Marine-Derived Sulfated Glycans Inhibit the Interaction of Heparin with Adhesion Proteins of Mycoplasma pneumoniae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Binding Kinetics and Affinity of the Interaction between Heparin and M. pneumoniae Proteins
2.2. SPR Solution Competition between Surface-Immobilized Heparin and Heparin Oligosaccharides and Desulfated Heparins
2.3. Inhibition of Isostichopusbadionotus-Sourced Sulfated Glycans on the Interaction between Heparin and M. pneumoniae Proteins
2.4. Inhibition of Glycans from Holothuria floridana, Lytechinus variegatus and Pentacta pygmaea on the Interaction between Heparin and M. pneumoniae Proteins
3. Materials and Methods
3.1. Materials
3.2. Preparation of Heparin Biochip
3.3. Binding Kinetics and Affinity Studies of the Interaction between Heparin and the M. pneumoniae Proteins
3.4. Inhibition Activity of the Sulfated Glycans and Marine Sulfated Glycans on Heparin- M. pneumoniae Protein Interactions
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parrott, G.L.; Kinjo, T.; Fujita, J. A Compendium for Mycoplasma Pneumoniae. Front. Microbiol. 2016, 7, 513. [Google Scholar] [CrossRef] [PubMed]
- Waites, K.B.; Xiao, L.; Liu, Y.; Balish, M.F.; Atkinson, T.P. Mycoplasma Pneumoniae from the Respiratory Tract and Beyond. Clin. Microbiol. Rev. 2017, 30, 747–809. [Google Scholar] [CrossRef]
- Gouveia, C.; Evangelista, V.; Almeida, R.; Baptista, A.M. Immune Thrombocytopenia Associated with Mycoplasma Pneumoniae Infection. Eur. J. Case Rep. Intern. Med. 2018, 5, 000817. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Xu, B.-P.; Shen, K.-L. Effects of Bacterial and Viral Co-Infections of Mycoplasma Pneumoniae Pneumonia in Children: Analysis Report from Beijing Children’s Hospital between 2010 and 2014. Int. J. Clin. Exp. Med. 2015, 8, 15666. [Google Scholar]
- Meyer Sauteur, P.M.; Beeton, M.L.; Uldum, S.A.; Bossuyt, N.; Vermeulen, M.; Loens, K.; Pereyre, S.; Bébéar, C.; Keše, D.; Day, J.; et al. Mycoplasma Pneumoniae Detections before and during the COVID-19 Pandemic: Results of a Global Survey, 2017 to 2021. Eurosurveillance 2022, 27, 2100746. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M.; Luo, M.; Luo, Q.; Kang, L.; Xie, H.; Wang, Y.; Yu, X.; Li, A.; Dong, M.; et al. Mycoplasma pneumoniae Triggers Pneumonia Epidemic in Autumn and Winter in Beijing: A Multicentre, Population-Based Epidemiological Study between 2015 and 2020. Emerg. Microbes Infect. 2022, 11, 1508–1517. [Google Scholar] [CrossRef]
- Chen, L.; Yin, J.; Liu, X.; Liu, J.; Xu, B.; Shen, K. Thromboembolic Complications of Mycoplasma pneumoniae Pneumonia in Children. Clin. Respir. J. 2023, 17, 187–196. [Google Scholar] [CrossRef]
- Shin, S.; Koo, S.; Yang, Y.-J.; Lim, H.-J. Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends. Antibiotics 2023, 12, 1623. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, S.; Zhu, C.; Zhou, R.; Leung, P.H.M. Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021, 10, 119. [Google Scholar] [CrossRef]
- Williams, C.R.; Chen, L.; Sheppard, E.S.; Chopra, P.; Locklin, J.; Boons, G.-J.; Krause, D.C. Distinct Mycoplasma pneumoniae Interactions with Sulfated and Sialylated Receptors. Infect Immun. 2020, 88, e00392-20. [Google Scholar] [CrossRef]
- Williams, C.R.; Chen, L.; Driver, A.D.; Arnold, E.A.; Sheppard, E.S.; Locklin, J.; Krause, D.C. Sialylated Receptor Setting Influences Mycoplasma pneumoniae Attachment and Gliding Motility. Mol. Microbiol. 2018, 109, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Waldo, R.H.; Krause, D.C. Synthesis, Stability, and Function of Cytadhesin P1 and Accessory Protein B/C Complex of Mycoplasma pneumoniae. J. Bacteriol. 2006, 188, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Waldo, R.H.; Jordan, J.L.; Krause, D.C. Identification and Complementation of a Mutation Associated with Loss of Mycoplasma pneumoniae Virulence-Specific Proteins B and C. J. Bacteriol. 2005, 187, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Willby, M.J.; Krause, D.C. Characterization of a Mycoplasma pneumoniae Hmw3 Mutant: Implications for Attachment Organelle Assembly. J. Bacteriol. 2002, 184, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Widjaja, M.; Berry, I.J.; Jarocki, V.M.; Padula, M.P.; Dumke, R.; Djordjevic, S.P. Cell Surface Processing of the P1 Adhesin of Mycoplasma pneumoniae Identifies Novel Domains That Bind Host Molecules. Sci. Rep. 2020, 10, 6384. [Google Scholar] [CrossRef]
- Grimmer, J.; Dumke, R. Organization of Multi-Binding to Host Proteins: The Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) of Mycoplasma pneumoniae. Microbiol. Res. 2019, 218, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Miyata, M.; Hamaguchi, T. Integrated Information and Prospects for Gliding Mechanism of the Pathogenic Bacterium Mycoplasma pneumoniae. Front. Microbiol. 2016, 7, 191166. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Jordan, J.L.; Krause, D.C. Domain Analysis of Protein P30 in Mycoplasma pneumoniae Cytadherence and Gliding Motility. J. Bacteriol. 2011, 193, 1726–1733. [Google Scholar] [CrossRef]
- De Pasquale, V.; Quiccione, M.S.; Tafuri, S.; Avallone, L.; Pavone, L.M. Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. IJMS 2021, 22, 6574. [Google Scholar] [CrossRef]
- Ling, J.; Li, J.; Khan, A.; Lundkvist, Å.; Li, J.-P. Is Heparan Sulfate a Target for Inhibition of RNA Virus Infection? Am. J. Physiol.-Cell Physiol. 2022, 322, C605–C613. [Google Scholar] [CrossRef]
- Jenkins, C.; Wilton, J.L.; Minion, F.C.; Falconer, L.; Walker, M.J.; Djordjevic, S.P. Two Domains within the Mycoplasma Hyopneumoniae Cilium Adhesin Bind Heparin. Infect Immun. 2006, 74, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Wuppermann, F.N.; Hegemann, J.H.; Jantos, C.A. Heparan Sulfate–like Glycosaminoglycan Is a Cellular Receptor for Chlamydia pneumoniae. J. Infect. Dis. 2001, 184, 181–187. [Google Scholar] [CrossRef]
- Vasconcelos, A.; Pomin, V. The Sea as a Rich Source of Structurally Unique Glycosaminoglycans and Mimetics. Microorganisms 2017, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Pavão, M.S.G. (Ed.) Glycans in Diseases and Therapeutics; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-16832-1. [Google Scholar]
- Rodman Berlot, J.; Krivec, U.; Praprotnik, M.; Mrvič, T.; Kogoj, R.; Keše, D. Clinical Characteristics of Infections Caused by Mycoplasma pneumoniae P1 Genotypes in Children. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, R.; Nisar, N.; Hora, B.; Chirasani, S.R.; Malhotra, P. Expression and Immunological Characterization of the Carboxy-Terminal Region of the P1 Adhesin Protein of Mycoplasma pneumoniae. J. Clin. Microbiol. 2005, 43, 321–325. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, W.; Lv, D.; An, Q.; Lu, W.; Wang, X.; Tang, G. The Effect of Platycodin D on the Expression of Cytoadherence Proteins P1 and P30 in Mycoplasma pneumoniae Models. Environ. Toxicol. Pharmacol. 2017, 49, 188–193. [Google Scholar] [CrossRef]
- Varshney, A.K.; Chaudhry, R.; Kabra, S.K.; Malhotra, P. Cloning, Expression, and Immunological Characterization of the P30 Protein of Mycoplasma pneumoniae. Clin. Vaccine Immunol. 2008, 15, 215–220. [Google Scholar] [CrossRef]
- Yang, J.; Chi, L. Characterization of Structural Motifs for Interactions between Glycosaminoglycans and Proteins. Carbohydr. Res. 2017, 452, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xue, C.; Yin, L.; Tang, Q.; Yu, G.; Chai, W. Comparison of Structures and Anticoagulant Activities of Fucosylated Chondroitin Sulfates from Different Sea Cucumbers. Carbohydr. Polym. 2011, 83, 688–696. [Google Scholar] [CrossRef]
- Chen, S.; Hu, Y.; Ye, X.; Li, G.; Yu, G.; Xue, C.; Chai, W. Sequence Determination and Anticoagulant and Antithrombotic Activities of a Novel Sulfated Fucan Isolated from the Sea Cucumber Isostichopus Badionotus. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2012, 1820, 989–1000. [Google Scholar] [CrossRef]
- Yang, J.; Song, Y.; Jin, W.; Xia, K.; Burnett, G.C.; Qiao, W.; Bates, J.T.; Pomin, V.H.; Wang, C.; Qiao, M.; et al. Sulfated Glycans Inhibit the Interaction of MERS-CoV Receptor Binding Domain with Heparin. Viruses 2024, 16, 237. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Qi, J.; Zhang, H.; Yang, H.; Yang, Y.; Zhao, X. Comparison of Hydrothermal Depolymerization and Oligosaccharide Profile of Fucoidan and Fucosylated Chondroitin Sulfate from Holothuria Floridana. Int. J. Biol. Macromol. 2019, 132, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H.; Pereira, M.S.; Valente, A.-P.; Tollefsen, D.M.; Pavão, M.S.G.; Mourão, P.A.S. Selective Cleavage and Anticoagulant Activity of a Sulfated Fucan: Stereospecific Removal of a 2-Sulfate Ester from the Polysaccharide by Mild Acid Hydrolysis, Preparation of Oligosaccharides, and Heparin Cofactor II–Dependent Anticoagulant Activity. Glycobiology 2005, 15, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, R.; Samanta, P.; Sharma, P.; Zhang, F.; Mishra, S.K.; Kucheryavy, P.; Kim, S.B.; Aderibigbe, A.O.; Linhardt, R.J.; Tandon, R.; et al. Structural and Kinetic Analyses of Holothurian Sulfated Glycans Suggest Potential Treatment for SARS-CoV-2 Infection. J. Biol. Chem. 2021, 297, 101207. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Singh, A.; Feroz, M.M.; Xu, S.; Zhang, F.; Jin, W.; Kumar, A.; Azadi, P.; Metzger, D.W.; Linhardt, R.J.; et al. Seaweed-Derived Fucoidans and Rhamnan Sulfates Serve as Potent Anti-SARS-CoV-2 Agents with Potential for Prophylaxis. Carbohydr. Polym. 2024, 337, 122156. [Google Scholar] [CrossRef]
- Dwivedi, R.; Sharma, P.; Farrag, M.; Kim, S.B.; Fassero, L.A.; Tandon, R.; Pomin, V.H. Inhibition of SARS-CoV-2 Wild-Type (Wuhan-Hu-1) and Delta (B.1.617.2) Strains by Marine Sulfated Glycans. Glycobiology 2022, 32, cwac042. [Google Scholar] [CrossRef]
ka (M−1 S−1) | kd (S−1) | KD (M) | |
---|---|---|---|
P30 | 1.02 × 105 (±1.20 × 103) * | 2.76 × 10−3 (±1.50 × 10−5) * | 8.03 × 10−8 (±3.76 × 10−8) ** |
P1-C | 4.46 × 105 (±7.20 × 103) * | 3.88 × 10−3 (±3.00 × 10−5) * | 1.64 × 10−8 (±5.68 × 10−9) ** |
Control | Heparin | IbSF | desIbSF | IbFucCS | desIbFucCS | HfSF | HfFucCS | PpFucCS | LvSF | |
---|---|---|---|---|---|---|---|---|---|---|
Inhibition of P30 binding | 0% | 79% | 94% | 23% | 80% | 2% | 87% | 80% | 94% | 66% |
Inhibition of P1-C binding | 0% | 68% | 100% | 14% | 92% | −13% | 97% | 89% | 100% | 61% |
P30 IC50 (ng/mL) | Heparin | PpFucCS | HfSF | IbSF |
1056.5 | 7.0 | 38.6 | 61.7 | |
P1-C IC50 (ng/mL) | Heparin | IbFucCS | PpFucCS | HfFucCS |
998.0 | 14.1 | 9.3 | 9.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Song, Y.; Xia, K.; Pomin, V.H.; Wang, C.; Qiao, M.; Linhardt, R.J.; Dordick, J.S.; Zhang, F. Marine-Derived Sulfated Glycans Inhibit the Interaction of Heparin with Adhesion Proteins of Mycoplasma pneumoniae. Mar. Drugs 2024, 22, 232. https://doi.org/10.3390/md22050232
Yang J, Song Y, Xia K, Pomin VH, Wang C, Qiao M, Linhardt RJ, Dordick JS, Zhang F. Marine-Derived Sulfated Glycans Inhibit the Interaction of Heparin with Adhesion Proteins of Mycoplasma pneumoniae. Marine Drugs. 2024; 22(5):232. https://doi.org/10.3390/md22050232
Chicago/Turabian StyleYang, Jiyuan, Yuefan Song, Ke Xia, Vitor H. Pomin, Chunyu Wang, Mingqiang Qiao, Robert J. Linhardt, Jonathan S. Dordick, and Fuming Zhang. 2024. "Marine-Derived Sulfated Glycans Inhibit the Interaction of Heparin with Adhesion Proteins of Mycoplasma pneumoniae" Marine Drugs 22, no. 5: 232. https://doi.org/10.3390/md22050232
APA StyleYang, J., Song, Y., Xia, K., Pomin, V. H., Wang, C., Qiao, M., Linhardt, R. J., Dordick, J. S., & Zhang, F. (2024). Marine-Derived Sulfated Glycans Inhibit the Interaction of Heparin with Adhesion Proteins of Mycoplasma pneumoniae. Marine Drugs, 22(5), 232. https://doi.org/10.3390/md22050232