Functional Characterization of the First Bona Fide Phytoene Synthase in Red Algae from Pyropia yezoensis
Abstract
:1. Introduction
2. Results
2.1. Cloning of PyPSY
2.2. Analysis of PyPSY Protein
2.3. Functional Characterization of PyPSY
2.4. Evolution of PSY
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, T.; Tadmor, Y.; Li, L. Pathways for carotenoid biosynthesis, degradation, and storage. In Plant and Food Carotenoids. Methods in Molecular Biology; Rodríguez-Concepción, M., Welsch, R., Eds.; Humana: New York, NY, USA, 2020; Volume 2083, pp. 3–23. [Google Scholar]
- Zhou, X.; Rao, S.; Wrightstone, E.; Sun, T.; Lui, A.C.W.; Welsch, R.; Li, L. Phytoene synthase: The key rate-limiting enzyme of carotenoid biosynthesis in plants. Front. Plant Sci. 2022, 13, 884720. [Google Scholar] [CrossRef]
- Fraser, P.D.; Enfissi, E.M.A.; Halket, J.M.; Truesdale, M.R.; Yu, D.; Gerrish, C.; Bramley, P.M. Manipulation of phytoene levels in tomato fruit: Effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 2007, 19, 3194–3211. [Google Scholar] [CrossRef]
- Zhai, S.; Li, G.; Sun, Y.; Song, J.; Li, J.; Song, G.; Li, Y.; Ling, H.; He, Z.; Xia, X. Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. BMC Plant Biol. 2016, 16, 228. [Google Scholar] [CrossRef]
- Gady, A.L.F.; Vriezen, W.H.; Van de Wal, M.H.B.J.; Huang, P.; Bovy, A.G.; Visser, R.G.F.; Bachem, C.W.B. Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening. Mol. Breeding 2012, 29, 801–812. [Google Scholar] [CrossRef]
- Zhou, X.; Welsch, R.; Yang, Y.; Álvarez, D.; Riediger, M.; Yuan, H.; Fish, T.; Liu, J.; Thannhauser, T.W. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc. Natl. Acad. Sci. USA 2015, 112, 3558–3563. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, J.; Li, J.; Yang, C.; Wang, T.; Ouyang, B.; Li, H.; Giovannoni, J.; Ye, Z. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 2013, 198, 442–452. [Google Scholar] [CrossRef]
- Slater, A.; Maunders, M.J.; Edwards, K.; Schuch, W.; Grierson, D. Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol. Biol. 1985, 5, 137–147. [Google Scholar] [CrossRef]
- Bartley, G.E.; Viitanen, P.V.; Bacot, K.O.; Scolnik, P.A. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. J. Biol. Chem. 1992, 267, 5036–5039. [Google Scholar] [CrossRef]
- Lisboa, M.P.; Canal, D.; Filgueiras, J.P.C.; Turchetto-Zolet, A.C. Molecular evolution and diversification of phytoene synthase (PSY) gene family. Genet. Mol. Biol. 2022, 45, e20210411. [Google Scholar] [CrossRef]
- Walter, M.H.; Stauder, R.; Tissier, A. Evolution of root-specific carotenoid precursor pathways for apocarotenoid signal biogenesis. Plant Sci. 2015, 233, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Chi, S.; Wang, G.; Wang, X.; Liu, T.; Tang, X. Phylogenetic analyses of the genes involved in carotenoid biosynthesis in algae. Acta Oceanol. Sin. 2018, 37, 89–101. [Google Scholar] [CrossRef]
- Keeling, P.J. The number, speed, and impact of plastid endosymbiosis in eukaryotic evolution. Annu. Rev. Plant Biol. 2013, 64, 583–607. [Google Scholar] [CrossRef]
- Cao, H.; Luo, H.; Yuan, H.; Eissa, M.A.; Thannhauser, T.W.; Welsch, R.; Hao, Y.J.; Cheng, L.; Li, L. A neighboring aromatic-aromatic amino acid combination governs activity divergence between tomato phytoene synthases. Plant Physiol. 2019, 180, 1988–2003. [Google Scholar] [CrossRef]
- Yang, L.E.; Deng, Y.Y.; Xu, G.P.; Russel, S.; Lu, Q.Q.; Brodie, J. Redefining Pyropia (Bangiales, Rhodophyta): Four new genera, resurrection of Porphyrella and description of Calidia pseudolobata sp. nov. from China. J. Phycol. 2020, 56, 862–879. [Google Scholar] [CrossRef]
- Sutherland, J.E.; Lindstrom, S.C.; Nelson, W.A.; Brodie, J.; Lynch, M.D.; Hwang, M.S.; Choi, H.G.; Miyata, M.; Kikuchi, N.; Oliveira, M.C.; et al. A new look at an ancient order: Generic revision of the Bangiales (Rhodophyta). J. Phycol. 2011, 47, 1131–1151. [Google Scholar] [CrossRef]
- Yang, L.E.; Huang, X.Q.; Hang, Y.; Deng, Y.Y.; Lu, Q.Q.; Lu, S. The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae. J. Integr. Plant Biol. 2014, 56, 902–915. [Google Scholar] [CrossRef]
- Yang, L.E.; Huang, X.Q.; Lu, Q.Q.; Zhu, J.Y.; Lu, S. Cloning and characterization of the geranylgeranyl diphosphate synthase (GGPS) responsible for carotenoid biosynthesis in Pyropia umbilicalis. J. Appl. Phycol. 2016, 28, 671–678. [Google Scholar] [CrossRef]
- Cao, T.J.; Huang, X.Q.; Qu, Y.Y.; Zhuang, Z.; Deng, Y.Y.; Lu, S. Cloning and functional characterization of a lycopene β-cyclase from macrophytic red alga Bangia fuscopurpurea. Mar. Drugs 2017, 15, 116. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Cheng, L.; Wang, Q.; Ge, Z.H.; Zheng, H.; Cao, T.J.; Lu, Q.Q.; Yang, L.E.; Lu, S. Functional characterization of lycopene cyclases illustrates the metabolic pathway toward lutein in red algal seaweeds. J. Agric. Food Chem. 2020, 68, 1354–1363. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Wang, Q.; Cao, T.J.; Zheng, H.; Ge, Z.H.; Yang, L.E.; Lu, S. Cloning and functional characterization of the bona fide geranylgeranyl diphosphate synthase from the red algal seaweed Bangia fuscopurpurea. Algal Res. 2020, 48, 101935. [Google Scholar] [CrossRef]
- Kim, J.; Smith, J.J.; Tian, L.; DellaPenna, D. The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol. 2009, 50, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Fraser, P.D.; Kiano, J.W.; Truesdale, M.R.; Schuch, W.; Bramley, P.M. Phytoene synthase-2 enzyme activity in tomato does not contribute to carotenoid synthesis in ripening fruit. Plant Mol. Biol. 1999, 40, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Welsch, R.; Wust, F.; Bar, C.; Al-Babili, S.; Beyer, P. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol. 2008, 147, 367–380. [Google Scholar] [CrossRef]
- Li, F.; Vallabhaneni, R.; Yu, J.; Rocheford, T.; Wurtzel, E.T. The maize phytoene synthase gene family: Overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol. 2008, 147, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Giorio, G.; Stigliani, A.L.; Ambrosio, C.D. Phytoene synthase genes in tomato (Solanum lycopersicum L.)—New data on the structures, the deduced amino acid sequences and the expression patterns. FEBS J. 2008, 275, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Tzfadia, O.; Wurtzel, E.T. The phytoene synthase gene family in the Grasses: Subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signal. Behav. 2009, 4, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.M.; Ghassemian, M. Genome organization in Arabidopsis thaliana: A survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol. Biol. 2003, 51, 925–948. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, D.; Voß, B.; Maass, D.; Wust, F.; Schaub, P.; Beyer, P.; Welsch, R. Carotenogenesis is regulated by 5’UTR-mediated translation of phytoene synthase splice variants. Plant Physiol. 2016, 172, 2314–2326. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.; Haven, J.; Qiu, W.G.; Polle, J.E.W. An update on carotenoid biosynthesis in algae: Phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 2009, 229, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Cerda, A.; Moreno, J.C.; Acosta, D.; Godoy, F.; Cáceres, J.C.; Cabrera, R.; Stange, C. Functional characterisation and in silico modelling of MdPSY2 variants and MdPSY5 phytoene synthases from Malus domestica. J. Plant Physiol. 2020, 249, 153166. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, C.-M.; Zhou, W.; Deng, Y.-Y.; Xu, G.-P.; Tian, C.-C.; Lu, Q.-Q.; Lu, S.; Zhang, M.-R.; Yang, L.-E. Carotenoids participate in adaptation/resistance of daily desiccation in the intertidal red alga Neopyropia yezoensis (Bangiales, Rhodophyta). Algal Res. 2022, 61, 102606. [Google Scholar] [CrossRef]
- Dall’Osto, L.; Lico, C.; Alric, J.; Giuliano, G.; Havaux, M.; Bassi, R. Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol. 2006, 6, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Cuming, A.C. Evolution of ABA signaling pathways. In Advances in Botanical Research Abscisic Acid in Plants; Seo, M., Marion-Poll, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 92, pp. 281–313. [Google Scholar]
- Yang, J.; Gu, W.; Feng, Z.; Yu, B.; Niu, J.; Wang, G. Synthesis of abscisic acid in Neopyropia yezoensis and its regulation of antioxidase genes expressions under hypersaline stress. Front. Microbiol. 2022, 12, 775710. [Google Scholar] [CrossRef] [PubMed]
- Keshamma, E.; Manjula, A.C.; Dakshayini, P.N.; Kolgi, R.R.; Roy, U.B.; Geethanjali, R. A Study on cloning and expression of stress induced DREB transcription factor gene from rice (Oryza sativa). Int. J. Curr. Microbiol. App. Sci. 2021, 10, 182–199. [Google Scholar]
- Dong, C.; Wang, Q.; Wang, Y.; Qin, L.; Shi, Y.; Wang, X.; Wang, R. NtDREB-1BL1 Enhances Carotenoid Biosynthesis by Regulating Phytoene Synthase in Nicotiana tabacum. Genes 2022, 13, 1134. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.E.; Jin, Q.P.; Xiao, Y.; Xu, P.; Lu, S. Improved methods for basic molecular manipulation of the red alga Porphyra umbilicalis (Rhodophyta: Bangiales). J. Appl. Phycol. 2013, 25, 245–252. [Google Scholar] [CrossRef]
- Cunningham, F.X.; Gantt, E. A portfolio of plasmids for identification and analysis of carotenoid pathway enzymes: Adonis aestivalis as a case study. Photosynth. Res. 2007, 92, 245–259. [Google Scholar] [CrossRef]
Primer Name | Sequence |
For ORF | |
PyPSY-HF | 5′-ATGAGCCTCAATCCGCCGCCAATG-3′ |
PyPSY-ER | 5′-CTACCCAGAACCAAACGACACAAACG-3′ |
For 5′-RACE | |
PyPSY-SF | 5′-GATTACGCCAAGCTCGCCGACGACTCGCAGGTGCATCGTTT-3′ |
PyPSY-NSF | 5′-GATTACGCCAAGCTTGGCAAGGGAGCACCTGCAAAC-GCCAAGG-3′ |
For 3′-RACE | |
PyPSY-SR | 5′-GATTACGCCAAGCTCCTGGACATGTACGCCGG-CATCCTCGAGGT-3′ |
PyPSY-NSR | 5′-GATTACGCCAAGCTTACCCTGCCTGGCTCGTGGGCGCGTAT-3′ |
For genome walking | |
PyPSY-GR | 5′-GGCAAGGGAGCACCTGCAAACGCCAAGG-3′ |
PyPSY-NGR | 5′-ACAGCATCCATTGGCGGCGGATTGAGGCT-3′ |
For plasmid construction | |
PyPSY-pF | 5′-GAAGGATTTCACATATGATGAGCCTCAATCCGCCG-3′ |
PyPSY-pR | 5′-GTTTTATTTGAAGCTTCTACCCAGAACCAAACGACAC-3′ |
For colony PCR | |
PyPSY-CF | 5′-AGGCGTTTGTGTCGTTTGG-3′ |
PyPSY-CR | 5′-TACTCAGGAGAGCGTTCACC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-L.; Pu, J.-Q.; Zhou, W.; Hu, C.-M.; Deng, Y.-Y.; Sun, Y.-Y.; Yang, L.-E. Functional Characterization of the First Bona Fide Phytoene Synthase in Red Algae from Pyropia yezoensis. Mar. Drugs 2024, 22, 257. https://doi.org/10.3390/md22060257
Li C-L, Pu J-Q, Zhou W, Hu C-M, Deng Y-Y, Sun Y-Y, Yang L-E. Functional Characterization of the First Bona Fide Phytoene Synthase in Red Algae from Pyropia yezoensis. Marine Drugs. 2024; 22(6):257. https://doi.org/10.3390/md22060257
Chicago/Turabian StyleLi, Cheng-Ling, Jia-Qiu Pu, Wei Zhou, Chuan-Ming Hu, Yin-Yin Deng, Ying-Ying Sun, and Li-En Yang. 2024. "Functional Characterization of the First Bona Fide Phytoene Synthase in Red Algae from Pyropia yezoensis" Marine Drugs 22, no. 6: 257. https://doi.org/10.3390/md22060257
APA StyleLi, C. -L., Pu, J. -Q., Zhou, W., Hu, C. -M., Deng, Y. -Y., Sun, Y. -Y., & Yang, L. -E. (2024). Functional Characterization of the First Bona Fide Phytoene Synthase in Red Algae from Pyropia yezoensis. Marine Drugs, 22(6), 257. https://doi.org/10.3390/md22060257