
differentiated Caco-2 cells exposed to F. vesiculosus aqueous extract (blue).

The primary aim of this study was to highlight proteins related to the enrichment terms
“intestinal absorption” and “digestive system process” (Figure 5). This focus is due to the
previously reported inhibitory effect of the studied F. vesiculosus extract on the synthesis
and intestinal absorption of cholesterol [10]. This is also consistent with previous studies
highlighting the hypocholesterolemic potential of different brown algae [5]. However, a
significant percentage of the enrichment terms annotated to the proteins from cells exposed
to the extract are involved in the regulation of the T cell receptor signalling pathway (26.67%)
(Figure 5). This finding might be attributable to the presence of phlorotannins in the
F. vesiculosus extract, which have been previously associated with antitumour activity [21],
but further studies are needed to explore this potential association. This was further
supported by the fatty acid amides identified in extract-exposed cells, known for their
anticancer and anti-inflammatory properties [36], and by the identification of the proteins
Fibulin-1 (FBLN1) and sushi domain-containing protein 2 (SUSD2) exclusively in extract-
exposed cells, which have been reported to be tumour suppressor proteins in colon cancer
and associated with inflammation [37,38].
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F. vesiculosus aqueous extract. Statistical significance is calculated for both terms and groups and shown as follows: ** (p-value < 0.001), * (0.001 < p-value < 0.05).
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The proteins involved in intestinal absorption and the digestive system process that
were identified exclusively in cells exposed to the extract were Ezrin (EZR); fatty-acid-
binding protein, liver (FAB1); Niemann–Pick C1 protein (NPC1); Plastin-1 (PLS1); and
solute carrier family 26 member 6 (SLC26A6). The proteins Filamin-B (FLNB) and Mucin-13
(MUC13), which are involved in the digestive system, were also identified exclusively in
cells exposed to the extract. Of this group of proteins, NPC1 and FABP1 are directly related
to lipids and cholesterol transport and homeostasis. The FABP1 protein is involved in
lipoprotein-mediated cholesterol uptake in hepatocytes, while in the intestine, it partici-
pates in various processes related to lipid trafficking [39]. Niemann–Pick type C1 (NPC1)
protein is considered a key protein in cellular cholesterol trafficking [40]; it is responsible
for the transport of free cholesterol from the late endosome/lysosome to the plasma mem-
brane and endoplasmic reticulum [41]. This protein has been related to the prevention of
atherosclerosis. Although the link between NPC1 and atherosclerosis requires further study,
its expression promotes the up-regulation of the ABCA1 protein, facilitating the transport of
cholesterol from the late endosome/lysosome to the plasma membrane [40,41]. The ABCA1
protein is responsible for transporting cellular cholesterol to apolipoprotein A-I (apoA-I), to
incorporate high-density lipoprotein cholesterol (HDL-c) particles. HDL levels are inversely
associated with the risk of atherosclerotic cardiovascular disease [41,42]. Moreover, NPC1
protein is associated with atherosclerosis, as macrophages accumulate large amounts of
unesterified cholesterol in the presence of advanced atherosclerotic lesions. The NPC1
protein promotes the transport of cholesterol from the late endosome/lysosome to the
endoplasmic reticulum, which leads to macrophage apoptosis and plaque rupture [41].
Considering that the F. vesiculosus extract studied is rich in phlorotannins and peptides [10],
and given that NPC1 proteins were only identified in cells exposed to the extract, we can
propose that the compounds in the extract induce the expression of this protein. This
effect is in line with different studies with F. vesiculosus seaweeds and extracts from other
phlorotannin-rich seaweeds describing their hypocholesterolemic effects and their potential
in the prevention of cardiovascular diseases [9,12,43,44].

3. Materials and Methods
3.1. Chemicals

All chemicals were of an analytical grade. Water, methanol (MeOH), formic acid, and
acetonitrile (LC/MS grade Optima), chloroform, Pierce™ Trypsin Protease MS Grade, Pierce™
DTT (Dithiothreitol), Bolt® MOPS SDS Running Buffer (20×), mini protein gel NuPAGE™ 4 to
12% Bis-Tris, and 4X Bolt™ LDS Sample Buffer were purchased from Thermo Fisher Scientific
(Waltham, MA, USA). Dulbecco’s Modified Eagle’s Medium (DMEM), trypsin, glutamine,
phosphate-buffered saline (PBS), and Foetal Bovine Serum (FBS) were obtained from Lonza®

(Verviers, Belgium). Ethanol (96%) was purchased from Carlo Erba (Peypin, France). Iodoac-
etamide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were pur-
chased from Sigma-Aldrich (Barcelona, Spain). Tris(hydroxymethyl)aminomethane and glacial
acetic acid were obtained from Merck Milipore® (Burlington, MA, USA, EUA). Coomassie Bril-
liant Blue R-250 was purchased from BIORAD® (Hercules, CA, USA). A 5× SDS-PAGE Sample
Loading Buffer and NZYBlue Protein Marker were purchased from Nzytech®

(Lumiar, Portugal).

3.2. Preparation and Characterization of Algae Extract

Dried F. vesiculosus Linnaeus seaweed harvested in the North Atlantic Ocean was
purchased from Celeiro diet., Lisbon, Portugal (imported by Américo Duarte Paixão Lda,
lot number 03ALG2731901). An aqueous extract of F. vesiculosus was prepared as described
in our previous study [10]; briefly, the aqueous extract was prepared as a decoction and
purified by solid-phase extraction (SPE). The characterization of the extract compounds was
previously performed by liquid chromatography coupled to High-Resolution Mass Spec-
trometry (LC-HRMS/MS) using an Elute OLE UHPLC system interfaced with a quadrupole
time-of-flight (QqToF) Impact II mass spectrometer equipped with an electrospray source
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(ESI) (Bruker DaltoniK GmbH, Bremen, Germany). The method description and results
have been described by André et al. (2020) [10].

3.3. Cell Culturing and Differentiation

Caco-2 cells (ECACC 86010202), a human colorectal adenocarcinoma epithelial cell
line, were cultured in DMEM supplemented with 2 mM L-glutamine and 20% FBS at
37 ◦C in a 5% CO2 atmosphere. The cultured cells were maintained at sub-confluence with
trypsinization every 72 h. For cell differentiation, Caco-2 cells were seeded at a density of
2 × 104 cells/cm2 with DMEM supplemented with 2 mM L-glutamine in a T25 flask.

3.4. Cytotoxicity Studies in Caco-2 Cells

The cytotoxic effect of the purified F. vesiculosus aqueous extract on Caco-2 cells was
evaluated through the MTT viability test as described by Falé et al. (2012) [45]. The cytotoxicity
study was performed in 96-well plates by exposing Caco-2 cells to different concentrations of
the F. vesiculosus extracts in a culture medium without FBS for 24 h. The cytotoxicity mean
and standard deviation were calculated using Microsoft® Excel software (Microsoft® Excel
2016 software, Washington, DC, USA)) from 2 × 8 replicates for each concentration.

3.5. Metabolomic Analysis through Liquid Chromatography Combined with High-Resolution
Tandem Mass Spectrometry (LC/HRMS)

The differentiated Caco-2 cells were exposed to the purified aqueous extract of F. vesiculo-
sus at 0.25 mg/mL dissolved in a culture medium without FBS (cells exposed to extract), and
to a culture medium without FBS (control), for 24 h. Metabolites were extracted as described
in our previous study [11]. Briefly, for each condition, 2.8 × 106 cells were washed twice with
cold phosphate-buffered saline (PBS). The cells were scraped and quenched with a water–
methanol–chloroform solution (10:27:3) and subjected to three ultrasound cycles for 5 min. The
cell suspension was then centrifuged (10 min, 10,000× g, 4 ◦C) and the supernatant containing
the cell metabolites was transferred to a new tube and evaporated to dryness. The cellular
metabolites from both control and extract-exposed cells were resuspended in methanol–water
(1:1) and afterwards analysed by liquid chromatography coupled to high-resolution tandem
mass spectrometry (LC/HRMS/MS) using an Elute OLE UHPLC system interfaced with a
quadrupole time-of-flight Impact II mass spectrometer equipped with an electrospray ioniza-
tion (ESI) source (Bruker Daltonics, Bremen, Germany). The analysis was carried out with
an Intensity Solo 2 1.8 µm C18 100 × 2.1 nm column (Bruker Daltonics, Billerica, MA, USA)
in ESI positive mode, with the following parameters: −3.5 kV and +4.0 kV; end plate offset,
500 V; nebulizer gas (N2), 2.0 bars; dry gas (N2), 8 Lmin-1; dry heater, 200 ◦C; collision cell
energy was set to 5.0 eV. The internal calibration was performed with 250 mL of H2O, 50 mL
of iPrOH, 750 µL of acetic acid, 250 µL of formic acid, and 0.5 mL of a 1 N NaOH solution
in HPC mode. DataAnalysis 4.1 software (Bruker Daltonik GmbH, Bremen, Germany) was
used to process the acquired data. The assay was performed in triplicate. The identification
of the metabolites was performed taking into account the MS2 fragment ions, the exact mass
measured, and the available reference standard mass spectral databases, namely METLIN
(http://metlin.scripps.edu/, accessed on 11 September 2022), HMDB (http://www.hmdb.ca/,
accessed on 15 September 2022), Bruker MetaboBASE Personal Library 2.0 (Bruker Dalton-
ics). Statistical analysis and untargeted metabolomic analysis results were obtained using
MetaboScape 4.0 software (Bruker Daltonics), as described in our previous study [11]. The
MetaboScape software generates a statistical analysis, and the metabolites considered to be
significantly different between the control and the cells treated with the extract were those
with a significance level at a p-value < 0.05 and a fold change (FC) below 0.5 and above 2 in
the abundance of the metabolites between the extract-exposed and the control cells.

3.6. Membrane Protein Extract and One-Dimension Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Differentiated Caco-2 cells were exposed to 0.25 mg/mL of a purified aqueous extract
of F. vesiculosus dissolved in a culture medium without FBS (cells exposed to extract), and

http://metlin.scripps.edu/
http://www.hmdb.ca/
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to a culture medium without FBS (control), for 24 h. Cell harvesting and the extraction
of the membrane protein fraction with Mem-PER Plus Membrane Protein Extraction Kit
(Thermo Scientific™, Waltham, MA, USA) was performed according to the manufacturer’s
instructions. The different samples of both protein fractions were separated under reducing
conditions in NuPAGE 4 to 12% gradient gels (Invitrogen™, Waltham, MA, USA) using
a Mini Gel Tank (Invitrogen™, Waltham, MA, USA) according to the manufacturer’s
instructions. Gels were stained with 40% Coomassie R-250 blue, 50% methanol, and 10%
glacial acetic acid for 1 h and destaining took place overnight with a solution of 7.5%
glacial acetic acid, 10% ethanol, and 82.5% distilled water. Gels were photographed using
ImageQuant LAS 50 (GE Healthcare Life Sciences®, Chicago, IL, USA) and the areas of
the bands were determined using ImageJ software. Fold change (FC) was calculated as
FC = (E/C) − 1, with the area of bands from cells exposed to the extract as E and the areas
of bands from control cells as C. The areas of the bands were compared by a t-test statistical
analysis using software developed by Microsoft® Excel and these were considered different
if the p-value < 0.05.

3.7. In-Gel Protein Digestion, Nano-LC−ESI−MS/MS, and Data Analysis

For protein identification, in-gel protein digestion was first performed as described in
our previous study [46], and the resulting peptides were then analysed by an nLC-MS/MS
analysis as described in a previous study [47], using an Ultimate 3000 nLC apparatus cou-
pled to a UHR-QqTOF IMPACT HD instrument (Bruker Daltonics, Bremen, Germany) with
a CaptiveSpray ion source (Bruker Daltonics, Bremen, Germany). LC-MS/MS data were
processed in MaxQuant (V.1.6.10.43, Max Planck Institute of Biochemistry, Martinsried, Ger-
many) for automated protein identification. MS raw files were analysed using MaxQuant
software, version 1.6.10.43 [48], and peptide lists were searched against the human Uniprot
FASTA database. A contaminant database generated by the Andromeda search engine [49]
was configured with cysteine carbamidomethylation as a fixed modification and N-terminal
acetylation and methionine oxidation as variable modifications. The false discovery rate (FDR)
was set to 0.01 for protein and peptide levels with a minimum length of seven amino acids for
peptides, and the FDR was determined by searching a reverse database. Enzyme specificity
was set as the C terminal to arginine and lysine as expected using trypsin. A maximum of
two missed cleavages were allowed. Data processing was performed using Perseus (version
1.6.2.3, Constellation Software, Toronto, Canada) with default settings [50].

All proteins and peptides matching the reversed database were filtered out. Subcellular
localization and a gene ontology analysis were performed using STRING online resources at
https://string-db.org/, accessed on 22 January 2024, and the ClueGo plug-in in Cytoscape
(V3.9.0, Cytoscape Consortium, Boston, MA, USA), respectively [51].

4. Conclusions

The effect of a F. vesiculosus aqueous extract, purified by SPE, on differentiated Caco-2
cells was comprehensively characterized for the first time by untargeted metabolomic
and proteomic analyses. Given the statistically significant differences, the metabolomic
analysis revealed the effect of the extract in reducing glutathione and increasing fatty acid
amides. Glutathione depletion was the most significant reduction in extract-exposed cells.
Moreover, the extract-exposed cells exhibited increased levels of fatty acid amides and C16
phytosphingosine, compounds often associated with potential health benefits, particularly
in the context of the gut where they are known to play an important role in the intricate
processes of gastrointestinal lipid transport and metabolism. They are also recognized for
their anti-inflammatory properties, further featuring their significance in promoting overall
health and well-being. The proteomic analysis highlighted the effect of the extract in in-
creasing the expression of several proteins, namely those having a role in lipid metabolism
and transport, including NPC1 protein, one of the main proteins involved in the transport
of cholesterol and directly related to the prevention of hypercholesterolemia, alongside oth-
ers, which have demonstrated anti-inflammatory and antitumour properties. The current

https://string-db.org/
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findings support the belief that a Fucus vesiculosus extract harbours the potential to exert
beneficial effects that promote overall health and well-being. This study effectively eluci-
dates the mechanism of action of its bioactive compounds, revealing metabolites, proteins,
and pathways underlying the reduction in the risk of cardiovascular events associated
with lipid disorders, while also presenting perspectives for the further exploration of its
antitumour and anti-inflammatory potential.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md22040187/s1, Table S1: List of genes identified in control cells. Table S2:
List of genes identified in cells exposed to the extract.
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