Genomics- and Transcriptomics-Guided Discovery of Clavatols from Arctic Fungi Penicillium sp. MYA5
Abstract
:1. Introduction
2. Results
2.1. Based on Genomics and Transcriptomics to Discovery Clavatols
2.2. Structural Characterization of Compounds 1–7
2.3. Biological Activity Assay
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Biological Material and Bioinformatics Analysis
3.3. Fermentation, Extraction, and Isolation
3.4. Analysis of Transcriptomic Data and RT-qPCR
3.5. In Vitro ALR2 Enzyme Inhibitory Activity Assay
3.6. Antibacterial Assay
3.7. Chrome Azurol S Assay
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kramer, J.; Özkaya, Ö.; Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2019, 18, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Walitang, D.I.; Kim, K.; Madhaiyan, M.; Kim, Y.K.; Kang, Y.; Sa, T. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol. 2017, 17, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; He, L.Y.; Chen, Z.J.; Zhang, W.H.; Wang, Q.Y.; Qian, M.; Sheng, X.F. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J. Hazard. Mater. 2011, 186, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Vendan, R.T.; Yu, Y.J.; Lee, S.H.; Rhee, Y.H. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 2010, 48, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Oliveira, R.S.; Nai, F.; Rajkumar, M.; Luo, Y.; Rocha, I.; Freitas, H. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J. Environ. Manag. 2015, 156, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Sandhya, V.; Shrivastava, M.; Ali, S.Z.; Sai Shiva Krishna Prasad, V. Endophytes from maize with plant growth promotion and biocontrol activity under drought stress. Russ. Agric. Sci. 2017, 43, 22–34. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.; Lai, X.-H.; Shan, C.; Deng, Z.; Ji, Y. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz. J. Microbiol. 2015, 46, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Bhardwaj, P.; Pandey, S.S.; Kumar, S. Arnebia euchroma, a Plant Species of Cold Desert in the Himalayas, Harbors Beneficial Cultivable Endophytes in Roots and Leaves. Front. Microbiol. 2021, 12, 696667–696682. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Yao, T.; Wang, Z.; Zhang, H.; Li, C. Isolation and Characterization of Cold-Adapted PGPB and Their Effect on Plant Growth Promotion. J. Microbiol. Biotechnol. 2021, 31, 1218–1230. [Google Scholar] [CrossRef]
- Mukhia, S.; Kumar, A.; Kumari, P.; Kumar, R. Psychrotrophic plant beneficial bacteria from the glacial ecosystem of Sikkim Himalaya: Genomic evidence for the cold adaptation and plant growth promotion. Microbiol. Res. 2022, 260, 127049–127061. [Google Scholar] [CrossRef]
- Miethke, M.; Marahiel, M.A. Siderophore-Based Iron Acquisition and Pathogen Control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef] [PubMed]
- Lankford, C.E.; Byers, B.R. Bacterial Assimilation of iron. CRC Crit. Rev. Microbiol. 1973, 2, 273–331. [Google Scholar] [CrossRef]
- Drechsel, H.; Jung, G. Peptide siderophores. J. Pept. Sci. 1998, 4, 147–181. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zheng, B.Q.; Lao, J.P.; Mao, L.J.; Chen, S.Y.; Kubicek, C.P.; Lin, F.C. Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Appl. Microbiol. Biotechnol. 2008, 78, 833–840. [Google Scholar] [CrossRef]
- Wu, G.; Yu, G.; Yu, Y.; Yang, S.; Duan, Z.; Wang, W.; Liu, Y.; Yu, R.; Li, J.; Zhu, T. Chemoreactive-Inspired Discovery of Influenza A Virus Dual Inhibitor to Block Hemagglutinin-Mediated Adsorption and Membrane Fusion. J. Med. Chem. 2020, 63, 6924–6940. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J.; Liu, Z.; Lin, S.; Xia, G.; Xia, X.; Ding, B.; He, L.; Lu, Y.; She, Z. Peniphenones A–D from the mangrove fungus Penicillium dipodomyicola HN4-3A as inhibitors of Mycobacterium tuberculosis phosphatase MptpB. J. Nat. Prod. 2014, 77, 800–806. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids. Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Liao, G.; Kindinger, F.; Ludwig-Radtke, L.; Yin, W.B.; Li, S.M. Peniphenone and Penilactone Formation in Penicillium crustosum via 1,4-Michael Additions of ortho-Quinone Methide from Hydroxyclavatol to gamma-Butyrolactones from Crustosic Acid. J. Am. Chem. Soc. 2019, 141, 4225–4229. [Google Scholar] [CrossRef]
- Yu, H.B.; Gu, B.B.; Iwasaki, A.; Jiang, W.L.; Ecker, A.; Wang, S.P.; Yang, F.; Lin, H.W. Dactylospenes A–E, Sesterterpenes from the Marine Sponge Dactylospongia elegans. Mar. Drugs 2020, 18, 491. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Wang, Y.; Wang, H.; Li, J.; Zhuang, Y.; Zhu, W. Antimicrobial Aromatic Polyketides from Gorgonian-Associated Fungus, Penicillium commune 518. Chin. J. Chem. 2012, 30, 1236–1242. [Google Scholar] [CrossRef]
- Newaz, A.W.; Yong, K.; Yi, W.; Wu, B.; Zhang, Z. Antimicrobial metabolites from the Indonesian mangrove sediment-derived fungus Penicillium chrysogenum sp. ZZ1151. Nat. Prod. Res. 2023, 37, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.; Fu, X.L.; Tan, C.; Zeng, Y.; Wang, Q.; Zhao, P.J. Two New Chroman Derivations from the Endophytic Penicillium sp. DCS523. Molecules 2011, 16, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Kanoh, K.; Adachi, K.; Matsuda, S.; Shizuri, Y. Tenacibactins A–D, Hydroxamate Siderophores from a Marine-Derived Bacterium, Tenacibaculum sp. A4K-17. J. Nat. Prod. 2007, 70, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Tian, Z.; Xu, Y.; Zhang, J.; Liu, W.; Tan, H. Coordinative Modulation of Chlorothricin Biosynthesis by Binding of the Glycosylated Intermediates and End Product to a Responsive Regulator ChlF1. J. Biol. Chem. 2016, 291, 5406–5417. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, H.A.; Tehseen, Y.; Maryam, K.; Uroos, M.; Siddiqui, B.S.; Hameed, A.; Iqbal, J. Identification of new potent inhibitor of aldose reductase from Ocimum basilicum. Bioorg. Chem. 2017, 75, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Hao, X.; Han, H.; Zhu, S.; Yang, Y.; Wu, B.; Hussain, S.; Parveen, S.; Jing, C.; Ma, B. Design and Synthesis of Potent and Multifunctional Aldose Reductase Inhibitors Based on Quinoxalinones. J. Med. Chem. 2015, 58, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Yapar, G.; Esra Duran, H.; Lolak, N.; Akocak, S.; Türkeş, C.; Durgun, M.; Işık, M.; Beydemir, Ş. Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorg. Chem. 2021, 117, 105473–105487. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.B.; Wang, X.L.; Xu, W.H.; Zhang, Y.X.; Qian, Y.S.; Zhang, J.P.; Lu, X.L.; Liu, X.Y. Eutypellenoids A(-)C, New Pimarane Diterpenes from the Arctic Fungus Eutypella sp. D-1. Mar. Drugs 2018, 16, 284. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.B.; Jiao, H.; Zhu, Y.P.; Zhang, J.P.; Lu, X.L.; Liu, X.Y. Bioactive metabolites from the Arctic fungus Nectria sp. B-13. J. Asian Nat. Prod. Res. 2019, 21, 961–969. [Google Scholar] [CrossRef]
- Zhang, F.; Barns, K.; Hoffmann, F.M.; Braun, D.R.; Andes, D.R.; Bugni, T.S. Thalassosamide, a Siderophore Discovered from the Marine-Derived Bacterium Thalassospira profundimaris. J. Nat. Prod. 2017, 80, 2551–2555. [Google Scholar] [CrossRef]
- Grobelak, A.; Hiller, J. Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. Int. J. Phytoremediation 2017, 19, 825–833. [Google Scholar] [CrossRef] [PubMed]
Position | δC | δH, Mult. (J in Hz) |
---|---|---|
1 | 112.4, C | |
2 | 130.5, CH | 7.52, s |
3 | 116.7, C | |
4 | 161.5, C | |
5 | 112.9, C | |
6 | 161.1, C | |
7 | 203.2, C | |
8 | 24.9, C | 2.55, s |
9 | 14.9, CH3 | 2.18, s |
10 | 20.5, CH2 | 2.70, d (6.9) |
11 | 42.5, C | 2.00, m |
12 | 61.8, CH2 | 3.57, dd (10.8, 6.3)/3.62, dd (10.8, 5.1) |
13 | 61.8, CH2 | 3.57, dd (10.8, 6.3)/3.62, dd (10.8, 5.1) |
Compounds | MIC (μg/mL) | |||||
---|---|---|---|---|---|---|
S. aureus | E. coli | P. aeruginosa | V. vulnificus | E. faecalis | V. parahaemolyticus | |
1 | NA | 32.0 | NA | NA | NA | NA |
2 | 32.0 | NA | NA | NA | 32.0 | 32.0 |
3 | NA | NA | NA | NA | NA | NA |
4 | 16.0 | 32.0 | NA | 32 | 32.0 | 32.0 |
5 | 16.0 | 16.0 | NA | 32.0 | 32.0 | NA |
6 | 4.0 | 4.0 | 16.0 | NA | 32.0 | NA |
7 | 32.0 | 32.0 | NA | NA | NA | NA |
levofloxacin hydrochloride a | 2.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Compounds | Inhibition Ratio (%) |
---|---|
1 | 75.3 |
2 | 71.6 |
3 | 52.2 |
4 | 26.6 |
5 | 33.7 |
6 | 52.4 |
7 | 47.9 |
Epalrestat a | 96.5 |
Compounds | OD630 |
---|---|
1 | 0.093 |
2 | 0.262 |
3 | 0.395 |
4 | 0.239 |
5 | 0.250 |
6 | 0.115 |
7 | 0.198 |
saturated EDTA solution | 0.053 |
blank control | 0.254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.-Y.; Hu, B.; Yu, H.-B.; Zhou, J.; Meng, X.-C.; Ning, Z.; Ding, J.-F.; Cui, M.-H.; Liu, X.-Y. Genomics- and Transcriptomics-Guided Discovery of Clavatols from Arctic Fungi Penicillium sp. MYA5. Mar. Drugs 2024, 22, 236. https://doi.org/10.3390/md22060236
Sun Y-Y, Hu B, Yu H-B, Zhou J, Meng X-C, Ning Z, Ding J-F, Cui M-H, Liu X-Y. Genomics- and Transcriptomics-Guided Discovery of Clavatols from Arctic Fungi Penicillium sp. MYA5. Marine Drugs. 2024; 22(6):236. https://doi.org/10.3390/md22060236
Chicago/Turabian StyleSun, Yuan-Yuan, Bo Hu, Hao-Bing Yu, Jing Zhou, Xian-Chao Meng, Zhe Ning, Jin-Feng Ding, Ming-Hui Cui, and Xiao-Yu Liu. 2024. "Genomics- and Transcriptomics-Guided Discovery of Clavatols from Arctic Fungi Penicillium sp. MYA5" Marine Drugs 22, no. 6: 236. https://doi.org/10.3390/md22060236
APA StyleSun, Y. -Y., Hu, B., Yu, H. -B., Zhou, J., Meng, X. -C., Ning, Z., Ding, J. -F., Cui, M. -H., & Liu, X. -Y. (2024). Genomics- and Transcriptomics-Guided Discovery of Clavatols from Arctic Fungi Penicillium sp. MYA5. Marine Drugs, 22(6), 236. https://doi.org/10.3390/md22060236