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Abstract: Fucoidan is a polymer of L-fucose and L-fucose-4-sulphate naturally found in marine sources
that inhibits p-selectin, preventing neutrophil recruitment to the site of injury. Fucoidan is employed in
many studies as a tool to investigate the contribution of neutrophils to pain, showing analgesic effects.
We performed a systematic review and meta-analysis to quantify the analgesic effects of pretreatment
with fucoidan reported in the available preclinical studies. In addition, we summarized the articles which
have studied the therapeutic effects of fucoidan in pathological pain at preclinical and clinical levels. The
results of this systematic review reveal that pretreatment with fucoidan is a powerful tool which reduces
neutrophil infiltration by 70–90% at early time points. This meta-analysis showed that preventative
treatment with fucoidan produced a significant pain reduction. In addition, several preclinical studies
have observed that fucoidan treatment reduces the pain that is associated with various pathologies.
Finally, fucoidan has also been tested in several clinical trials, with some degree of analgesic efficacy, but
they were mostly small pilot studies. Considering all the above information, it can be concluded that
fucoidan is not only a preclinical tool for studying the role of neutrophils in pain but also a promising
therapeutic strategy for pain treatment.
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1. Introduction

The neutrophil is the first immune cell to respond to tissue damage or a potential
aggressor [1]; in response to an injury, it migrates massively to the inflammatory focus,
being clearly the most abundant cell [2]. Its role there is fundamental: on the one hand,
thanks to its phagocytic capacity, it allows for the clearance of cellular debris associated with
tissue damage and pathogens, along with degranulation and the release of nuclear material
in the form of neutrophil extracellular traps (NETs), which also promote this process; on
the other hand, it has the ability to release pro-inflammatory signaling molecules (mainly
cytokines) that “call” other cells, favoring and accelerating their activation and migration to
the affected area [3–5]. It can also sensitize sensory neurons, promoting their discharge [6,7].
These varied actions of neutrophils could participate in pain modulation.

The role of neutrophils in pain has been extensively studied in experimental research.
In several studies, including early ones on the topic [8–10], a pronociceptive role has been
proposed, contributing to the generation of hyperalgesia and allodynia in response to
various stimuli [11–13]. Other authors demonstrate that under certain circumstances, neu-
trophils can produce analgesia [14–17], mainly associated with the production and release
of endogenous opioid peptides (EOPs), such as β-endorphin, enkephalins, dynorphins,
and endomorphins [14,18]. Additionally, some studies take a middle ground and argue
that neutrophils do not contribute to pain [19,20]. Understanding the role of this immune
population in pain could be of significant interest to the medical and scientific community,
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as it could lead to new therapeutic targets for pain of different etiologies and improve the
pathophysiological understanding of pain and its neuroimmune modulation.

A significant portion of studies investigating the contribution of neutrophils to pain in
animal models employ a strategy based on neutrophil depletion using pharmacological treat-
ment. Immunological strategies are the standard treatment for achieving neutrophil depletion.
In early studies, at the end of the century, anti-neutrophil sera were used [17,21,22]. A few years
later, with the advent of monoclonal antibodies, the anti-Gr-1 antibody (RB6-8C5) was used,
which achieves robust depletion but is not selective for neutrophils (it affects other immune cells,
mainly monocytes) [20,23,24]. In contrast, the anti-Ly6G antibody has superior selectivity and
generally only affects neutrophils [25–27], although some studies report a significant reduction
in macrophages [11]. However, these strategies with biological treatments have several limita-
tions [28]: (1) as they are generally new molecules with high production costs, the cost is high;
(2) it has been reported that the potent and sudden depletion produced by these treatments can
generate a rebound response where there is a prominent proliferation in the bone marrow to try
to compensate for this deficiency state [29,30]; (3) because the same markers (GR-1 and Ly6-G)
are used for the detection and quantification of neutrophils, there may be antigen masking,
leading to misinterpretation of a good depletion efficiency [30]; (4) incomplete depletion of
neutrophils [29]; and (5) organ- and strain-specific neutrophil depletion [28]. Based on these
drawbacks, some authors have opted to use fucoidan to evaluate the role of neutrophils in their
pain models.

In addition to being a tool for studying neuroimmune interactions in pain, some au-
thors propose the use of fucoidan as a therapeutic strategy for pain related with several con-
ditions [31,32]. Furthermore, fucoidan has also been proposed for blocking post-ischemic
reperfusion injury, in which the cascade of inflammation causes tissue damage [33–35].
Although these activities are mainly related with the inhibition of neutrophil recruitment,
other mechanisms of fucoidan may contribute to the analgesic and anti-inflammatory
properties: selective inhibition of COX-2 [36], inhibition of hyaluronidase [36,37], mitogen-
activated protein kinase p38 inhibition [38], protein denaturation inhibition [39], and stabi-
lization of the cell membrane integrity of human red blood corpuscles [39]. Several articles
evaluated the analgesic efficacy of fucoidan in different models of pain, and even a few
clinical experiences have been reported [40]. Therefore, the number of studies evaluating
fucoidan for various purposes has significantly increased in recent years [41].

The objective of this work is to gather all the studies that employ fucoidan to inves-
tigate the role of neutrophils in animal models of pain and quantify the effect over pain.
For this purpose, we will perform a systematic review and meta-analysis to quantify the
analgesic effects of pretreatment with fucoidan reported in the available preclinical studies.
Additionally, we will also gather studies proposing fucoidan as a therapeutic strategy for
pain associated with different pathological conditions, both at preclinical and clinical level.

2. Results and Discussion
2.1. Fucoidan: Mechanism of Action

Fucoidan (also called fucoidin) is a polymer of L-fucose and L-fucose-4-sulphate which
belongs to a group of sugar analogs [42]. It is found naturally in marine sources, mainly in
brown seaweeds (e.g., Fucus vesiculosus, Cladosiphon sp., or Undaria sp.), and some marine
invertebrate tissues [43,44]. It is relevant to note that fucoidan abundance and composition
may vary between these sources and even between growing conditions, geographic loca-
tion, harvesting season, anatomical regions, and extraction procedures [41,42,45–51]. The
mechanism of action of fucoidan on immune cells is based on the inhibition of cell adhesion
molecules, P-selectin, and to a lesser extent, L-selectin [52–56]. Both are highly abundant
on the neutrophil membrane and are necessary for their adhesion/extravasation during an
acute inflammatory response [57]. P-selectin also promotes neutrophil extracellular trap
formation [58]. However, these proteins are not exclusive to neutrophils and are found in
other immune cell populations (e.g., macrophages [59], or lymphocytes [60]). Therefore,
fucoidan treatment may directly affect the migration of other immune cells to the site
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of inflammation, such as macrophages/monocytes or lymphocytes [61]. Nevertheless,
most models assessing the role of fucoidan on pain were acute models, where the pain
response was generally evaluated in a short period after pain induction (e.g., 0.5–3 h after
inflammatory substance injection [62–68]), when neutrophil migration is very prominent
and the presence of other populations is residual. Therefore, fucoidan analgesic effects
observed by these studies probably mainly account for neutrophil migration inhibition.
In this sense, fucoidan can be considered appropriate for evaluating the contribution of
neutrophils in these acute inflammatory models.

2.2. Fucoidan: A Tool to Study the Role of Neutrophils in Pain

The search results and selection strategy are detailed in the PRISMA flowchart (Figure 1).
In total, 31 articles met the inclusion criteria, evaluating the role of neutrophils in pain using
pretreatment with fucoidan as a tool. The main information of these articles is summarized
in Table 1. All the evaluations were performed on rats (16/31/) or mice (15/31). The doses
administered ranged between 10 and 100 mg/kg, and the administration time before injury
was 10–30 min in most of the studies. Pain models evaluated were diverse. In majority, in-
flammation was induced by an intraplantar injection of complex pro-inflammatory substances
(CFA [69,70] or carrageenan [63,65,68]), or isolated pro-inflammatory compounds such as
5-HT [71,72], TNF [64,73], IL-17 [73], and others [62,63,74–76]. The other studies employed
arthritis models with an intra-articular administration of inflammatory substances such as
zymosan [77], mBSA [78,79], LTB4 [77], IL-17 [79], MSU crystals [80,81], and others [82–86].
Moreover, two articles evaluated muscle pain [66,87], and one employed a neuropathic pain
model (postherpetic neuralgia [88]). On the other hand, pain was mainly assessed by the evalu-
ation of reflex-based responses to stimuli (evoked pain)—mechanical hyperalgesia, mechanical
allodynia, and heat hyperalgesia—although non-evoked nociceptive behavior was also explored
in some articles. The assessment of non-evoked pain has been suggested to be more translational
as it better reflects the clinical situation of patients in which spontaneous pain is more clinically
relevant than cutaneous hypersensitivity [89].

1 
 

 

Figure 1. Study selection PRISMA flow diagram.



Mar. Drugs 2024, 22, 290 4 of 17

Table 1. Information on studies using fucoidan to evaluate the role of neutrophils in pain.

Study Species;
Strain

Dose; Route;
Administration Time before

Injury; Positive Control

Neutrophil Count;
Efficacy/Selectivity, %
Neutrophil Depletion

Pain Model Pain
Outcome

Analgesic
Efficacy

(p > 0.05)

Machelsa et al.,
1998 [69]

Rat;
Wistar

10 mg/kg; i.v.; 10 min;
fentanyl

Manual count
(β-endorphin) (≈40%) CFA (i.pl.) MH No

* Dell’Antonio
et al., 2002 [70]

Rat;
Wistar

10 mg/kg; i.v.; 30 min;
oxidized ATP Non-evaluated CFA (i.pl.) MH No

Tambeli et al.,
2006 [71]

Rat;
Wistar

20 mg/kg; i.v.; 30 min;
tropisetron, indomethacin,

and atenolol
MPO; yes/no (≈60%) 5-HT (i.pl.) NB (Paw) Yes

Lavich et al.,
2006 [90]

Rat;
Wistar

10 mg/kg, i.v.; 15 min;
anti-neutrophil serum

Manual count and
MPO; (>90%)

Ovalbumin probe
in sensitized rats HH Yes

Oliveira et al.,
2007 [72]

Rat;
Wistar

20 mg/kg, i.v.; 20 min;
tropisetron, indomethacin,
guanethidine, and atenolol

Non-evaluated 5-HT; PGE;
epinephrine (i.pl.) MH Yes; no; no

Cunha et al.,
2008 [68]

Rat;
Wistar

20 mg/kg; i.v.; 10 min; no
positive control MPO; yes/no (=90%) Carrageenan

(i.pl.) MH Yes

Guerrero et al.,
2008 [77]

Mouse;
C57BL/6

20 mg/kg; i.v.; 20 min;
indomethacin, MK886,

celecoxib, anti-neutrophil
antibody

MPO; yes/yes LTB4; zymosan
(i.a.) MH Yes

Russell et al.,
2009 [64]

Mouse;
CD1

40 mg/kg; i.v.; 20 min;
SB366791, TNF inhibitor,

PKC inhibitor,
indomethacin, COX2

inhibitor, and nimesulide

MPO; yes/no (=70%) TNF (i.pl.) HH Yes

Verri et al.,
2009 [65]

Mouse;
BALB/c

20 mg/kg; i.v.; 15 min;
bosentan, BQ123, and

BQ788
MPO; yes/no (=70%) Carrageenan

(i.pl.) MH Yes

Marotta et al.,
2009 [91]

Rat;
Wistar

10 mg/kg; i.v.; 15 min;
WEB2086, anti-TNF, IL-1
antagonist, indomethacin,

and celecoxib

MPO; yes/no (=90%) PAF (i.pl.) MH; NB
(Paw) Yes; no

McNamee et al.,
2010 [92]

Mouse;
C57BL/6

20 mg/kg; i.p.; 24 h
before every 2 d; anti-NGF,

and anti-TNF
MPO; yes/no (50%) DMM surgery;

OA NB (WB) Yes

Pinto et al.,
2010 [79]

Mouse;
BALB/c

20 mg/kg; i.v.; 15 min before
and 3.5 h after; infliximab,

IL-1 antagonist, and DF2156

Manual count (May–
Grünwald–Giemsa);

yes/no (80%)

AIA-mBSA or
IL-17 (i.a.) MH Yes

Sachs et al.,
2011 [78]

Mouse;
C57Bl/6J

20 mg/kg; i.v.; 10 min;
lidocaine, morphine,

dexamethasone, anti-TNF,
and IL-1 antagonist

MPO; yes/no (>90%) AIA-mBSA (i.a.) MH Yes

McNamee et al.,
2011 [73]

Mouse;
C57BL/6 20 mg/kg; i.p.; 2 h; anti-TNF MPO; yes/no (>90%) TNF; IL-17 (i.pl.) HH; NB

(WB) Yes

Amaral et al.,
2012 [80]

Mouse;
C57BL/6J

20 mg/kg; i.v.; 15 min; IL-1
antagonist, DF2162,

CP105,696, and MK886
MPO; yes/no (>90%) MSU crystals (i.a.) MH Yes

Chatterjea et al.,
2012 [62]

Mouse;
ND4

20 mg/kg; p.o.; 30 min;
sodium cromoglycate

MPO; Hematoxylin-
Eosin; yes/no (>90%)

Compound 48/80
(i.pl.) HH Yes

* Oliveira-Fusaro
et al., 2012 [83]

Rat;
Wistar

20 mg/kg; i.v.; 20 min;
tropisetron, guanethidine,

atenolol, and indomethacin
MPO; yes/no (>90%) 5-HT (i.a.) NB (Face) No

Finley et al.,
2013 [63]

Rat;
Sprague
Dawley

40 mg/kg; i.p.; 30 min;
sphingosine-1 antagonists

and fingolimod

MPO; Hematoxylin-
Eosin; yes/no (>60%)

Carrageenan; S1P;
SEW2871 (i.pl.) HH Yes

Guerrero et al.,
2013 [82]

Mouse;
BALB/C

20 mg/kg; i.v.; 15 min;
indomethacin, MK886,

selective PAFR antagonists
MPO; no/no PAF (i.a.) MH Yes
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Table 1. Cont.

Study Species;
Strain

Dose; Route;
Administration Time before

Injury; Positive Control

Neutrophil Count;
Efficacy/Selectivity, %
Neutrophil Depletion

Pain Model Pain
Outcome

Analgesic
Efficacy

(p > 0.05)

Perin-Martins
et al., 2013 [74]

Rat;
Wistar

20 mg/kg; i.v.; 30 min;
TRPA1 antagonist, CGRP
antagonist, indomethacin

MPO; yes/no (100%)
Allyl

isothiocyanate
(i.pl.)

MH Yes

Zarpelon et al.,
2013 [75]

Mouse;
BALB/C

20 mg/kg; i.v.; 15 min;
infliximab, IL1 antagonist,
anti-CXCL1, indomethacin,

BQ788, and clazosentan

MPO; yes/no (>90%) IL–33 (i.pl.) MH Yes

* Albuquerque
et al., 2013 [93]

Mouse;
BALB/C

20 mg/kg; i.v.; 30 min;
morphine and dipyrone

Manual counting;
yes/no (>90%) Acetic acid (i.p.) NB

(writhing) Yes

Teixeira et al.,
2014 [76]

Rat;
Wistar

25 mg/kg, i.v., 20 min; P2X7
and P2X1,3,2/3 antagonists,
atenolol, and indomethacin

Non-evaluated BzATP (i.pl.) MH Yes

Schiavuzzo et al.,
2015 [87]

Rat;
Wistar

25 mg/kg; i.v.; 20 min;
P2X1,3,2/3 antagonist,
lidocaine, bradykinin

antagonist, and
indomethacin

MPO; no/no α,β-meATP (i.m.) MH Yes

Silva et al.,
2017 [88]

Mouse;
C57BL/6

20 mg/kg; i.v.; daily from 2
to 7 d; dexamethasone,
morphine, lidocaine,

infliximab, etanercept,
clodronate, and
indomethacin

Flow cytometry;
yes/yes

(>90% reduced CD45+
cells)

HSV-1
(postherpetic

neuralgia)
MA Yes

Santos et al.,
2017 [66]

Rat;
Wistar

25 mg/kg; i.v.; 20 min;
dexamethasone, bradykinin

antagonist, atenolol,
indomethacin, and ICI118

MPO; no/no Sustained muscle
contraction MH Yes

Dornelas-Filho
et al., 2018 [94]

Mouse;
Swiss

100 mg/kg; i.v.; 30 min;
anti-neutrophil antibody

MPO; flow cytometry
(>90%)

Ifosfamide-
induced

hemorrhagic
cystitis

MH Yes

Zanelatto et al.,
2018 [84]

Rat;
Wistar

20 mg/kg; i.v.; 20 min;
propranolol and

thalidomide
MPO; no/no Isoproterenol

(i.a.) NB (Face) Yes

Yin et al.,
2020 [81]

Mouse;
C57BL/6J

20 mg/kg; i.v.; 8 h y 23 h
after; clodronate MPO; yes/no (>95%) MSU crystals (i.a.) MA Yes

Teixeira et al.,
2020 [86]

Rat;
Wistar

25 mg/kg, i.v.; 30 min; P2X3
and P2X2/3 antagonist MPO; yes/no (100%) αβ-meATP (i.a.) NB (WB) Yes

Teixeira et al.,
2021 [85]

Rat;
Wistar

25 mg/kg; i.v.; 20 min; P2X7
antagonist, lidocaine,

atenolol, and indomethacin
Manual count; no/no BzATP (i.a.) NB (Face) Yes

Abbreviations: 5-HT: 5-hydroxytryptamine; α,β-meATP: α,β-methylene ATP; AIA: antigen-induced arthritis;
BzATP: 3′-O-(4-Benzoyl)benzoyladenosine 5′-triphosphate; CFA: complete Freund’s adjuvant; DMM: destabi-
lization of the medial meniscus; Face: facial grooming; HH: heat hyperalgesia; HSV-1: herpes simplex virus
type 1; i.a.: intra-articular; IL-17: interleukin 17; i.m.: intramuscular; i.p.: intraperitoneal; i.pl.: intraplantar; i.v.:
intravenous; LTB4: leukotriene B4; MA: mechanical allodynia; mBSA: methylated bovine serum albumin; MH:
mechanical hyperalgesia; MPO: myeloperoxidase assay; MSU: monosodium urate; NB: nociceptive behavior;
PAF: platelet-activating factor; p.o.: oral; Paw: paw flinching; S1P: sphingosine-1-phosphate; TNF: tumor necrosis
factor; WB: weight bearing distribution. * Articles not included in this meta-analysis as one of the comparison
groups was missing.

2.3. Efficacy of Fucoidan as a Neutrophil Depletion Strategy

The efficacy of neutrophil depletion was assessed by diverse quantification meth-
ods: immunohistochemistry, flow cytometry, or myeloperoxidase were the most common
(see Table 1). Most of them (≈90%) employed the myeloperoxidase assay (MPO), which
allows estimating the number of neutrophils per mg of tissue. Although this technique
demonstrated a high correlation with the number of neutrophils [85], the enzyme is also
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present in monocytes/macrophages [95], so the quantification might not be totally selective
for neutrophils. In contrast, quantification using flow cytometry is much more selective
as specific markers are used to differentiate populations, yet the methodology is more
complex [94]. However, the oldest studies employed dyes followed by a manual count-
ing [69], which can be considered a semi-quantitative method. As an example, the oldest
article included in this analysis observed that pretreatment with fucoidan induced a slight
decrease (40%) in the number of immune cells containing β-endorphin (mainly neutrophils)
after CFA injection [69]. This low efficacy observed can be associated with a too low of
a dose being used (10 mg/kg) [69]. On the contrary, all the studies published thereafter
employed higher doses (20–40 mg/kg), achieving a great neutrophil depletion efficacy
(70–90%).

The use of fucoidan for neutrophil depletion presents several advantages: (1) it only
blocks cell extravasation and does not affect the blood count of neutrophils [61], while
other strategies such as antibodies anti-Ly6G (1A8) or anti-Gr-1 (RB6) also reduce blood-
circulating neutrophils [28,96]; (2) fucoidan does not affect neutrophil tissular levels in naive
animals, while antibodies cause a robust reduction observed in different organs (spleen,
lungs or bone marrow) [28,97]. Moreover, neutrophil depletion has been associated with
a decrease of edema in the injured area in several models [98,99]. Based on all the above,
it can be concluded that preventive treatment with fucoidan is effective for neutrophil
depletion and presents some advantages in comparison to other methods.

2.4. Analgesic Efficacy of Preventive Treatment with Fucoidan

In all the articles compiled in Table 1, the effect of pretreatment with fucoidan on
pain is evaluated. As mentioned in the previous section, in all cases, neutrophil depletion
was robust (generally, a reduction of 70–90%). In 95% of the studies, a significant and
robust reduction in pain was observed. It is likely that the absence of an analgesic effect
of fucoidan observed in some of the works was due to the dose of fucoidan being too low
(e.g., 10 mg/kg [69]).

Next, the analgesic efficacy of neutrophil depletion with fucoidan was quantified
by conducting a meta-analysis (Figure 2). Fucoidan clearly showed significant analgesic
efficacy (p < 0.0001) with a large effect size (75.1, CI95: 66.6, 83.6). However, the hetero-
geneity was high (I2 = 98.7%), which may be due to the large variety in the evaluations and
experimental conditions.

According to these results, it can be concluded that neutrophils have a pronociceptive
role in the acute pain models studied. Accordingly, treatment with fucoidan can be consid-
ered an interesting strategy for the treatment of pain in painful pathologies that involve an
acute neutrophil response.

In addition, an important variable that can influence the analgesic efficacy is the admin-
istration route, as the bioavailability of fucoidan may vary between administration routes.
Most of the studies employed the intravenous route 26/36, 9/36 of the studies used the
intraperitoneal route, and only 1/36 used the oral route. A subgroup analysis stratified
according to the administration route used concluded that the effect size for the analgesic
efficacy was 69.06 (CI95: 61.15, 76.98) for the intravenous route, 87.85 (CI95: 65.86, 109.84) for
the intraperitoneal route, and 115.87 (CI95: 103.75, 127.99) for the oral route. These results
suggest that the intraperitoneal and oral bioavailability of fucoidan is high as the efficacy was
equivalent to the one achieved by intravenous administration. Another variable which may
influence the analgesic efficacy is the source of fucoidan, as its composition may vary between
sources. However, the vast majority of studies employed the same commercial fucoidan
extracted from Fucus vesiculosus (Sigma-Aldrich, St. Louis, MO, USA), so it was not necessary
to conduct this analysis.
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2.5. Fucoidan as a Tool to Study Opioid-Related Endogenous Analgesia

Endogenous analgesia has a very relevant role in the pathophysiology of pain and its
treatment [100,101]. Among the different proposed mechanisms, the endogenous opioid
system is one of the main players [102–104]. In fact, it is known to be involved in many
well-known phenomena, such as the placebo effect [105]. Immune cells are the main actors
in these mechanisms due to their ability to produce and release endogenous opioid peptides
(EOPs) in response to different situations. As neutrophils are the primary cells during early
inflammation, they constitute the main source of EOPs in the periphery.

Information on studies using fucoidan to evaluate endogenous opioid analgesia can
be found in Table 2. These articles employed fucoidan together with an experimental
analgesic strategy (e.g., ankle joint mobilization or light-emitting diode therapy) in or-
der to evaluate the participation of neutrophils in the efficacy of the intervention being
tested. In other words, in these studies, fucoidan was only a tool for evaluating if the
analgesic efficacy of the experimental compound/intervention was dependent on OEP
liberation by the recruited neutrophils. Already in 1998, the first study using fucoidan
demonstrated that it was capable of blocking endogenous opioid analgesia associated with
the release of EOP by immune cells (mainly neutrophils) after a stressful situation (cold
water swim) [69]. A few years later, the same authors confirmed that the abolishment of
endogenous opioid analgesia with the treatment of fucoidan was mediated by P-selectin
and L-selectin inhibition, with the decrease in neutrophils and the consequent halving of
EOP being confirmed by cytometry [61]. Subsequently, other authors have replicated these
experiments with similar results, while others used this tool to elucidate whether the effect
of an analgesic treatment was mediated by POEs [106–108]. In parallel, other authors have
confirmed the effect of fucoidan in the reduction of opioid analgesia (induced by stress or
corticotropin-releasing factor administration), employing other strategies for neutrophil
depletion, such as anti-Ly6-G antibodies [17,22,109–111].
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Table 2. Information on studies using fucoidan to evaluate endogenous opioid analgesia.

Study Species;
Strain

Fucoidan Dose; Route; %
Neutrophil Reduction Pain Model Pain

Outcome Main Results

Machelsa et al.,
1998 [69]

Rat;
Wistar

10 mg/kg; i.v.; ≈40% indirect
reduction (β-endorphin) CFA (i.pl.) MH

Decreased analgesia
induced by cold water
swim stress and CRF

Machelsa et al.,
2004 [17]

Rat;
Wistar

10 mg/kg; i.v.; ≈50%
(macrophage and T cell reduction) CFA (i.pl.) MH

Abolished peripheral
stress-induced
antinociception

Martins et al.,
2012 [106]

Mouse;
Swiss

100 µg/mouse; i.p.;
non-evaluated PI MH

Did not reverse
analgesia induced by

ankle joint mobilization

Cidral-Filho
et al., 2013 [107]

Mouse;
Swiss

100 µg/mouse; i.p.;
non-evaluated PI MH

Abolished the analgesic
effect of light-emitting

diode therapy

Martins et al.,
2016 [108]

Mouse;
Swiss

100 µg/mouse; i.p.;
non-evaluated CFA (i.pl.) MH

Abolished the analgesic
effect of light-emitting

diode therapy

Abbreviations: CFA: complete Freund’s adjuvant; CRF: corticotropin-releasing factor; i.p.: intraperitoneal; i.pl.:
intraplantar; i.v.: intravenous; MH: mechanical hyperalgesia.

2.6. Fucoidan for Treating Pain-Related Conditions: Preclinical Studies

The previous analyses evaluated the effect of feeling pain after a pretreatment with
fucoidan. Therefore, it is interesting to evaluate its analgesic efficacy when the treatment
is therapeutic (once the pathology is already established) instead of prophylactic. Several
studies evaluating the therapeutic use of fucoidan in pain-related diseases were found,
and they are summarized in Table 3. It is interesting to highlight a good analgesic efficacy
observed in two different models of neuropathic pain (nerve injury [112] and chemotherapy-
induced injury [113]), in models of visceral inflammation (colitis [114], prostatitis [31]), and
in models of joint degeneration [32].

Table 3. Therapeutic use of fucoidan in pain-related diseases.

Study Pathological Model Intervention; Positive Control Main Results

Zhang et al.,
2001 [114]

Dextran sodium
sulfate-induced
murine colitis

Fucoidan daily (25 mg/kg, i.v.)
starting immediately prior to the

5-day challenge; DF2162 and MK886
and CP105,696

Fucoidan can reduce mucosal damage and crypt
destruction in the colon of dextran sodium

sulfate-treated mice, relieving chronic colitis.

Hu et al.,
2014 [112]

Peripheral nerve injury
produced by spinal

nerve ligation

Fucoidan (15, 50 and 100 mg/kg, i.t.)
once daily during the period of days
11–20, inclusively; no positive control

Attenuated the existing allodynia and hyperalgesia
induced by nerve injury. Also inhibited cytokines

production, glial. and ERK activation.

Hu et al.,
2017 [113]

Chemotherapy-
induced peripheral

neuropathy
(vincristine)

Fucoidan (50, 100 or 200 mg/kg, i.p.)
on single treatment (day 14) or

repeated treatment once daily for
14 days; pregabalin

Repeated. However, no single treatment
attenuated vincristine-induced mechanical and

cold allodynia in a dose-dependent manner.

Wang et al.,
2018 [33]

Peripheral arterial
disease by injection of

sodium laurate into
femoral artery

Low molecular weight fucoidan (20,
40 or 80 mg/kg/day; p.o.) for

4 weeks; cilostazol

Ameliorated foot ulceration and improved
plantar perfusion. Suppressed the upregulation
of inflammatory factors (ICAM-1 and IL-1β) in

the gastrocnemius muscles of ischemic hindlimb.

Ahn et al.,
2019 [34]

Transient global
cerebral ischemia in

obese gerbils

Fucoidan (50 mg/kg; p.o.) daily for
the last 5 days; no positive control

Relieved acceleration and exacerbation of ischemic
brain injury in an obese state via the attenuation of

obesity-induced severe oxidative damage.
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Table 3. Cont.

Study Pathological Model Intervention; Positive Control Main Results

Obluchinskaya
et al., 2021

[115]

Peripheral
inflammation

carrageenan (i.pl.)

Fucoidan-based cream 100, 200, and
400 mg/rat/day (topical) for 5 days;

diclofenac

Inhibited carrageenan-induced edema and
ameliorated mechanical allodynia (efficacy

comparable with diclofenac).

Zhang et al.,
2022 [31]

Experimental
autoimmune

prostatitis

Fucoidan 20 mg/kg (i.p.) one day
before disease induction and then

once a week; anti-neutrophil antibody

Histological appearance of prostate tissues
improved, and chronic pain development was

ameliorated.

Li et al.,
2023 [32]

Intervertebral disc
degeneration

Single treatment with 5 µL of
fucoidan (10 µg/mL; intra-disc
injection); no positive control

Ameliorated intervertebral disc degeneration 4
and 8 days after injury, and preserved disc

height, extracellular matrix components, and
nucleus pulposus hydration.

Abbreviations: ERK: Extracellular-Signal-Regulated Kinase; ICAM-1: Intercellular Adhesion Molecule 1; IL-1β:
interleukin 1β; i.p.: intraperitoneal; i.pl.: intraplantar; i.v.: intravenous; p.o.: oral administration.

2.7. Fucoidan for Treating Pain-Related Conditions: Human Studies

The promising preclinical results mentioned earlier prompted the initiation of various
small to medium-sized clinical trials in humans to assess the effectiveness of fucoidan
in treating pain-related conditions (summarized in Table 4). These studies were mainly
performed in patients with joint pain associated with osteoarthritis, and promising results
were observed. In addition to the anti-neutrophil effect, which may explain these positive
results in pain and joint degradation, fucoidan has also demonstrated antifibrotic efficacy
(specifically in the joint) by inhibiting the differentiation of fibroblast-like synoviocytes
into myofibroblasts with tumor cell-like characteristics and restoring apoptosis [116]. Also,
fucoidan was capable of ameliorating intervertebral disc degeneration in a preclinical
model by restoring redox and matrix homeostasis of nucleus pulposus [32].

Table 4. Human studies evaluating fucoidan for pain-related diseases.

Study Study Type;
Population

Intervention; Route;
Dosage Main Efficacy Results Main Safety Results

Myers et al.,
2010 [117]

Open-label,
randomized, combined

Phase I and II; knee
osteoarthritis

(n = 10 adults 9F/1M)

100 and 1000 mg of
fucoidan; p.o.; daily for

4 weeks

Reduced COAT score by 18% for the 100 mg
treatment and 52% for the 1000 mg dose.

Clear dose response in all COAT subscales
(pain, stiffness, physical activity and

overall symptom severity)

Well tolerated (few adverse
events related to treatment).

No changes in blood
parameters

Myers et al.,
2016 [40]

Randomized
placebo-controlled

trial; hip/knee
osteoarthritis
(n = 96 adults

56F/40M)

300 mg dose of a Fucus
vesiculosus extract (85%
fucoidan); p.o.; daily for

12 weeks

Fucoidan improved by 29% COAT score
(knee), while placebo improved it by 30.6%.

No significant differences in symptom
reduction vs. placebo. No difference in the

usage of paracetamol

It was safe and well
tolerated

Kan et al.,
2020 [118]

Randomized,
double-blind,

placebo-controlled
trial; chronic gastritis

(n = 101 adults)

Wheat peptides and
fucoidan; p.o.; once daily

for 45 days

Reduced gastric mucosal damage in 70% of
subjects. Significantly less stomach pain,

belching, bloating, acid reflux, appetite loss,
increased food intake, and higher quality

of life (p > 0.05 for all)

No adverse event reported

Tay et al.,
2022 [119]

Randomized,
double-blind,

placebo-controlled
trial; prediabetes and
hip or knee joint pain

(n = 150 adults)

20 g of chocolate (1000 mg
mussel powder and

1000 mg of fucoidan); p.o.;
once daily for 100 days

Results not available; the primary endpoints
are change in insulin resistance and

patient-reported joint pain. Secondary
endpoints include anthropometry, fasting
glucose and insulin, HbA1c, inflammatory

markers, satiety, quality of life, physical
function, pain intensity, and analgesic

medication use

Results not available;
complications reported and

described by duration,
severity, outcome, treatment,

and relation to study
treatment or cause

Abbreviations: COAT: comprehensive arthritis test; p.o.: oral administration.
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2.8. Deleterious Effects of Neutrophil Depletion

Neutropenic mice were found to have a larger quantity of large-sized Candida auris
abscesses, suggesting an inability of the adaptive immune response to clear fungal infections
in the absence of neutrophils [120], which may even cause death in the host [97]. However, it
has been proposed that neutrophils are not that crucial for other infective pathologies [96]. A
recent study found that early neutrophil depletion following an inflammatory injury could
contribute to pain becoming chronic [121]. This suggests that an early neutrophilic response
plays a protective role in preventing pain chronicity. Many authors have demonstrated
that neutrophils are crucial cells in tissue regeneration processes, implying that inhibiting
them could hinder tissue repair [122]. However, this notion is controversial, as other
authors suggest the opposite—that neutrophils may cause further tissue damage, leading
to delayed healing and excessive scar formation [123].

2.9. Disadvantages of Using Fucoidan for Neutrophil Depletion

The lack of specificity of fucoidan towards neutrophils in experimental setups might
introduce ambiguity in delineating the pronociceptive role of neutrophils in pain, con-
sidering the potential involvement of other inflammatory cell types. Nevertheless, this
circumstance could present a favorable prospect for fucoidan as a therapeutic intervention,
as its anti-inflammatory and analgesic properties might be enhanced, given the reported
pronociceptive nature of other inflammatory cell populations. Another disadvantage is that
the composition and structure of fucoidan is dependent on seaweed species, geographic
location, harvesting season, anatomical regions, and extraction procedures [41,42,45–51].
This structural variability (with molecular weight ranging from 10,000 to 100,000 Da) may
generate variability in the bioactivity of fucoidan [42,45,124,125]. In addition, it is well
known that fucoidan produces anticoagulant effects [126,127], which my interfere in its
analgesic efficacy. In this line, some related adverse events, such as bleeding, may be
associated with the fucoidan treatment.

3. Methods
3.1. Protocol and Registration

The methodology used in this review was specified in advance and documented in a
protocol registered on Prospective Register of Systematic Reviews (PROSPERO) under the
registration ID CRD42024534839. This review was performed in accordance with the latest
version (2020) of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines on systematic reviews and meta-analyses [128].

3.2. PICO Research Question

(P) Animal models of pain.
(I) Pretreatment with fucoidan, also known as fucoidin.
(C) Control group treated with vehicle.
(O) Changes in pain-related parameters.
(S) Original preclinical studies.

3.3. Information Sources and Search Strategy

We performed a comprehensive systematic search in PubMed without restrictions for
the language or date. The search was updated on 25 May 2024. The search strategy was as
follows: (fucoidan OR fucoidin) AND ((pain OR hyperalgesia OR analgesia OR pain* OR
nocicept* OR allodynia OR hyperalges*) OR (neutrophil* OR polymorphonuclear OR Ly6G
OR GR-1)).

3.4. Inclusion and Exclusion Criteria

Inclusion criteria: original preclinical studies using animal models of pain in which the
effect of the pretreatment (before injury) with fucoidan regarding pain outcomes was assessed.
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Exclusion criteria: non-pain model, absence of pain measurement, review articles,
human studies, in vitro or ex vivo experiments, studies including no relevant information
or missing information, and violations of any of the above inclusion criteria.

3.5. Article Selection

Titles and abstracts of studies were retrieved using the search strategy by two review
authors (MAH and MAT) in a blind manner to identify studies that potentially met the
inclusion criteria. The full texts of these potentially eligible studies were retrieved and
independently assessed for eligibility by the same team members (MAH and MAT). The
selection process was carried out using the software Rayyan. Any disagreement between
the authors was resolved through a discussion with a third reviewer (FRN).

3.6. Data Extraction

MAH and MAT independently extracted data from each included article by using
a standardized, pre-piloted form. Discrepancies were identified and resolved through
discussion (with a third author (FRN). Numerical data were extracted from tables, text, or
figures. When they were not reported, data were extracted from graphs using digital ruler
software. In case data were not reported or unclear, we contacted authors by e-mail. In case
an outcome was measured at multiple time points, data from the time point where efficacy
was highest were included. Extracted information included study setting; study population
(animal model of pain used, including species and strains) and baseline characteristics;
details of the fucoidan intervention, the timing, the dose used, and control conditions;
study methodology; pain assessment test used; and main results of the intervention.

3.7. Meta-Analysis and Statistics

Meta-analyses were conducted using the metafor package in R, version 4.1.2 [129,130].
Since different pain outcomes were measured with different scales in the included studies,
outcome data were normalized using the normalized mean difference (NMD), which is a
useful approach when conducing a meta-analysis of preclinical data because it relates the
magnitude of effect in the treatment group to a group of healthy animals [131]. Then, a
95% confidence interval (CI95%) was computed. The inverse variance statistical analysis
method was used to summarize the effect sizes of the treatment, and the combined results
were analyzed using the random effect model, which accounted for the variance within and
between studies [132]. Effects were considered statistically significant when the p value was
less than 0.05. For assessing heterogeneity, the Cochrane’s Q test (with p < 0.10 indicating
asymmetry) and the Higgins–Thompson I2 values (null or low, 0–30%; medium, 30–50%;
moderate, 50–75%; and high heterogeneity, >75%) were used to assess the heterogeneity
within the pooled studies [133].

4. Concluding Remarks

Fucoidan is an interesting preclinical tool for depleting neutrophils, which may be
useful to study their role in pain and other diseases. Moreover, in preclinical studies,
preventive treatment with fucoidan, which substantially reduced neutrophil infiltration,
was very effective for reversing acute pain. Furthermore, the therapeutic treatment with
fucoidan also showed a robust analgesic effect in models of neuropathic, visceral, and
joint pain. These positive preclinical results led to the launch of small clinical trials which
reported some positive results, mainly for joint pain associated with osteoarthritis, with a
good safety profile. Based on our data, fucoidan may be an interesting analgesic strategy
for some pair-related conditions. However, randomized placebo-controlled trials involving
more patients should be performed to confirm these promising findings.
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