Multifunctional Cell Regulation Activities of the Mussel Lectin SeviL: Induction of Macrophage Polarization toward the M1 Functional Phenotype
Abstract
:1. Introduction
2. Results
2.1. SeviL Promoted the Proliferation of Macrophage Cell Lines
2.2. The Treatment of Macrophage Cells with SeviL Induces Morphological and Gene Expression Alterations
2.3. The Dual Activation of the JAK/STAT and MAPK Pathways in Macrophage Cells by SeviL
2.3.1. SeviL Up-Regulates the Production of Cytokines and Chemokines in Macrophage Cells
2.3.2. Phosphorylation of Platelet-Derived Growth Factor Receptor (PDGFR)-α by SeviL Acts as a Trigger for Growing Macrophages
2.4. The Overexpression of Multiple mRNA Markers Underlies M1 Macrophage Polarization following SeviL Treatment
2.5. Cytokines and Chemokines Released into the Medium Are Regulated by the Lectin Concentration
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Protein Expression of SeviL and Its Mutant
4.3. Cell Viability and Cell Surface Staining
4.4. Detection of Activated Signal Transduction Molecules in RAW264.7 Cells
4.5. Protein Array
4.6. Detection of Cytokines by ELISA
4.7. RNA Isolation and Quantitative Real-Time PCR (RTPCR)
4.8. Transmission Electron Microscopic Analysis of Macrophage Cells
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hirschhorn, K.; Bach, F.; Kolodny, R.L.; Firschein, I.L.; Hashem, N. Immune response and mitosis of human peripheral blood lymphocytes in vitro. Science 1963, 142, 1185–1187. [Google Scholar] [CrossRef]
- Ruscetti, F.W.; Chervenick, P.A. Regulation of the release of colony-stimulating activity from mitogen-stimulated lymphocytes. J. Immunol. 1975, 114, 1513–1517. [Google Scholar] [CrossRef]
- Elfenbein, G.J.; Gelfand, M.C. Proliferation of mouse bone marrow-derived lymphocytes in vitro: One response mechanism to concanavalin A and phytochemagglutinin. Cell Immunol. 1975, 17, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Tabor, D.R.; Larry, C.H.; Jacobs, R.F. Differential induction of macrophage GSIB4-binding activity. J. Leukoc. Biol. 1989, 45, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Perillo, N.L.; Pace, K.E.; Seilhamer, J.J.; Baum, L.G. Apoptosis of T cells mediated by galectin-1. Nature 1995, 378, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.J.; Yoo, Y.C.; Kang, T.B.; Shimazaki, K.; Song, S.K.; Lee, K.H.; Kim, S.H.; Park, C.H.; Azuma, I.; Kim, J.B. Lectins isolated from Korean mistletoe (Viscum album coloratum) induce apoptosis in tumor cells. Cancer Lett. 1999, 136, 33–40. [Google Scholar] [CrossRef]
- Schwarz, R.E.; Wojciechowicz, D.C.; Picon, A.I.; Schwarz, M.A.; Paty, P.B. Wheatgerm agglutinin-mediated toxicity in pancreatic cancer cells. Br. J. Cancer. 1999, 80, 1754–1762. [Google Scholar] [CrossRef] [PubMed]
- Kawsar, S.M.A.; Matsumoto, R.; Fujii, Y.; Yasumitsu, H.; Dogasaki, C.; Hosono, M.; Nitta, K.; Hamako, J.; Matsui, T.; Kojima, N.; et al. Purification and biochemical characterization of a D-galactose binding lectin from Japanese sea hare (Aplysia kurodai) eggs. Biochemistry 2009, 74, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Lavanya, V.; Ahmed, N.; Khan, M.K.; Jamal, S. Sustained mitogenic effect on K562 human chronic myelogenous leukemia cells by dietary lectin, jacalin. Glycoconjugate J. 2016, 33, 877–886. [Google Scholar] [CrossRef]
- Thomas, L.; Pasquini, L.A. Extracellular galectin-3 induces accelerated oligodendroglial differentiation through changes in signaling pathways and cytoskeleton dynamics. Mol. Neurobiol. 2019, 56, 336–349. [Google Scholar] [CrossRef]
- Fujii, Y.; Gerdol, M.; Kawsar, S.M.A.; Hasan, I.; Spazzali, F.; Yoshida, T.; Ogawa, Y.; Rajia, S.; Kamata, K.; Koide, Y.; et al. A GM1b/asialo-GM1 oligosaccharide-binding R-type lectin from purplish bifurcate mussels Mytilisepta virgata and its effect on MAP kinases. FEBS J. 2020, 287, 2612–2630. [Google Scholar] [CrossRef] [PubMed]
- Kamata, K.; Mizutani, K.; Takahashi, K.; Marchetti, R.; Silipo, A.; Addy, C.; Park, S.Y.; Fujii, Y.; Fujita, H.; Konuma, T.; et al. The structure of SeviL, a GM1b/asialo-GM1 binding R-type lectin from the mussel Mytilisepta virgata. Sci. Rep. 2020, 10, 22102. [Google Scholar] [CrossRef] [PubMed]
- Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018, 27, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, N.; Chau, J.K.H.D.; Dewson, G.; Murphy, J.M.; Alexander, W.S.; Parker, M.W.; Silke, J.; Nachbur, U. Lymphotoxin a induces apoptosis, necroptosis and inflammatory signals with the same potencey as tumour necrosis factor. FEBS J. 2013, 5283–5297. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.E.; Leon, M.A. Reversible interaction of human lymphocytes with the mitogen concanavalin A. Exp. Cell Res. 1970, 62, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Powles, R.; Balchin, L.; Currie, G.A.; Alexander, P. Specific autostimulating factor released by lymphocytes. Nature 1971, 231, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Froebel, K.; Sturrock, R.D.; Dick, W.C.; MacSween, R.N. Cell-mediated immunity in the rheumatoid diseases. I. Skin testing and mitogenic responses in sero-negative arthritides. Clin. Exp. Immunol. 1975, 22, 446–452. [Google Scholar] [PubMed]
- Smith, J.M.; Adkins, M.J.; McCreary, D. Local immune response in experimental pyelonephritis in the rabbit. I. Morphological and functional features of the lymphocytic infiltrate. Immunology 1975, 29, 1067–1076. [Google Scholar] [PubMed]
- Prajitha, N.; Mohanan, P.V. Intracellular inflammatory signaling cascades in human monocytic cells on challenge with phytohemagglutinin and 2,4,6-trinitrophenol. Mol. Cell Biochem. 2022, 477, 395–414. [Google Scholar] [CrossRef]
- Beuth, J.; Stoffel, B.; Samtleben, R.; Staak, O.; Ko, H.L.; Pulverer, G.; Wagner, H. Modulating activity of mistletoe lectins 1 and 2 on the lymphatic system in BALB/c-mice. Phytomedicine 1996, 2, 269–273. [Google Scholar] [CrossRef]
- Covés-Datson, E.M.; King, S.R.; Legendre, M.; Swanson, M.D.; Gupta, A.; Claes, S.; Meagher, J.L.; Boonen, A.; Zhang, L.; Kalveram, B.; et al. Targeted disruption of pi-pi stacking in Malaysian banana lectin reduces mitogenicity while preserving antiviral activity. Sci. Rep. 2021, 11, 656. [Google Scholar] [CrossRef]
- Aucouturier, P.; Pineau, N.; Brugier, J.C.; Mihaesco, E.; Duarte, F.; Skvaril, F.; Preud’homme, J.L. Jacalin: A new laboratory tool in immunochemistry and cellular immunology. J. Clin. Lab. Anal. 1989, 3, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Yamasaki, Y.; Jiang, Z.; Nakayama, Y.; Yamanishi, T.; Yamaguchi, K.; Oda, T. Comparative study on modeccin- and phytohemagglutinin (PHA)-induced secretion of cytokines and nitric oxide (NO) in RAW264.7 cells. Acta Biochim. Biophys. Sin. 2011, 43, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Yuan, H.; Liu, W.; Li, S.; Liu, Y.; Wan, J.; Li, X.; Zhang, R.; Chang, Y. Activation of RAW264.7 mouse macrophage cells in vitro through treatment with recombinant ricin toxin-binding subunit B: Involvement of protein tyrosine, NF-κB and JAK-STAT kinase signaling pathways. Int. J. Mol. Med. 2013, 32, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Buffa, V.; Stieh, D.; Mamhood, N.; Hu, Q.; Fletcher, P.; Shattock, R.J. Cyanovirin-N potently inhibits human immunodeficiency virus type 1 infection in cellular and cervical explant models. J. Gen. Virol. 2009, 90, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Dresch, R.R.; Lerner, C.B.; Mothes, B.; Trindade, V.M.T.; Henriques, A.T.; Vozári-Hampe, M.M. Biological activities of ACL-I and physicochemical properties of ACL-II, lectins isolated from the marine sponge Axinella corrugata. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2012, 161, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Chaki, S.; Bhowal, J.; Chatterjee, B.P. Mucin binding mitogenic lectin from freshwater Indian gastropod Belamyia bengalensis: Purification and molecular characterization. Arch. Biochem. Biophys. 2004, 421, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, T.; Ichise, A.; Unno, H.; Goda, S.; Oda, T.; Tateno, H.; Hirabayashi, J.; Sakai, H.; Nakagawa, H. Carbohydrate recognition by the rhamnose-binding lectin SUL-I with a novel three-domain structure isolated from the venom of globiferous pedicellariae of the flower sea urchin Toxopneustes pileolus. Protein Sci. 2017, 26, 1574–1583. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Kim, D.; Yamasaki, Y.; Yamanishi, T.; Hatakeyama, T.; Yamaguchi, K.; Oda, T. Mitogenic activity of CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, isolated from the marine invertebrate Cucumaria echinata (Holothuroidea). Biosci. Biotechnol. Biochem. 2010, 74, 1613–1616. [Google Scholar] [CrossRef]
- Yamanishi, T.; Yamamoto, Y.; Hatakeyama, T.; Yamaguchi, K.; Oda, T. CEL-I, an invertebrate N-acetylgalactosamine-specific C-type lectin, induces TNF-alpha and G-CSF production by mouse macrophage cell line RAW264.7 cells. J. Biochem. 2007, 142, 587–595. [Google Scholar] [CrossRef]
- Kuramoto, T.; Uzuyama, H.; Hatakeyama, T.; Tamura, T.; Nakashima, T.; Yamaguchi, K.; Oda, T. Cytotoxicity of a GalNAc-specific C-type lectin CEL-I toward various cell lines. J. Biochem. 2005, 137, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, H.; Kusunoki, M.; Kurisu, G.; Fujimoto, T.; Aoyagi, H.; Hatakeyama, T. Characteristic recognition of N-acetylgalactosamine by an invertebrate C-type Lectin, CEL-I, revealed by X-ray crystallographic analysis. J. Biol. Chem. 2004, 279, 45219–45225. [Google Scholar] [CrossRef] [PubMed]
- Hungness, E.S.; Pritts, T.A.; Luo, G.J.; Sun, X.; Penner, C.G.; Hasselgren, P.O. The transcription factor activator protein-1 is activated and interleukin-6 production is increased in interleukin-1beta-stimulated human enterocytes. Shock 2000, 14, 386–391. [Google Scholar] [CrossRef]
- Qiao, Y.; He, H.; Jonsson, P.; Sinha, I.; Zhao, C.; Dahlman-Wright, K. AP-1 Is a Key Regulator of Proinflammatory Cytokine TNFalpha-mediated Triple-negative Breast Cancer Progression. J. Biol. Chem. 2016, 291, 5068–5079. [Google Scholar] [CrossRef]
- Fujioka, S.; Niu, J.; Schmidt, C.; Sclabas, G.M.; Peng, B.; Uwagawa, T.; Li, Z.; Evans, D.B.; Abbruzzese, J.L.; Chiao, P.J. NF-κB and AP-1 Connection: Mechanism of NF-κB-Dependent Regulation of AP-1 Activity. Mol. Cell. Biol. 2004, 24, 7806–7819. [Google Scholar] [CrossRef]
- Yamanishi, T.; Hatakeyama, T.; Yamaguchi, K.; Oda, T. CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, induces nitric oxide production in RAW264.7 mouse macrophage cell line. J. Biochem. 2009, 146, 209–217. [Google Scholar] [CrossRef]
- Uhlenbruck, G.; Schumacher, K.; Steinhausen, G.; Mil, A. Tridacnin, a new mitogenic lectin from invertebrate sources. Z Immunitatsforsch Immunobiol. 1977, 153, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Baldo, B.A.; Uhlenbruck, G. Purification of tridacnin, a novel anti-beta-(1-6)-digalactobiose precipitin from the haemolymph of Tridacna maxima (Röding). FEBS Lett. 1975, 55, 25–29. [Google Scholar] [CrossRef]
- Shen, J.; Zeng, M.; Huang, P.; Chen, B.; Xia, Z.; Cao, Y.; Miao, J. Purification and activity evaluation of novel anti-inflammatory peptides from pearl oyster (Pinctada martensii) hydrolysates. Food Funct. 2023, 14, 4242–4253. [Google Scholar] [CrossRef]
- Yang, Z.; Bao, L.; Shen, Y.; Wang, J.; Su, D.; Liu, H.; Bao, Y. Isolation and functional identification of immune cells in hemolymph of blood clams Tegillarca granosa. Fish Shellfish Immunol. 2024, 144, 109320. [Google Scholar] [CrossRef]
- Johnpaul, A.; Arumugam, M. Plasma β-1,3 glucan binding protein mediated opsono-phagocytosis by hemocytes in vitro of marine mussel Perna viridis. DNA Cell Biol. 2023, 42, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Xu, J.; Yang, Y.; Li, R.; Li, T.; Chen, S.; Di, Y. Assessment of sulfamethoxazole toxicity to marine mussels (Mytilus galloprovincialis): Combine p38-MAPK signaling pathway modulation with histopathological alterations. Ecotoxicol. Environ. Saf. 2023, 249, 114365. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lv, R.; Qiu, L.; Zhang, S.; Jiao, H.; Wang, Y.; Luo, S.; Fang, H.; Wen, C. JNK regulates the Nrf2/NQO1-ARE pathway against Microcystins-Induced oxidative stress in freshwater mussel Cristaria plicata. Gene 2023, 883, 147653. [Google Scholar]
- Gu, Y.; Liu, M.; Wang, Y.; Huo, Y.; Liu, Z.; Jin, W.; Wang, G. Identification and Functional Analysis of MAPKAPK2 in Hyriopsis cumingii. Genes 2022, 13, 2060. [Google Scholar] [CrossRef] [PubMed]
- Ladhar-Chaabouni, R.; Ayadi, W.; Sahli, E.; Mokdad-Gargouri, R. Establishment of primary cell culture of Ruditapes decussatus haemocytes for metal toxicity assessment. In Vitro Cell Dev. Biol. Anim. 2021, 57, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Gendre, H.; Palos, L.M.; Geffard, A.; Poret, A.; Le, F.F.; Ben, C.Y. Modulation of haemocyte motility by chemical and biological stresses in Mytilus edulis and Dreissena polymorpha. Fish Shellfish Immunol. 2023, 108919. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujii, Y.; Kamata, K.; Gerdol, M.; Hasan, I.; Rajia, S.; Kawsar, S.M.A.; Padma, S.; Chatterjee, B.P.; Ohkawa, M.; Ishiwata, R.; et al. Multifunctional Cell Regulation Activities of the Mussel Lectin SeviL: Induction of Macrophage Polarization toward the M1 Functional Phenotype. Mar. Drugs 2024, 22, 269. https://doi.org/10.3390/md22060269
Fujii Y, Kamata K, Gerdol M, Hasan I, Rajia S, Kawsar SMA, Padma S, Chatterjee BP, Ohkawa M, Ishiwata R, et al. Multifunctional Cell Regulation Activities of the Mussel Lectin SeviL: Induction of Macrophage Polarization toward the M1 Functional Phenotype. Marine Drugs. 2024; 22(6):269. https://doi.org/10.3390/md22060269
Chicago/Turabian StyleFujii, Yuki, Kenichi Kamata, Marco Gerdol, Imtiaj Hasan, Sultana Rajia, Sarkar M. A. Kawsar, Somrita Padma, Bishnu Pada Chatterjee, Mayuka Ohkawa, Ryuya Ishiwata, and et al. 2024. "Multifunctional Cell Regulation Activities of the Mussel Lectin SeviL: Induction of Macrophage Polarization toward the M1 Functional Phenotype" Marine Drugs 22, no. 6: 269. https://doi.org/10.3390/md22060269
APA StyleFujii, Y., Kamata, K., Gerdol, M., Hasan, I., Rajia, S., Kawsar, S. M. A., Padma, S., Chatterjee, B. P., Ohkawa, M., Ishiwata, R., Yoshimoto, S., Yamada, M., Matsuzaki, N., Yamamoto, K., Niimi, Y., Miyanishi, N., Konno, M., Pallavicini, A., Kawasaki, T., ... Fujita, H. (2024). Multifunctional Cell Regulation Activities of the Mussel Lectin SeviL: Induction of Macrophage Polarization toward the M1 Functional Phenotype. Marine Drugs, 22(6), 269. https://doi.org/10.3390/md22060269