Identification of Axinellamines A and B as Anti-Tubercular Agents
Abstract
:1. Introduction
2. Results
2.1. HTS of the NatureBank Fractions and Bioassay-Guided Fractionation
2.2. Identification of Anti-Tubercular Marine Natural Products from the Prioritised Haplosclerida Sponge
2.3. In Vitro Anti-Tubercular Efficacy of 1 and 2
3. Discussion
4. Materials and Methods
4.1. General Chemistry Experimental Procedures
4.2. Marine Sponge Material: Extraction, Fractionation, and Compound Characterisation
4.3. Bacterial Strains and Culture Conditions
4.4. High-Throughput Screening of the NatureBank Fraction Library
4.5. Bioassays Used to Identify Active HPLC Fractions following Large-Scale Extraction and Isolation Studies on 10 Prioritised Hit Biota Extracts and Chromatographic Fractions
4.6. Cytotoxic Assay
4.7. Intracellular Survival Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Nahid, P.; Dorman, S.E.; Alipanah, N.; Barry, P.M.; Brozek, J.L.; Cattamanchi, A.; Chaisson, L.H.; Chaisson, R.E.; Daley, C.L.; Grzemska, M.; et al. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin. Infect. Dis. 2016, 63, 853–867. [Google Scholar] [CrossRef] [PubMed]
- Nahid, P.; Mase, S.R.; Migliori, G.B.; Sotgiu, G.; Bothamley, G.H.; Brozek, J.L.; Cattamanchi, A.; Cegielski, J.P.; Chen, L.; Daley, C.L.; et al. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2019, 200, e93–e142. [Google Scholar] [CrossRef] [PubMed]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Trifonov, L.; Yadav, V.D.; Barry, C.E., 3rd; Boshoff, H.I. Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets. Front. Cell Infect. Microbiol. 2021, 11, 611304. [Google Scholar] [CrossRef]
- Quan, D.; Nagalingam, G.; Payne, R.; Triccas, J.A. New tuberculosis drug leads from naturally occurring compounds. Int. J. Infect. Dis. 2017, 56, 212–220. [Google Scholar] [CrossRef]
- Cazzaniga, G.; Mori, M.; Chiarelli, L.R.; Gelain, A.; Meneghetti, F.; Villa, S. Natural products against key Mycobacterium tuberculosis enzymatic targets: Emerging opportunities for drug discovery. Eur. J. Med. Chem. 2021, 224, 113732. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Liu, X.; Zhang, L.; Quinn, R.J.; Feng, Y. Anti-mycobacterial natural products and mechanisms of action. Nat. Prod. Rep. 2022, 39, 77–89. [Google Scholar] [CrossRef]
- Hou, X.-M.; Wang, C.-Y.; Gerwick, W.H.; Shao, C.-L. Marine natural products as potential anti-tubercular agents. Eur. J. Med. Chem. 2019, 165, 273–292. [Google Scholar] [CrossRef]
- Camp, D.; Davis, R.A.; Campitelli, M.; Ebdon, J.; Quinn, R.J. Drug-like properties: Guiding principles for the design of natural product libraries. J. Nat. Prod. 2012, 75, 72–81. [Google Scholar] [CrossRef]
- Griffith Institute for Drug Discovery. NatureBank. Available online: https://www.griffith.edu.au/institute-drug-discovery/unique-resources/naturebank (accessed on 4 December 2023).
- Urban, S.; de Almeida Leone, P.; Carroll, A.R.; Fechner, G.A.; Smith, J.; Hooper, J.N.; Quinn, R.J. Axinellamines A-D, Novel Imidazo-Azolo-Imidazole Alkaloids from the Australian Marine Sponge Axinella sp. J. Org. Chem. 1999, 64, 731–735. [Google Scholar] [CrossRef]
- Hayes, S.; Taki, A.C.; Lum, K.Y.; Byrne, J.J.; White, J.M.; Ekins, M.G.; Gasser, R.B.; Davis, R.A. Identification of Anthelmintic Bishomoscalarane Sesterterpenes from the Australian Marine Sponge Phyllospongia bergquistae and Structure Revision of Phyllolactones A–D. J. Nat. Prod. 2022, 85, 1723–1729. [Google Scholar] [CrossRef]
- Levrier, C.; Sadowski, M.C.; Nelson, C.C.; Davis, R.A. Cytotoxic C20 Diterpenoid Alkaloids from the Australian Endemic Rainforest Plant Anopterus macleayanus. J. Nat. Prod. 2015, 78, 2908–2916. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, D.P.; Yamaguchi, J.; Young, I.S.; Seiple, I.B.; Baran, P.S. Total Synthesis of (±)-Axinellamines A and B. Angew. Chem. Int. Ed. 2008, 47, 3581–3583. [Google Scholar] [CrossRef]
- Rodriguez, R.A.; Barrios Steed, D.; Kawamata, Y.; Su, S.; Smith, P.A.; Steed, T.C.; Romesberg, F.E.; Baran, P.S. Axinellamines as Broad-Spectrum Antibacterial Agents: Scalable Synthesis and Biology. J. Am. Chem. Soc. 2014, 136, 15403–15413. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, X.; Ma, Y.; Chen, C. Asymmetric Synthesis of Axinellamines A and B. Angew. Chem. Int. Ed. 2016, 55, 4763–4766. [Google Scholar] [CrossRef]
- Zhang, H.; Khalil, Z.; Conte, M.M.; Plisson, F.; Capon, R.J. A search for kinase inhibitors and antibacterial agents: Bromopyrrolo-2-aminoimidazoles from a deep-water Great Australian Bight sponge, Axinella sp. Tetrahedron Lett. 2012, 53, 3784–3787. [Google Scholar] [CrossRef]
- Ang, C.W.; Tan, L.; Sykes, M.L.; AbuGharbiyeh, N.; Debnath, A.; Reid, J.C.; West, N.P.; Avery, V.M.; Cooper, M.A.; Blaskovich, M.A.T. Antitubercular and Antiparasitic 2-Nitroimidazopyrazinones with Improved Potency and Solubility. J. Med. Chem. 2020, 63, 15726–15751. [Google Scholar] [CrossRef] [PubMed]
- Kandale, A.; Patel, K.; Hussein, W.M.; Wun, S.J.; Zheng, S.; Tan, L.; West, N.P.; Schenk, G.; Guddat, L.W.; McGeary, R.P. Analogues of the Herbicide, N-Hydroxy-N-isopropyloxamate, Inhibit Mycobacterium tuberculosis Ketol-Acid Reductoisomerase and Their Prodrugs Are Promising Anti-TB Drug Leads. J. Med. Chem. 2021, 64, 1670–1684. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.; Miller, C.H.; Bellows, D.S.; O’Toole, R. Evaluation of the Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium tuberculosis inhibitors. Tuberculosis 2010, 90, 333–337. [Google Scholar] [CrossRef]
- Maarisit, W.; Abdjul, D.B.; Yamazaki, H.; Kato, H.; Rotinsulu, H.; Wewengkang, D.S.; Sumilat, D.A.; Kapojos, M.M.; Ukai, K.; Namikoshi, M. Anti-mycobacterial alkaloids, cyclic 3-alkyl pyridinium dimers, from the Indonesian marine sponge Haliclona sp. Bioorg. Med. Chem. Lett. 2017, 27, 3503–3506. [Google Scholar] [CrossRef]
- De Oliveira, J.H.H.L.; Seleghim, M.H.R.; Timm, C.; Grube, A.; Köck, M.; Nascimento, G.G.F.; Martins, A.C.T.; Silva, E.G.O.; De Souza, A.O.; Minarini, P.R.R.; et al. Antimicrobial and Antimycobacterial Activity of Cyclostellettamine Alkaloids from Sponge Pachychalina sp. Mar. Drugs 2006, 4, 1–8. [Google Scholar] [CrossRef]
- Forte, B.; Malgesini, B.; Piutti, C.; Quartieri, F.; Scolaro, A.; Papeo, G. A submarine journey: The pyrrole-imidazole alkaloids. Mar. Drugs 2009, 7, 705–753. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.I.; Oluoch, P.O.; Ruecker, N.; Proulx, M.K.; Soni, V.; Murphy, K.C.; Papavinasasundaram, K.; Reames, C.J.; Trujillo, C.; Zaveri, A.; et al. Chemical-genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proc. Natl. Acad. Sci. USA 2022, 119, e2201632119. [Google Scholar] [CrossRef] [PubMed]
Phylum | Class | Order | Family | Genus | Species |
---|---|---|---|---|---|
Cnidaria | Anthozoa | Actinaria | |||
Porifera | Demospongiae | Verongida | Pseudoceratinidae | Pseudoceratina | |
Porifera | Demospongiae | Haplosclerida | |||
Chordata | Ascidiacea | Aplousobranchia | Didemnidae | Lissoclinum | badium |
Porifera | Demospongiae | ||||
Porifera | Demospongiae | Halichondrida | Axinellidae | Homaxinella | |
Porifera | Demospongiae | Halichondrida | Axinellidae | Cymbastela | |
Porifera | Demospongiae | Haplosclerida | Callyspongiidae | Callyspongia | |
Bryozoa | |||||
Porifera | Demospongiae | Poecilosclerida | Microcionidae | Clathria | transiens |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strong, E.J.; Tan, L.; Hayes, S.; Whyte, H.; Davis, R.A.; West, N.P. Identification of Axinellamines A and B as Anti-Tubercular Agents. Mar. Drugs 2024, 22, 298. https://doi.org/10.3390/md22070298
Strong EJ, Tan L, Hayes S, Whyte H, Davis RA, West NP. Identification of Axinellamines A and B as Anti-Tubercular Agents. Marine Drugs. 2024; 22(7):298. https://doi.org/10.3390/md22070298
Chicago/Turabian StyleStrong, Emily J., Lendl Tan, Sasha Hayes, Hayden Whyte, Rohan A. Davis, and Nicholas P. West. 2024. "Identification of Axinellamines A and B as Anti-Tubercular Agents" Marine Drugs 22, no. 7: 298. https://doi.org/10.3390/md22070298
APA StyleStrong, E. J., Tan, L., Hayes, S., Whyte, H., Davis, R. A., & West, N. P. (2024). Identification of Axinellamines A and B as Anti-Tubercular Agents. Marine Drugs, 22(7), 298. https://doi.org/10.3390/md22070298