Bioactive Alkaloids from the Mangrove-Derived Fungus Nigrospora oryzae SYSU-MS0024
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Extraction and Isolation
3.4. Preparation of (S)-MTPA Ester and (R)-MTPA Ester
3.5. X-ray Crystallographic Analysis
3.6. Calculation of the ECD Spectra
3.7. Anti-Inflammatory Activity
3.8. AChE Inhibitory Activity Assay
3.9. DPPH Free Radical Scavenging Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities. Nat. Prod. Rep. 2022, 39, 560–595. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Chen, S.; Pang, X.; Cai, J.; Zhang, X.; Liu, Y.; Zhu, Y.; Zhou, X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur. J. Med. Chem. 2022, 230, 114117. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122–1171. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2023, 40, 275–325. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Grkovic, T.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2024, 41, 162–207. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Wei, M.-Y.; Wang, C.-Y.; Gu, Y.-C.; Shao, C.-L. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987–2020). Mar. Life Sci. Technol. 2021, 3, 488–518. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.-H.; Sun, T.-T.; Zhao, G.-Z.; Yue, Y.-F.; Chang, Q.-H.; Zhu, H.-J.; Cao, F. Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. Mar. Life Sci. Technol. 2021, 3, 44–61. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, W.C.; Zhu, G.; Wang, G.S.; Chen, T.; Li, H.; Yuan, J.; She, Z.G. Didymorenloids A and B, two polycyclic cyclopenta [b] fluorene-type alkaloids with anti-hepatoma activity from the mangrove endophytic fungus Didymella sp. CYSK-4. Org. Chem. Front. 2024, 11, 1706–1712. [Google Scholar] [CrossRef]
- Meng, L.-H.; Li, X.-M.; Liu, Y.; Xu, G.-M.; Wang, B.-G. Antimicrobial alkaloids produced by the mangrove endophyte Penicillium brocae MA-231 using the OSMAC approach. RSC Adv. 2017, 7, 55026–55033. [Google Scholar] [CrossRef]
- Peng, J.; Lin, T.; Wang, W.; Xin, Z.; Zhu, T.; Gu, Q.; Li, D. Antiviral Alkaloids Produced by the Mangrove-Derived Fungus Cladosporium sp. PJX-41. J. Nat. Prod. 2013, 76, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, L.; Zou, G.; Li, C.; Yang, W.; Liu, H.; She, Z. Anti-inflammatory activities of alkaloids from the mangrove endophytic fungus Phomopsis sp. SYSUQYP-23. Bioorganic Chem. 2020, 97, 103712. [Google Scholar] [CrossRef]
- Ye, G.; Huang, C.; Li, J.; Chen, T.; Tang, J.; Liu, W.; Long, Y. Isolation, structural characterization and antidiabetic activity of new diketopiperazine Alkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c. Mar. Drugs 2021, 19, 402. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Chen, A.; Zhu, M.; Qi, X.; Tang, W.; Liu, M.; Li, D.; Gu, Q.; Li, J. Penicisulfuranol A, a novel C-terminal inhibitor disrupting molecular chaperone function of Hsp90 independent of ATP binding domain. Biochem. Pharmacol. 2019, 163, 404–415. [Google Scholar] [CrossRef]
- Li, F.; Sun, C.; Che, Q.; Zhu, T.; Gu, Q.; Guan, H.; Zhang, G.; Li, D. Pyrazinopyrimidine alkaloids from a mangrove-derived fungus Aspergillus versicolor HDN11-84. Phytochemistry 2021, 188, 112817. [Google Scholar] [CrossRef] [PubMed]
- Flack, H.; Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 2008, 20, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Hoye, T.R.; Jeffrey, C.S.; Shao, F. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc. 2007, 2, 2451–2458. [Google Scholar] [CrossRef] [PubMed]
- Su, B.-N.; Park, E.J.; Mbwambo, Z.H.; Santarsiero, B.D.; Mesecar, A.D.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. New chemical constituents of euphorbia quinquecostata and absolute configuration assignment by a convenient mosher ester procedure carried out in NMR tubes. J. Nat. Prod. 2002, 65, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Sparaco, R.; Cinque, P.; Scognamiglio, A.; Corvino, A.; Caliendo, G.; Fiorino, F.; Magli, E.; Perissutti, E.; Santagada, V.; Severino, B. 3-Nitroatenolol: First synthesis, chiral resolution and enantiomers’ absolute configuration. Molecules 2024, 29, 1598. [Google Scholar] [CrossRef] [PubMed]
- Sparaco, R.; Scognamiglio, A.; Corvino, A.; Caliendo, G.; Fiorino, F.; Magli, E.; Perissutti, E.; Santagada, V.; Severino, B.; Luciano, P. Synthesis, chiral resolution and enantiomers absolute configuration of 4-Nitropropranolol and 7-Nitropropranolol. Molecules 2023, 28, 57. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Xu, Y.; Chen, G.; Wen, L. Study on screening of endophytic fungi from Cyclosorus parasiticus for antibacterial activity and secondary metabolites from the active fungus Pestalotiopsis sp. CYC38. J. Guangdong Pharm. Univ. 2017, 33, 1–5. [Google Scholar]
- Ying, Y.M.; Zhan, Z.J.; Ding, Z.S.; Shan, W.G. Bioactive metabolites from Penicillium sp. P-1, a fungal endophyte in Huperzia serrata. Chem. Nat. Compd. 2011, 47, 541–544. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, G.J.; Shin, M.-S.; Moon, J.; Kim, S.; Nam, J.-W.; Kang, K.S.; Choi, H. Chemical investigation of diketopiperazines and N-phenethylacetamide isolated from Aquimarina sp. MC085 and their effect on TGF-β-induced epithelial–mesenchymal transition. Appl. Sci. 2021, 11, 8866. [Google Scholar] [CrossRef]
- Ayer, W.A.; Trifonov, L.S. Metabolites of Peniophora polygonia, part 2. Some aromatic compounds. J. Nat. Prod. 1993, 56, 85–89. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, R.; Bennett, E.L.; Xiao, J. Non-heme manganese (ii) complex-catalysed oxidative cleavage of 1,2-diols via alcohol-assisted O2 activation. Green Chem. 2022, 24, 3814–3823. [Google Scholar] [CrossRef]
- Chen, G.G.; Zhu, Q.F.; Long, X.M.; Lu, Q.; Li, K.Y.; Chen, Q.; Zhou, M.; Liao, S.G.; Xu, G.B. Antibacterial activities of the chemical constituents of Schizophyllum commune MST7-3 collected from coal area. Nat. Prod. Res. 2021, 36, 4645–4654. [Google Scholar] [CrossRef] [PubMed]
- Firat, Z.; Demirci, F.; Demirci, B.; Kirmizibekmez, H.; Baser, K. Microbial Transformation of (−)-alpha-Bisabolol Towards Bioactive Metabolites. Rec. Nat. Prod. 2021, 15, 593–601. [Google Scholar] [CrossRef]
- Tanimoto, T.; Onodera, K.; Hosoya, T.; Takamatsu, Y.; Kinoshita, T.; Tago, K.; Kogen, H.; Fujioka, T.; Hamano, K.; Tsujita, Y. Schizostatin, a novel squalene synthase inhibitor produced by the mushroom, Schizophyllum commune I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. 1996, 49, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, M.; Chen, B.; Salaenoi, J.; Niaz, S.-I.; He, J.; Liu, L. Penicamide A, A Unique N,N′-Ketal Quinazolinone Alkaloid from Ascidian-Derived Fungus Penicillium sp. 4829. Mar. Drugs 2019, 17, 522. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian Development Version Revision, J. 06+; Gaussian Inc.: Wallingford, CT, USA, 2020. [Google Scholar]
- Lu, T.; Chen, Q. Shermo: A general code for calculating molecular thermochemistry properties. Comput. Theor. Chem. Acc. 2021, 1200, 113249. [Google Scholar] [CrossRef]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, W.; Liao, Q.; She, Z.G. Pyrone derivatives from a mangrove endophytic fungus Phomopsis asparagi LSLYZ-87. Chem. Biodivers. 2022, 19, e202200491. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, W.; Xie, B.; Chen, T.; Chen, S.; Liu, Z.; Sun, B.; She, Z. First discovery of sulfonamides derivatives with acetylcholinesterase inhibitory activity in fungus Pestalotiopsis sp. HNY36-1D. Tetrahedron 2023, 142, 133524. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δC, Type | δH, Mult (J in Hz) | δC, Type | δH, Mult (J in Hz) | δC, Type | δH, Mult (J in Hz) | |
2 | 172.8, C | 174.0, C | 172.2, C | |||
3 | 30.6, CH2 | 2.62, m | 30.9, CH2 | 2.60, m | 28.6, CH2 | 2.62, m |
4 | 25.6, CH2 | 2.62, m; 1.98,m | 25.5, CH2 | 2.68, m; 1.93,m | 29.4, CH2 | 2.62, m; 2.30, m |
5 | 93.6, C | 94.0, C | 94.8, C | |||
7 | 63.0, CH2 | 5.04, d, (15.6); 4.92, d, (15.6) | 63.3, CH2 | 4.89, d, (15.6); 4.84, d, (15.6) | 65.1, CH2 | 4.95, s |
8 | 132.7, C | 132.5, C | ||||
9 | 127.8, CH | 7.30, t, (6.6) | 127.9, CH | 7.30, t, (6.6) | 128.0, CH | 7.30, t, (6.6) |
10 | 124.5, CH | 7.14, td, (7.5, 1.2) | 124.7, CH | 7.1, td, (7.5, 1.2) | 124.9, CH | 7.11, td, (7.5, 1.2) |
11 | 124.2, CH | 7.05, d, (7.8) | 124.3, CH | 7.04, d, (7.8) | 124.3, CH | 6.98, d, (7.6) |
12 | 121.2, CH | 8.14, d, (8.4) | 121.7, CH | 8.18, d, (7.1) | 120.5, CH | 8.27, d, (8.2) |
13 | 124.0, C | 124.1, C | 122.9, C | |||
1′ | 65.4, CH | 4.22, qd, (6.4, 1.1) | 65.8, CH | 4.19, q, (6.4) | 204.3, C | |
2′ | 16.3, CH3 | 1.13, d, (6.4) | 16.3, CH3 | 1.31, d, (6.4) | 23.9, CH3 | 2.23, s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Chen, S.; Guo, H.; Lu, X.; Shen, H.; Liu, L.; Wang, L.; Chen, B.; Zhang, Y.; Liu, Y. Bioactive Alkaloids from the Mangrove-Derived Fungus Nigrospora oryzae SYSU-MS0024. Mar. Drugs 2024, 22, 214. https://doi.org/10.3390/md22050214
Chen X, Chen S, Guo H, Lu X, Shen H, Liu L, Wang L, Chen B, Zhang Y, Liu Y. Bioactive Alkaloids from the Mangrove-Derived Fungus Nigrospora oryzae SYSU-MS0024. Marine Drugs. 2024; 22(5):214. https://doi.org/10.3390/md22050214
Chicago/Turabian StyleChen, Xiaokun, Senhua Chen, Heng Guo, Xin Lu, Hongjie Shen, Lan Liu, Li Wang, Bin Chen, Yi Zhang, and Yayue Liu. 2024. "Bioactive Alkaloids from the Mangrove-Derived Fungus Nigrospora oryzae SYSU-MS0024" Marine Drugs 22, no. 5: 214. https://doi.org/10.3390/md22050214
APA StyleChen, X., Chen, S., Guo, H., Lu, X., Shen, H., Liu, L., Wang, L., Chen, B., Zhang, Y., & Liu, Y. (2024). Bioactive Alkaloids from the Mangrove-Derived Fungus Nigrospora oryzae SYSU-MS0024. Marine Drugs, 22(5), 214. https://doi.org/10.3390/md22050214