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Abstract: Cyclic pentapeptide compounds have garnered much attention as a drug discovery resource.
This study focused on the characterization and anti-benign prostatic hyperplasia (BPH) properties of
avellanin A from Aspergillus fumigatus fungus in marine sediment samples collected in the Beibu Gulf
of Guangxi Province in China. The antiproliferative effect and molecular mechanism of avellanin
A were explored in testosterone propionate (TP)-induced RWPE-1 cells. The transcriptome results
showed that avellanin A significantly blocked the ECM–receptor interaction and suppressed the
downstream PI3K-Akt signalling pathway. Molecular docking revealed that avellanin A has a good
affinity for the cathepsin L protein, which is involved in the terminal degradation of extracellular ma-
trix components. Subsequently, qRT-PCR analysis revealed that the expression of the genes COL1A1,
COL1A2, COL5A2, COL6A3, MMP2, MMP9, ITGA2, and ITGB3 was significantly downregulated
after avellanin A intervention. The Western blot results also confirmed that it not only reduced
ITGB3 and FAK/p-FAK protein expression but also inhibited PI3K/p-PI3K and Akt/p-Akt protein
expression in the PI3K-Akt signalling pathway. Furthermore, avellanin A downregulated Cyclin D1
protein expression and upregulated Bax, p21WAF1/Cip1, and p53 proapoptotic protein expression in
TP-induced RWPE-1 cells, leading to cell cycle arrest and inhibition of cell proliferation. The results
of this study support the use of avellanin A as a potential new drug for the treatment of BPH.
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1. Introduction

Benign prostatic hyperplasia (BPH), which refers to the prostate transition zone and
periurethral hyperplasia of epithelial and fibromuscular tissue growth, is one of the most
common urological diseases in middle-aged and older men worldwide, and its incidence
gradually increases with age [1]. At present, BPH is mainly treated with drugs such
as 5α-reductase inhibitors and α blockers. Although both antagonists are effective in the
treatment of BPH, these drugs have many adverse side effects, such as abnormal ejaculation,
erectile dysfunction, and gynaecomastia [2]. Therefore, to more effectively prevent and
treat BPH, improve the quality of life of patients, and reduce the adverse reactions caused
by drugs, finding new targets and developing effective drug candidates with fewer adverse
reactions are hot research directions [3].

The growth of marine microorganisms in a special environment produces a variety of
secondary metabolites with special chemical structures [4]. Many secondary metabolites
have a variety of pharmacological effects, such as antibacterial, anti-inflammatory, anti-
tumour, or antiviral effects, so they have received extensive attention and application [5–7].
As a result, marine microbial secondary metabolites have become a very promising source
of drug candidates [8]. Mangrove plants mainly grow in tropical and subtropical inter-
tidal zones and are an important part of coastal wetland ecosystems, which are of great
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significance in terms of their ecological and economic value [9]. As endophytic fungi in
mangrove plants have become a new hotspot for drug research and development, in recent
years, many scientific research groups around the world have carried out research on the
secondary metabolites of mangrove endophytic fungi and obtained a series of compounds
with novel biological activities such as anti-inflammatory, anti-tumour, antibacterial, or
antiviral effects [10].

Naturally occurring cyclic peptides have garnered much attention as a drug discovery
resource [11,12]. This is because cyclic peptides are composed of amino acid residues,
including nonproteinogenic residues, which are arranged in a three-dimensional structure
and have high affinity for their target biomolecules [12]. In addition, cyclic peptides are
reported to be more stable and membrane-permeable than general linear peptides [13].

Avellanin A (C31H39N5O5, m/z: 561.2951) is a cyclic pentapeptide compound, which
was first found in Hamigers avellanea [14]. We report here the re-isolation of this compound
from Aspergillus fumigatus fungus in marine sediment samples collected in the Beibu Gulf
of Guangxi Province in China. Avellanin A was obtained as a white powder, and HRESIMS
analysis gave a pseudomolecular ion [M + H]+ at m/z 562.3024, corresponding to the
molecular formula of C31H39N5O5 (∆ −0.05 mmu for C31H40N5O5; Figure S1). To date,
the biological activity associated with avellanin A has only inhibited apoB in HepG2
cells without exhibiting cytotoxicity, and other biological activities need to be further
explored [15]. Avellanin A is a cyclic pentapeptide compound linked in the order Ant-
L-Pro-D-Ala- N-Me-D-Phe-L-Ile (Figures 1, S2 and S3 and Table S1). The present study
was designed to further explore the antiproliferative effects of avellanin A on RWPE-1
cells, ultimately revealing that this novel candidate therapeutic agent may inhibit PI3K-Akt
pathway activity, suggesting that it may be useful as a new option for treating BPH patients.
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Figure 1. Avellanin A structure.

2. Results
2.1. Antiproliferative Efficacy of Avellanin A on RWPE-1 Cells

Initially, the antiproliferative efficacy of avellanin A was investigated by treating it
with testosterone propionate (TP)-induced RWPE-1 cells and performing a CCK-8 analysis.

This approach revealed that avellanin A strongly inhibited RWPE-1 cell proliferation
after treatment for 48 h in a dose-dependent manner. The avellanin A IC50 values for the
RWPE-1 cell lines were calculated to be 0.72 µM (Figure 2A).
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Figure 2. Antiproliferative efficacy of compound avellanin A on RWPE-1 cells: (A) RWPE-1 cells
were treated with the indicated concentrations of compound avellanin A for 48 h, and the cell
viability was determined by a CCK-8 assay. (B) The RWPE-1 cells were treated with indicated
concentrations of compound avellanin A for 48 h, and the cell cycle distribution was assessed by flow
cytometric analysis; ns, not significant, *** p < 0.001, compared to the control group. (C) Transwell
assay evaluating the migration abilities of RWPE-1 cells treated with the indicated concentrations of
compound avellanin A for 7 days. ns, not significant, *** p < 0.001, compared to the control group.
(D) RWPE-1 cells were treated with the indicated concentrations of compound avellanin A for 7 days,
after which colony formation was assessed; * p < 0.05 and *** p < 0.001, compared to the control group.

The proliferation of normal cells is dependent on the cell growth cycle. To detect
the impact of avellanin A on the cell cycle, the RWPE-1 cells were treated with avellanin
A (0.7 µM) for 48 h. This process clearly showed that most of the RWPE-1 cells treated
with avellanin A were arrested in the G1 phase, which inhibited the cell cycle progression
(Figure 2B). Furthermore, Transwell assays were used to examine the effect of the drugs on
cell migration ability. Compared with the control group, the number of transmembrane
cells in RWPE-1 cells treated with avellanin A was significantly reduced, which confirmed
that avellanin A significantly inhibited RWPE-1 cell migration (Figure 2C). In addition, the
observations of colony formation assays demonstrated that avellanin A had the most potent
inhibitory effect on RWPE-1 cell growth in a concentration-dependent manner (Figure 2D).

2.2. Transcriptome Analysis of RWPE-1 Cells Treated with Avellanin A

To investigate the mechanism of action of compound avellanin A on RWPE-1 cells, we
conducted RNA-seq. After RWPE-1 cells were treated with the compound avellanin A at a
concentration of 0.7 µM for 48 h, transcriptome analysis revealed that the heatmap showed
a clear trend in the clustering of genes expressed in RWPE-1 cells between the compound
avellanin A group and the control group (Figure 3A). A total of 1183 differentially expressed
genes (DEGs) were identified, 633 of which were significantly upregulated and 550 of which
were significantly downregulated.
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Figure 3. Transcriptome analysis of RWPE-1 cells treated with compound avellanin A vs. the control:
(A) Volcanic map showing the differential gene expression distribution. The scattered dots in the
figure represent individual genes, with grey dots indicating genes with no significant differences,
red dots representing upregulated genes with significant differences, and blue dots representing
downregulated genes with significant differences. Statistics of differentially expressed genes. A
total of 1183 differentially expressed genes were identified, including 633 upregulated genes and
550 downregulated genes. (B) GO functional enrichment analysis of the DEGs. (C) KEGG pathway
enrichment of differentially expressed genes. (D) PPI network construction for the identification of
hub genes.

Gene Ontology (GO) is a standardised functional classification system that describes
the properties of genes and gene products in organisms in three aspects: biogenesis-
involved biological process (BP), molecular function (MF), and cellular component (CC).
The results of GO analysis can visually show the overall functional enrichment charac-
teristics of all differentially expressed genes, and these significantly enriched genes are
related to core biological functions. The enrichment of GO results indicated that avel-
lanin A had a significant effect on cellular components (Figure 3B), including the extra-
cellular space, collagen-containing extracellular matrix, extracellular matrix, and external
encapsulating structure.

Moreover, KEGG pathway analysis was conducted to identify the pathways involved.
The enrichment results for the differentially expressed genes related to metabolic pathways
indicated that the compound avellanin A had a significant effect on cellular life processes,
substance transport, and metabolic pathways (Figure 3C). The analysis revealed that
the differentially expressed genes were primarily enriched in several pathways, notably
ECM–receptor interaction, the PI3K-Akt signalling pathway, the IL-17 signalling pathway,
malaria, and diabetic cardiomyopathy. Through KEGG analysis, the top 20 pathways were
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identified, among which many of the enriched genes were associated with the ECM-related
signalling pathway (Figure 3D).

Subsequently, PPI network analysis (Figure 3D) revealed that avellanin A significantly
affected the expression of genes associated with the extracellular matrix (ECM), such as
genes in the collagen subfamily (COL1A1, COL1A2, COL5A2, COL6A3), integrin subfamily
(ITGB3, ITGA2), and MMP subfamily (MMP2, MMP9), as well as genes encoding FGF2 and
VWF, which were significantly downregulated after avellanin A intervention. Therefore,
bioinformatics results from transcriptome sequencing suggest that avellanin A may inhibit
the expression of extracellular matrix integrins, collagen, and matrix metalloproteinases,
thereby inhibiting the expression of the downstream PI3K-Akt signalling pathway and
thereby inhibiting the progression of TP-induced BPH.

2.3. Interaction of Avellanin A with the Cathepsin L

To evaluate the affinity of avellanin A for its targets, we performed molecular docking
analysis. According to the docking results with the cathepsin L, avellanin A interacts with
the basic amino acids Gly68 and Asp162 of the cathepsin L protein through hydrogen
bonding and has a low binding energy of −6.2 kcal/mol, indicating highly stable binding
(Figure 4A).
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Figure 4. The binding mode of avellanin A to its targets, determined by molecular docking: (A) Bind-
ing mode of avellanin A to cathepsin L: (i) three-dimensional structures of the binding pockets
were constructed with PyMOL 3.0 software; (ii) 2D interactions of compounds and their targets.
(B) Relative mRNA expression of COL1A1, COL1A2, COL5A2, COL6A3, MMP2, MMP9, ITGA2, and
ITGB3; * p < 0.05, ** p < 0.01, and *** p < 0.001, compared to the control group. (C) The expression of
ITGB3, FAK/p-FAK, and α-Actin was analysed by Western blotting. The analysis utilized β-Actin as
a reference for quantifying relative gene expression levels. * p < 0.05, ** p < 0.01, and *** p < 0.001,
compared to the control group.

The protein cathepsin L encoded by this gene is a lysosomal cysteine proteinase that
plays a major role in intracellular protein catabolism. Its substrates include collagen and
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integrin. Next, using fluorescence quantitative PCR analysis, it was revealed that the
expression of the genes COL1A1, COL1A2, COL5A2, COL6A3, MMP2, MMP9, ITGA2, and
ITGB3 was significantly downregulated after avellanin A intervention (p < 0.05, p < 0.01;
Figure 4B). Furthermore, Western blot experiments confirmed that the protein expression of
ITGB3 and FAK/p-FAK was reduced after avellanin A intervention in TP-treated RWPE-1
cells (Figures 4C and S4). Thus, we hypothesised that avellanin A may inhibit the activity
of the lysosomal cysteine proteinase cathepsin L, decrease the expression of extracellular
matrix components, and decrease FAK/p-FAK expression via the downstream PI3K-Akt
signalling pathway, leading to cell cycle arrest and inhibition of cell proliferation.

2.4. Avellanin A Suppressed the PI3K-Akt Pathway in RWPE-1 Cells

The PI3K/Akt pathway is significantly associated with increased proliferation and
survival. To verify whether PI3K-Akt signalling might mediate avellanin A function in
RWPE-1 cells, Western blotting was used to analyse changes in the expression of proteins
involved in the PI3K-Akt signalling pathway.

As shown, the PI3K protein expression levels decreased in RWPE-1 cells with increas-
ing avellanin A concentrations; the PI3K and phosphorylated PI3K protein levels were
decreased. Moreover, the total Akt protein and phosphorylated Akt protein levels were
decreased significantly in control and treated RWPE-1 cells, which confirmed the inhibition
of the PI3K-Akt pathway by avellanin A (Figures 5A and S5). To further understand the
function of avellanin A in cell proliferation and apoptosis, we assessed the expression of
several proteins involved in the Akt pathway by Western blotting. The results showed
that avellanin A significantly decreased the expression of cyclin D1 compared with that
in the control group (p < 0.01). Conversely, there was a significant increase in the protein
expression of the apoptosis markers Bax, p21Waf/Cip1, and P53 (p < 0.01) in RWPE-1 cells as
the avellanin A concentration increased (Figure 5B). These findings suggest that avellanin A
may modulate the progression of BPH by affecting the cell cycle and blocking the division
and replication of RWPE-1 cells through the PI3K-Akt pathway.
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** p < 0.01, and *** p < 0.001, compared to the control group.
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3. Discussion

Mangrove plants mainly include plants such as Red Sea olive plants, autumn eggplant
plants [16], and so on. There is a long history of research on mangroves, and a variety of
drugs for the treatment of human diseases have been extracted from mangrove plants [15].
By the end of 2023, 1565 compounds with new structures had been isolated from man-
grove endophytic fungi, of which 613 compounds had broad-spectrum biological activity,
providing guidance for new drug development [17].

In this project, we studied the molecular mechanism of the inhibitory activity of
avellanin A from Aspergillus fumigatus GXIMD 03099, which is an endophytic fungus in
mangrove plants, to provide ideas for the development of new drugs for the treatment of
BPH. Avellanin A was originally isolated from Hamigera avellanea. The total synthesis of
this compound was subsequently completed in 1989 and 2021 [14]. Previous reports have
demonstrated that it inhibits apolipoprotein B production in HepG2 cells without exhibiting
cytotoxicity. To date, no other biological activities of avellanin A have been reported.

To investigate the effect of avellanin A on RWPE-1 cells, we conducted RNA-seq, and
subsequent KEGG analysis found that avellanin A significantly affected ECM–receptor
interactions and their downstream signalling pathways. Furthermore, molecular docking
revealed that avellanin A has a good affinity for the cathepsin L protein. Cathepsin L is
widely distributed in the lysosomes of mammals [18]. Cathepsin L is a lysosomal cysteine
proteinase that is secreted to dissolve intracellular and endocytic proteins. Under normal
circumstances, cathepsin L performs biological functions in lysosomes [19]. However,
changes in the expression levels and lysosomal state cause a portion of cathepsin L to be
secreted into the extracellular environment, which is involved in the terminal degradation
of extracellular matrix components such as collagen and elastin [20]. Studies have shown
that the downregulation of cathepsin L inhibits the proliferation, invasion, and migration of
glioma cells [21]. Moreover, in vitro experiments revealed that cathepsin L overexpression
promoted proliferation, migration, and invasion in MCF-7 and MDA-MB-231 cells, while
cathepsin L knockdown decreased proliferation, migration, and invasion in MDA-MB-
231 cells [22]. Moreover, previous studies reported that cathepsin L can promote tumour
cell proliferation by activating CCAAT-displacement protein/cut homeobox (CDP/Cux)
transcription factors and accelerating entry into the S phase of the cell cycle [23]. In this
study, avellanin A was shown to inhibit TP-induced prostate cell proliferation by halting
the G1 phase of the cell cycle. It is speculated that the reason may be that avellanin A
binds to cathepsin L and inhibits its activity, resulting in a decrease in the expression of
ECM components such as collagen and integrin proteins, reducing the transduction of
downstream signalling pathways, and ultimately inhibiting cell proliferation, survival,
and migration.

The adhesion pathway kinase FAK plays a central role in intracellular communication.
Activation of the focal adhesion kinase FAK and overexpression of focal adhesion proteins
lead to abnormal adhesion of the extracellular matrix to epithelial cells [24], which is es-
sential for the development of BPH [25]. A study showed that the PI3K/Akt signalling
pathway is activated by interactions with the ECM, which participates in the cell prolif-
eration process [26,27]. The activation of the PI3K signalling pathway phosphorylates
AKT, increasing cell survival and decreasing apoptosis [28]. Significantly elevated levels
of phosphorylated AKT and PI3K gene expression were observed in prostate tissue from
BPH patients [29]. Our results revealed that FAK and the PI3K/Akt signalling pathway
were downregulated in RWPE-1 cells after avellanin A intervention, significantly reducing
cell survival.

Furthermore, these interferences are most likely achieved downstream of the PI3K-
AKT signalling pathway. p21Waf/Cip1 functions as a cell cycle inhibitor and antiproliferative
effector and plays an important role in controlling the cell cycle by binding to multiple
Cyclin/CDK complexes of multiple phases [30,31]. Here, the protein level of p21Waf/Cip1

increased markedly. Consistent with the above results, the protein levels of cyclin D1
decreased significantly. Cyclin D1 is recognized as a crucial indicator of cell proliferation
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and serves as a pivotal regulator of cell cycle checkpoints governing G2/M and G1/S
transitions [32,33]. Upon cell cycle initiation, cyclin D1 is rapidly upregulated, facilitating
the division and replication of prostate stromal and epithelial cells [34,35]. Cyclin D1
functions as a vital sensor and integrator of extracellular signals in normal physiological
processes, modulating cellular activities by binding to cyclin-dependent kinases [36]. p53
plays an important role in many parts of the cell cycle, and when the chromosomal DNA of
a cell is damaged in the G1 phase, p53 transcriptional activity is enhanced, which induces
the activation of the p21Waf/Cip1 gene, which in turn causes p21Waf/Cip1 to inhibit the activity
of cell cycle-dependent kinases (CDKs), preventing the further proliferation of cells [37,38].
When the damage signal enters the S phase, p21Waf/Cip1 induced by p53 can bind to the
DNA polymerase complex at the replication fork and prevent its activity, inducing cell
repair [39]. Additionally, the expression of the well-known universal proapoptotic protein
Bax increased significantly in RWPE-1 cells as the avellanin A concentration increased.
Direct pharmacological modulation of BAX has long been an attractive target due to
the prominent role of BAX in human diseases. Cancer cells often evade apoptosis by
overexpressing the antiapoptotic inhibitor BAX [40]; however, small-molecule activators
of BAX have been shown to overcome this effect and inhibit cancer growth in animal
models [41,42]. These findings suggested that the compound avellanin A affects the
cell cycle and blocks cell division and replication through the PI3K-AKT pathway in
RWPE-1 cells.

4. Materials and Methods
4.1. Fungal Material

The fungus Aspergillus fumigatus GXIMD 03099 was isolated from the mangrove plant
Acanthus ilicifolius L., which was collected from the Beibu Gulf of Guangxi Province in
China in July 2020. The strain was deposited at the Institute of Marine Drug Medicine,
Guangxi University of Traditional Chinese Medicine, Nanning, China. The fungus was
identified according to its morphological characteristics and a molecular biological protocol
involving 18S rRNA amplification and sequencing of the ITS region. The sequence data
were submitted to GenBank with the accession number ON668102, and the fungal strain
was identified as Aspergillus fumigatus.

4.2. Isolation and Purification

The mycelia and solid rice media were extracted with EtOAc. The organic extract
was concentrated in vacuo to yield an oily residue (75.0 g), which was subjected to silica
gel column chromatography (CC) (petroleum ether−EtOAc v/v, gradient 100:0–0:100) to
generate ten fractions (Fr. 1–Fr. 10). Fr. 8 (30.1 g) was separated by silica gel CC and eluted
with petroleum ether−EtOAc (from 3:1 to 1:1) to afford twelve subfractions (8-1–8-12).
Subfractions 8-6 were further purified by using ODS eluted with MeOH−H2O v/v to
obtain avellanin A (6.82 mg, tR = 22.5 min). The stock material was analysed using 1H
and 13C NMR and high-resolution mass spectrometry prior to use in the studies reported
here, and it was found that the material was >98% pure (Supporting Figures S2 and S3 and
Table S1).

4.3. Cell Culture and Reagents

The RWPE-1 human prostate epithelial cell line was obtained from the Chinese
Academy of Sciences (Shanghai, China). The cells were cultured with keratinocyte-SFM (K-
SFM, Gibco, Norristown, PA, USA) supplemented with 100 mg/mL penicillin/streptomycin
(HyClone, Logan, UT, USA) in an incubator at 37 ◦C with humidified 5% CO2. After 24 h of
incubation, the culture media were replaced with fresh media containing 0.5 µM TP (Wako
Pure Chemical Industries, Osaka, Japan) in order to induce cell proliferation. Avellanin A
was supplemented together within TP-containing media.
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4.4. Cell Viability Assays

The CCK-8 assay and colony formation assays were used to assess cell viability. The
cells were digested by trypsinisation and then seeded in 96-well plates at 5 × 103 cells per
well. In the CCK-8 experiment, nine groups were treated with avellanin A separately at
concentrations of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 µM at 37 ◦C for 24 h, each
with eight replicates. Forty-eight hours later, 10 µL of CCK-8 reagent (KeyGEN, Nanjing,
China) was added, and the absorbance was measured at 450 nm after incubation for 2–4 h.
The absorbance at a wavelength of 450 nm was determined by a microplate reader (Bio Tek
Instruments, Bad Friedrichshall, Germany). The CCK-8 assay was performed following the
manufacturer’s protocol.

4.5. Cell Cycle Assay

To detect the impact of avellanin A on the cell cycle, the RWPE-1 cells were seeded
on the 6-well plates treated with avellanin A (0.7 µM) at 37 ◦C for 24 h. At the end of
incubation, cells were trypsinised. The cells (1 × 106) were collected by centrifugation
at 1000× g for 5 min, washed twice with ice-cold PBS, fixed with cold 70% ethanol, and
stored at −20 ◦C for 24 h. The cells were subsequently centrifuged again, washed twice
with cold PBS, incubated with RNase A (0.1 mg/mL) for 1 h at 37 ◦C, and stained with PI
(0.1 mg/mL) for 30 min in the dark. The DNA content was measured by flow cytometry
(LSRFortessa, BD, Canton, MA, USA), and the percentage of cells in each phase of the cell
cycle was evaluated using ModFit LT version 4.0 software.

4.6. Cell Migration Assays

Cell migration assays were performed as follows: The RWPE-1 cells were digested
and suspended in serum-free medium. Cells (6 × 104) were seeded in 24-well plates
treated with avellanin A (0.7 µM) coated without Matrigel in the upper layer of a migration
chamber (Labselect, Hangzhou, China) with 8 µm pore polycarbonate membranes contain-
ing 200 µL of FBS-free RPMI-1640 medium (Gibco, Norristown, PA, USA), and the lower
layer was supplemented with 500 µL of K-SFM. After 24 h of incubation, unmigrated cells
across the membranes were carefully removed with cotton swabs, while cells across the
membrane were fixed with 4% paraformaldehyde (Biosharp, Shanghai, China) and then
stained with crystal violet dye. Finally, the cells were photographed and counted under an
optical microscope.

4.7. Colony Formation Assay

For the colony formation assay, cells (500/well) were cultured in 6-well plates treated
with avellanin A (0.7 µM) for 7 days. When the colonies were clearly observed under the
microscope, the cells were washed twice with PBS and fixed with 4% paraformaldehyde
for 15 min, followed by staining with crystal violet dye (Yunaye, China) for 10 min. The
number of cell clones was photographed and statistically analysed.

4.8. Transcriptomic Expression Profiling and Bioinformatics Analysis

RWPE-1 cells were treated with avellanin A (0.7 µM) at 37 ◦C for 48 h in TP-containing
media and subsequently collected for transcriptomic analysis. Total RNA was extracted
from the RWPE-1 cells using the TRIzol reagent kit (Invitrogen, Carlsbad, CA, USA) and
assessed for quality using an Agilent 2100 Bioanalyzer system (Agilent Technologies, Palo
Alto, CA, USA). Subsequently, library preparation for sequencing was conducted using
the NEBNext Ultra RNA Library Prep Kit for Illumina, following the manufacturer’s
instructions. Clustering was carried out on the cBot Cluster Generation System (Illu-
mina, San Diego, CA, USA) using the TruSeq PE Cluster Kit v3-cBot-HS, and sequencing
was performed on the Illumina NovaSeq 6000 platform (Gene Denovo Biotechnology,
Guangzhou, China).

The obtained clean data were processed by eliminating reads containing adapters
and low-quality sequences from the raw data. Alignments of the clean reads with the
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assembled genome of GRCh38.p13 were performed using HISAT2. The FPKM value of
each gene in each sample was determined using featureCounts 2.0.2 software. Genes with
a p-value < 0.05 and a fold change > 2 were considered to be significantly differentially
expressed. All differentially expressed genes (DEGs) were associated with Gene Ontology
(GO) terms in the GO database, and the number of genes per term was calculated. The
significantly enriched GO terms in DEGs were identified using the hypergeometric test.
Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway enrichment
analysis was conducted to pinpoint metabolic pathways or signal transduction pathways
that were significantly enriched in DEGs compared to the genome-wide background. The
calculated p-value was adjusted for the false discovery rate (FDR) with a threshold of
FDR ≤ 0.05. GO terms and KEGG pathways meeting these criteria were deemed signif-
icantly enriched in the DEGs. Then, the genes were searched in the STRING database
(25 August 2023) to determine the protein–protein interaction (PPI) relationships. Cy-
toscape 3.7.2 software was used to construct the PPI network to visualize the relationships
between avellanin A and its targets.

4.9. Molecular Docking

Molecular docking was performed to evaluate the binding affinity of avellanin A
for the cathepsin L protein. The Maestro program in Glide software version 8.1 was
used for docking. Human cathepsin L (UniProt ID: P07711) was obtained from the PDB
protein database (7 April 2024), while the structures of the avellanin A compounds were
downloaded from the PubChem database (7 April 2024). Prior to the docking process,
water molecules were removed from the conformation, and the proteins were subjected to
hydrogenation. Furthermore, the 3D structure of the target compound was optimised by
calculating its 3D conformation at the minimum energy. The interaction between the ligand
and the acceptor was analysed, and potential active substances were evaluated based on
the score.

4.10. Fluorescence-Based Quantitative PCR

Total RNA from the RWPE-1 cell samples was extracted using TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA) and then transcribed into cDNA using a reverse transcriptome
kit (Applied Biosystems, Foster City, CA, USA). Quantitative PCR was performed on a
real-time PCR system. Primers were designed and synthesised by Huiyuan Technology
Co., Ltd. (Jinan, China). The primer sequences are shown in Table S2.

4.11. Western Blotting

The Western blot analysis was conducted as follows: Briefly, RWPE-1 cells were treated
with avellanin A (0.7 µM) at 37 ◦C for 48 h in TP-containing media. The cells were washed
twice with PBS supplemented with an appropriate amount of RIPA lysis buffer, lysed
at 4 ◦C for 30 min, and centrifuged at 12,000 r/min for 10 min at 4 ◦C, after which the
supernatant contained the total extracted protein. Electrophoresis was performed with a
10% concentration of polyacrylamide gel (SDS-PAGE), and the proteins were transferred
to PVDF membranes. The membranes were blocked in 5% milk and incubated with the
primary antibodies at 4 ◦C overnight. Primary antibodies against p-Akt (1:2000, No. 4060),
anti-Akt (1:1000, No. 4691), anti-p-PI3K (1:1000, No. 4228), anti-PI3K (1:1000, No. 4257),
anti-p53 (1:1000, No. 2527), anti-cyclin D1 (1:1000, No. 55506), anti-p21 Waf1/Cip1 (1:1000,
No. 2947), and anti-Bax (1:1000, No. 5023) were purchased from Cell Signaling Technology.
Then, the membranes were washed with TBST and incubated with secondary antibodies at
37 ◦C for two hours. Finally, the bands were visualised by using an Omni-ECL Femto Light
Chemiluminescence Kit (Epizyme, Shanghai, China) and imaged by using an Amersham
Imager 680 blot gel imager (Cytiva, Marlborough, MA, USA). β-Actin was used as a control,
and the test was repeated at least three times.
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4.12. Statistical Analysis

The data are expressed as the means ± SDs from at least three independent experi-
ments. The unpaired t test was used for comparisons between groups. Statistical analyses
were carried out by one-way analysis of variance with Bonferroni’s multiple-comparison
correction for comparisons among three or more groups. The following labels were used:
ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; and ****, p < 0.0001. GraphPad
Prism 10.0 software was used for statistical analysis and graphing.

5. Conclusions

In this project, the cyclic pentapeptide compound avellanin A from the Aspergillus
fumigatus fungus was studied to explore its ability to inhibit RWPE-1 cell proliferation
and its molecular mechanism. Avellanin A has a good affinity for cathepsin L, which
is involved in the terminal degradation of extracellular matrix components. Avellanin
A significantly blocked the ECM–receptor interaction and suppressed the downstream
PI3K-Akt signalling pathway. The expression of the genes COL1A1, COL1A2, COL5A2,
COL6A3, MMP2, MMP9, ITGA2, and ITGB3 was significantly downregulated after avellanin
A intervention. The results confirmed that it not only reduced ITGA2 and FAK/p-FAK
protein expression but also inhibited PI3K/p-PI3K and Akt/p-Akt protein expression in
the PI3K-Akt signalling pathway. Furthermore, avellanin A upregulated Bax, p21WAF1/Cip1,
and p53 protein expression and downregulated Cyclin D1 protein expression in TP-induced
RWPE-1 cells, leading to cell cycle arrest and inhibition of cell proliferation. This study
supports the use of avellanin A as a potential new drug for the treatment of BPH.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md22060275/s1, Figure S1: HR-ESI-MS spectrum of avellanin
A. Figure S2: 1 H NMR (d 4-methanol, 600 MHz) spectrum of avellanin A; Figure S3: 13C NMR
(d 4-methanol, 150 MHz) spectrum of avellanin A. Figure S4: The original Western blot image of
Figure 4C. Figure S5: The original Western blot image of Figure 5. Table S1: 1H and 13C NMR
assignments for avellanin A in DMSO-d6. Table S2: Sequences of qPCR primers.
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