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Abstract: Omega-3 fatty acids are essential fatty acids that are not synthesised by the human body
and have been linked with the prevention of chronic illnesses such as cardiovascular and neurode-
generative diseases. However, the current dietary habits of the majority of the population include
lower omega-3 content compared to omega-6, which does not promote good health. To overcome
this, pharmaceutical and nutraceutical companies aim to produce omega-3-fortified foods. For this
purpose, various approaches have been employed to obtain omega-3 concentrates from sources such
as fish and algal oil with higher amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA). Among these techniques, enzymatic enrichment using lipase enzymes has gained tremen-
dous interest as it is low in capital cost and simple in operation. Microorganism-derived lipases are
preferred as they are easily produced due to their higher growth rate, and they hold the ability to be
manipulated using genetic modification. This review aims to highlight the recent studies that have
been carried out using marine lipases for the enrichment of omega-3, to provide insight into future
directions. Overall, the covalent bond-based lipase immobilization to various support materials
appears most promising; however, greener and less expensive options need to be strengthened.
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1. Introduction

Marine environments cover the majority (70%) of the total Earth’s biosphere, rep-
resenting an exhaustive and wide range of diverse groups of flora and fauna that have
developed a unique way to adapt to extreme environmental conditions, producing novel
metabolites [1]. As such, marine ecosystems are considered a renewable resource for var-
ious commercially valuable components such as enzymes, vitamins, antibiotics, drugs,
bio-emulsifiers, biosurfactants, and biofuels, which have significant applications in biotech-
nology and biomedical industries [2–4]. Similarly, the biomolecules, carotenoids, lipids,
saponins, phenolics, and polysaccharides obtained from marine sources also have great
biological value in functional foods and nutraceuticals [5]. In particular, over the past
few decades, marine microorganisms have attracted attention towards unexplored marine
enzymes and their application in food processing as they are more stable compared to those
from animal and plant origins [2,5]. Various studies have identified the special function
of lipase enzymes from marine fungi, bacteria, actinomycetes and other microorganisms,
which have been utilised in different industries such as leather, textile, pharmaceuticals,
food, biodiesel, agrochemical, and cosmetic industries due to their properties and ability
to catalyse various biotechnological reactions, and the diversity of microbial, animal, and
plant genes that encode lipases [6–10]. More recently, the use of lipases has proven effective
in concentrating polyunsaturated fatty acids (PUFAs) [11], which is significant as the global
demand for essential omega-3 was valued at USD 7.5 billion in 2024 and is expected to
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increase to USD 14.1 billion in 2029 [12] as a result of increased health awareness and
associated health benefits.

Omega-3 and omega-6 fatty acids are the two major classes of PUFAs, which are
named based on the position of the first double bond from the methylated end of the fatty
acid chain [13,14]. Omega-3 PUFAs are considered essential fatty acids as they cannot
be synthesised in the human body or that of animals [14,15] and must be consumed [16].
Recently, the change in diets consisting of increased fast-food intake has overturned the
balance and dramatically increased saturated fatty acid consumption as compared to
PUFAs. The low intake of essential dietary PUFAs is thought to be one of the main reasons
for the increased risk of cardiovascular diseases, Alzheimer’s, and depression [17,18].
Omega-3 PUFAs have a vital role in maintaining the overall health and wellbeing of
the human body and in reducing the risk of diseases [19]. Among the essential fatty
acids, alpha-linolenic acid (ALA, 18:3, n-3), linoleic acid (18:2, n-6), and Docosahexaenoic
acid (DHA, 22:6, n-3) are very important polyunsaturated fatty acids for maintaining
functions in mammals [20]. Research performed using alpha-linolenic acid showed that
an increased dietary intake of ALA assisted in reducing blood pressure [21]. In addition,
an epidemiological study carried out in 2004 suggested that fish oil supplemented with
omega-3 (DHA and EPA) demonstrated potential in reducing the risk of heart attacks
and cardiovascular-related deaths [22]. Omega-3 supplementation in diets has also been
investigated for minimizing the possibility and treatment of breast cancer in women from
different countries [23]. Furthermore, the various health benefits of dietary intake of omega-
3 fatty acids from different sources (plants, fish, and microbial)—relating to cardiovascular
diseases, hormonal balance, inflammatory responses in different developmental stages of
life, and neurocognitive and visual development in the early stages—have been discussed
by Calder [24]. As such, the regulation of incorporating DHA in infant foods was made
compulsory in almost every country of the world [25,26].

Furthermore, the health benefits associated with omega-3 PUFAs, and the low quanti-
ties available in diets consumed today, have increased the demand for functional foods’.
This has elevated the trend of food fortification, adding small quantities of omega-3 fatty
acids in dairy, baked goods, dressings, spreads, meat products, and chocolates [27]. As
such, nutraceutical and food industries have become more interested in developing omega-
3-enriched foods, which require omega-3 PUFAs in a concentrated form. There are various
strategies such as molecular distillation, urea complexation, supercritical fluid extraction,
and enzymatic enrichment employed to concentrate omega-3 PUFAs [28–31].

Among these, enzymatic enrichment is a highly studied alternative as it requires less
energy and can be performed at lower temperatures, which prevents omega-3 oxidation
and degradation [28]. Marine lipases are increasingly used for this purpose as they possess
fatty acid selectivity that allows them to hydrolyse saturated and monounsaturated fatty
acids [32]. However, the major drawback of using free enzymes is the loss of enzymatic
activity and stability due to denaturation and its limited reuse. Marine microorganisms
have been considered recently as preferred sources for lipase extraction due to their specific
characteristics; however, further studies are required to identify if lipases from marine
microorganisms contain any specific characteristics such as improved stability and ease of
large-scale production [8]. For enhancing the stability and activity of enzymes, immobiliza-
tion techniques can be carried out [33–35]. The aim of this review is to provide inference
on the recent advancements made in utilising marine lipases as an effective means for
enriching omega-3 PUFAs, and future research directions.

2. Lipases and Their Sources

Lipases are basically triacylglycerol ester hydrolases that have the ability to hydrolyse
fats and oils [36]. Lipases cleave ester bonds present in triglycerides to form monoglycerides
and free fatty acids [37], as seen in Figure 1. Lipases can also catalyse other types of reactions
such as esterification, transesterification, interesterification, and amino lysis [38]. Their
molecular size ranges between 20 and 60 kDa and comprises 270 to 641 amino acids [38].
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Lipases possess a unique property of interfacial activation, which allows the catalysis of
lipids at the lipid–water interface. Lipases contain a helical oligopeptide unit referred to
as Lid, which assists in activating the active site of the enzyme under specific conditions
such as in the presence of micellar substrates [39]. Moreover, the specificity of lipases also
depends on the size and hydrophobicity of the catalytic beads. The active site comprises a
catalytic triad of three amino acids: serine, histidine, and aspartate [40]. In the active site,
there are four substrate-binding pockets for triglycerides that can accommodate fatty acids
at the sn-1, sn-2, and sn-3 positions [38]. The selectivity of the lipases can be enhanced by
using acylating agents, organic solvents, and additives, such as ethanol, and by changing
the operating conditions such as temperature [41]. Lipases can be obtained from various
sources such as plants, animals, and microorganisms.
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2.1. Plant Lipases

Plant lipases are mostly present in seeds like sunflower, castor bean, almond, black
cumin, and sesame [42]; moreover, fruit waste from orange, mango, papaya, and palm are
also reported as good sources for lipase [43]. Plant lipases are used for various pharma-
ceutical purposes, such as Carica papaya latex, which is used in the production of canola
phylosterol oleate esters that can be further utilised as cholesterol-lowering agents to reduce
the risk of coronary disease [44]. However, there is a limitation of lower production of
enzymes from plants, which makes purification procedures complicated and prone to
activity loss [43].

2.2. Animal Lipases

Animal-derived lipase sources include mammals, insects, and fish. Animals like pigs,
cattle, hogs, and sheep are used to extract pancreatic and progastric lipases [45]. Animal-
sourced lipases such as pancreatic lipase have been extensively used for catalysing primary
alcohol esters hydrolysis [46]. The lipases from animals were also used in the dairy industry
for developing flavour in cheese and other products. For this reason, lipases from porcine
pancreas have been used to induce flavour in cheddar cheese [47]. However, due to its
low stability and complex recovery procedures, its use at a commercial level has been
limited [48,49].

2.3. Marine Lipases from Various Microorganisms

Microorganism-based lipases from bacteria and fungi (Table 1) have wider applications
in industry and are the most studied source of lipases due to their variety of catalytic
specificity, simple genetic modifications, high growth rate, and the ability to grow in
laboratory-controlled conditions [50]. The first microbial lipases were identified in bacteria
Bacillus prodigiosus, B.pyococyaneus, and B.fluoroscens in 1901 [51]. Later on, various fungi
and yeast were also found to synthesise lipases [52]. Microorganism-based lipases hold
great commercial value due to their better stability, higher selectivity, and broad substrate
specificity [53].
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Table 1. Lipase-producing microorganisms and their lipolytic activity.

Organism Name Lipolytic Activity
(Unit per Gram) References

Yeast

Candida intermedia 42.0 a [54–56]

Pichia guilliermondi 43.6 a [54,57]

Candida parapsilosis 10.4 a [54,56,58]

Lodderomyces elongisporus 16.6 a [54,59,60]

Candida rugosa 26.9 a [54,61,62]

Candida antartica 18.52 c [63]

Yarrowia lipolytica 5.1 a [54,64,65]

Rhhodotorula mucilagionosa 4.0 a [54]

Bacteria

Marinobacter hydrocarbonoclasticus 4.15 b [66]

Oceanobacillus caeni 58.84 b [67]

Bacillus sonorensis 14.17 b [68,69]

Bacillus cereus 55.17 b [70,71]

Halomonas aquamarina 4.20 b [66]

Microalgae
Nannochloropsis oceanica 18.3 d unit/L [72]

Botryococcus sudeticus 36.6 b [73]
a: units per gram of cell dry weight, b: units per millilitre, c: unit per milligram, d: units per litre.

2.3.1. Microbial Lipases

Marine microbes have recently achieved increasing attention as a source of bioactive
metabolites that have various biomedical potential [74]. Marine microbes have the ability
to adapt to various extreme environmental conditions and possess high genetic plasticity
that can positively influence compound and secondary metabolite production [75]. Various
marine bacteria and yeasts are used to extract cytotoxic compounds, enzyme inhibitors,
and anti-inflammatory agents which have broad clinical importance [76].

The marine yeasts, Candida antartica and Candida rugosa, are the most widely used
sources of lipases and are categorised as GRAS (generally regarded as safe). The GRAS
status makes these lipases more suitable for various applications in food and clinical
industries, such as flavouring agents and for the production of antioxidants [77]. Nine
yeast strains—Candida intermedia YA01a, Pichia guilliermondii N12c, Candida parapsilosis
3eA2, Lodderomyces elongisporus YF12c, Candida quercitrusa JHSb, Candia rugosa wl8, Yarrowia
lipolytica N9a, Rhodotorula mucilaginosa L10-2, and Aureobasidium pullulans HN2.3—were
identified to produce stable lipases in the pH range of 6.0 to 8.5 and temperature range of
35–40 ◦C by Wang et al. [54]. C. rugosa lipases are sold by companies such as Sigma, Roche,
and Amano in immobilized and lyophilic powder forms [78]. Various studies are carried out
to improve the thermostability and activity of yeast-based lipases through immobilization,
medium engineering, and protein engineering approaches [79,80]. The unique property
of these lipases is their broad specificity towards long-chain triacylglycerols as they can
hydrolyse shorter fatty acids at faster rates; therefore, they can be used for the enrichment
of long-chain fatty acids [81].

Marine microorganisms are reported to have the ability to produce lipases with a
varying range of lipolytic activity (Table 1). The marine bacteria, Oceanobacillus caeni,
isolated from the east coast of India, has the unique property of being stable at a wide
range of pH from 3 to 11 and temperatures of 10 to 70 ◦C [67]. Moreover, lipases from
Bacillus sonorensis were studied for their efficacy as a detergent additive for the efficient
removal of corn oil stains, where it was found that it was stable at a temperature ranging
from 23 to 60 ◦C [68]. Furthermore, lipase from Bacillus pumilus B106, associated with the
South China Sea Sponge Halichondria rugosa, has the appealing feature of tolerance towards
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high salinity, which is considered an important factor in producing biodiesel derived from
marine organisms [82]. These studies suggest increased interest in lipase-producing marine
bacteria in various industrial applications.

2.3.2. Microalgae Lipases

There are various other studies that provide evidence of marine microalgae as lipase
producers. A genomic study performed on the microalgae Chlamydomonas reinhardtii and
Chlorella vulgaris revealed that they have lipase-encoding genes. In the case of C. reinhardtii,
the galactoglycerolipid lipase-encoding gene CrLIP1 was identified using E. coli as a pro-
tein expression system and was obtained in purified form [83]. While Chlorella vulgaris
demonstrated a total of 14 lipase-encoding genes, characterised using sequence homologies
and bioinformatics tools, further attempts to extract and purify the lipases were not per-
formed [84]. Moreover, Savvidou et al. [72] confirmed the presence of thermostable lipase
enzymes in Nannochloropsis oceanica for the first time and were successful in extracting the
lipases from the cell surface and cell debris fraction [72]. Similarly, extracellular lipases pro-
duced from Botryococcus sudeticus, a phototrophic microalgae, were purified and reported
to exhibit various properties such as resistance towards a broad range of temperatures, pH
tolerance, and showed variation in specificities for different substrates [73]. However, the
presence of easily available commercial lipases on the market has limited investigations
into microalgae-based lipase sources [84].

3. Lipase Commercial Market and Applications
3.1. The Lipase Commercial Market

After protease and carbohydrates, lipases make up the third-largest group of enzymes,
based on their market value [85–87]. In 2019, the global market size for microbial lipases
was valued at USD 349.8 million and is expected to maintain a compound annual growth
rate (CARG) of 5.2%, reaching USD 428.6 million by 2025 [88]. This demonstrates the
increased demand for lipases globally, and according to a review performed in 2021, the
animal- and microbial-based lipase segments in 2020 held the largest market shares of
26.6% and 61.64%, respectively [89]. As of 2021, North America was the largest market
producer of lipases, making up 38% of the total shares worth USD 263 million, followed by
Europe, which accounted for 31% of global market share [90].

3.2. Marine Lipase Applications

The marine ecosystem is one of the major sources of biodiversity, especially due to the
harsh conditions underwater, and various microorganisms have unique and sophisticated
genetics and characteristics with the ability to produce bioactive compounds [91]. Recently,
marine fungi have gained increased attention for lipase production, as they produce extra-
cellular lipases, which have reduced fat and oil contents by 92% in oil-polluted effluent [86].
In 2014, alkaline-stable lipase enzymes were used in milk flavour production [92]. They
are also used in the acceleration of cheese ripening, to modify flavours in food through
the synthesis of ester short-chain fatty acids and alcohols [7,93]. They are used in food
industries to process food such as fruits, meat, beer, and milk products, and to improve
the flavour of dairy products [94]. Similarly, lipases are used in the textile industry, to
help in the removal of lubricants to provide a fabric with high absorbency for improved
dyeing [95]. They are also used for the production of paper and pulp by hydrolysing the
wood triglycerides or waxes [93]. Lipases have their importance in biofuel production by
transesterification of fats and vegetable oils with short alcohol chains [85]. Lipases are envi-
ronmentally friendly as they can be used in detergents that allow lower wash temperatures
with less toxic residues, fewer chemicals in the detergents, no threat to aquatic life, and no
adverse effects on wastewater [96]. In addition, lipase solvents or detergents remove fats
and greases from leather, which makes it soft and easy to use for further processing [97].
Furthermore, lipases also play a role in the pharmaceutical industry as they have the ability
to prevent epimerization, rearrangement, racemization, and isomerization [96,98]. They
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also have several applications in the medical industry and have been utilised for their
therapeutic and diagnostic uses in digestive tract disorder, pancreatic damage, and as a
measuring tool for serum lipid profiles [97].

4. Omega-3 Enrichment Techniques

There are various methods used for concentrating omega-3 PUFAs from fish and algal
oils. Most industries use fish oils like sardines to obtain omega-3 PUFA concentrates. Before
concentrating omega-3 PUFAs at an industrial level, fat-soluble contaminants are removed
by either adsorption processes or chromatographic methods [99]. This is then followed by
the removal of the glycerol backbone in the presence of an alkaline catalyst to convert it
into ethyl esters or free fatty acids. After removing the glycerol backbone, the enrichment
process can be carried out using urea precipitation, supercritical fluid extraction, molecular
distillation, and enzymatic enrichment, as seen in Table 2.

Table 2. Omega-3 PUFA-enrichment techniques.

Enrichment Method Principle Omega-3 Enrichment
Content Limitations Ref.

Urea precipitation Complex formation of
urea with MUFAs 45–60% Use of flammable solvents,

urea and FA complex disposal [99]

Supercritical fluid
extraction

Selective separation
ability of SC-CO2

60% High cost [100]

Molecular
distillation

Differences in
molecular weight and

boiling point
60% High temperature required [101]

Enzymatic Selective hydrolysis 70% Loss of stability and activity of
enzyme [102]

MUFA: monounsaturated fatty acids; SC-CO2: supercritical carbon dioxide; FA: fatty acid; Ref.: References.

4.1. Urea Precipitation

Urea precipitation is a method that is based on the property of urea crystals to form
complexes with straight-chain and monounsaturated fatty acids (MUFAs). To achieve
this, urea is first dissolved into an organic solvent such as methanol or ethanol, which is
allowed to cool down in the presence of decontaminated oil. While cooling, the formation
of urea crystals occurs, which in turn traps the saturated and monounsaturated fatty acids
allowing for the separation of PUFAs. Urea can be filtered to obtain a concentrated form of
PUFAs [103]. This process can be helpful in obtaining omega-3 PUFA concentrates with
45–60% EPA (Eicosapetanoic acid) plus DHA (Docosahexanoic caid) content; however,
the major bottleneck of this process is dealing with flammable solvents in larger volumes
and the disposal of urea saturated with fatty acids, which make it a highly expensive
process [99].

4.2. Supercritical Fluid Extraction

This method is primarily known for its ability to selectively separate Methyl stearate
(C18), Methyl eicosapentanoate (C20), and Methyl docosahexanoate (C22) fatty acids using
the supercritical form of carbon dioxide (SC-CO2), which can easily solubilize fatty acids
with low molecular weight [104]. The additional and most important advantage of this
technique is that SC-CO2 is non-toxic, non-flammable, and a clean solvent alternative [105].
DHA with high purity can be enriched at a ratio of 60% using this method [106]; however,
carbon dioxide needs to be compressed to a pressure of more than 73 bar and temperatures
of 32 ◦C to reach the supercritical state [100]. Moreover, SC-CO2 is pumped through a
vertical column from the bottom to the top under high pressure, along with the fish oil
ethyl ester continuously in the counter-current direction of the CO2. Thus, the major
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drawback of this technique is the high capital cost associated with the pressure-generating
equipment [99].

4.3. Molecular Distillation

Molecular distillation is the most commonly used technique in industry nowadays to
obtain concentrated omega-3 PUFAs. This method is based on the principle of differences
in molecular weight and boiling point of the different fatty acids under low pressure [32].
At lower pressures and higher temperatures ranging from 140 to 170 ◦C, EPA and DHA
content can be enriched by up to 60%, as compared to the original content of 30% in fish
oil; however, the high temperatures used in this technique lead to the loss of fatty acid
saturation and causes hydrolysis, isomerization, and thermal degradation of omega-3
PUFAs at certain levels [101].

4.4. Enzymatic Enrichment Method

The utilisation of enzymes at an industrial level is a recent and more advantageous
option compared to other alternatives discussed above due to its simplicity in processing
and low capital requirements; moreover, it eliminates the need for using organic solvents
and high temperatures that can deteriorate the quality of omega-3 PUFAs. These positive
aspects of enzymatic enrichment have promoted the interest of researchers to make this
technology more efficient by developing different strategies. The use of enzymes such as
protease, exopeptidase, endopeptidase, and lipase has shown better enrichment of omega-3
PUFAs [102]. Among these, lipases can catalyse hydrolysis and esterification reactions
with high selectivity towards omega-3 PUFAs. The selectivity of the lipases is due to the
greater number of double bonds present in EPA and DHA, which cause steric hindernce
that acts as a barrier for the enzyme denying the hydrolyses of these fatty acids [107]. Thus,
using lipase-based hydrolysis, free-form fatty acids, monoacylglycerols, diacyglycerols,
and triacylglycerols are formed, which can be further separated by solvent extraction
method [108]. This property of lipase enzymes makes them a highly suitable alternative
for omega-3 PUFA enrichment through a two-step enzymatic method; however, the major
drawback is the enzymes’ nature of getting easily denatured and their limited reusability. To
mitigate these problems, intensive research has been carried out by researchers to develop
different immobilization strategies to improve the stability, activity, and reusability of lipase
enzymes [109] (Section 5).

5. Marine Lipases in Enriching Omega-3

Lipases have the ability to selectively enrich EPA and DHA content as they have a
partial selective ability towards chain length, position of the fatty acids, and cis-double
bonds [110]. Conventionally, ethanol-based transesterification was used at an industrial
level to produce concentrated PUFA esters [111]; however, this type of chemical transes-
terification can lead to deteriorating effects on the oxidative stability of oil [112]. Recently,
various studies have carried out the enrichment of EPA and DHA from different oil sources,
with the majority being fish oil using lipases, see Table 3.

In a study conducted by Yang et al. [113], the commercially available lipases AY
“Amano” 400SD (free lipase from Candida cylindracea, 400 U/mg), AY “Amano” 30SD
(free lipase from Candida cylindracea, 30 U/mg), AY “Amano” S (free lipase from Candida
cylindracea, 30 U/mg), DF “Amano” 15 (free lipase from Rhizopus oryzea, 150 U/mg), G
“Amano” 50 (free lipase from Aspergillus oryzae, 50 U/mg), and nonspecific Lipozyme 435
(immobilized lipase from Candida antarctica, 10 U/mg, particle form) were tested for their
omega-3 enrichment specificity using tuna oil. It was concluded that AY “Amano” 400SD
possesses the most effective selectivity to hydrolyse saturated fatty acids and monounsatu-
rated fatty acids by increasing the omega-3 PUFA content from 34.3% to 57.7%, while the
other lipases accounted for PUFA content increases from 34.3% to less than 50% [113].

Lipases from marine natural sources are also extensively studied for their enrichment
ability. For instance, in the study of Baloch et al. [114], lipases were produced from three
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different yeast strains C. rugosa TISTR 5627, Y. lipolytica TISTR 5212, and P. guilliermondii
TISTR 5142 and a comparison of their ability to concentrate EPA and DHA was made; it
was reported that C. rugosa lipase had better enrichment ability compared to the lipases
from the other two strains [114].

Table 3. Lipases derived from marine microorganisms and their PUFA-enrichment ability using
different oil substrates.

Lipase Source Lipase Type Oil Substrate PUFA Enrichment
Content (Initial) Reference

Candida cylindracea

AY “Amano” 400SD

Tuna oil

57.7% (34.3%)

[113]

AY “Amano” 30SD Less than 50% (34.3%)

AY “Amano” S Less than 50% (34.3%)

Rhizopus oryzea DF “Amano” 15 Less than 50% (34.3%)

Aspergillus oryzae G “Amano” 50 Less than 50% (34.3%)

Candida antarctica Lipozyme 435 Less than 50% (34.3%)

T. lanuginosus/A. oryzae Lipozyme TL 100 L

Nannochloropsis species

70 % (48.5%)

[11]
T. lanuginosus/

F. oxysporum/A. oryzae Lecitase® Ultra 53.9% (48.5%)

R. oryzae Lipase D 55.9% (48.5%)

Candida rugosa Extracellular lipase Skipjack tuna eyeball oil 30% (27%) [114]

Pseudomonas fluorescens Recombinant Fish oil 72.8% (43.16%) [115]

Candida antarctica B CALB, Novozym® 435
Pure EPA and DHA

concentrate 0.75% (16%) [116]

Candida antarctica B CALB, Novozym® 435 Crude fish oil 74.6% (27.57%) [117]

Candida antarctica B CALB, Novozym® 435 Cobia liver oil 94% yield [118]

Interestingly, various researchers have also attempted to produce recombinant lipase
with better properties compared to lipases obtained from natural sources. In a recent study,
a recombinant LipB from Pseudomonas fluorescens was cloned into Bacillus subtillis. It was
reported that the recombinant lipase had excellent properties such as solvent tolerance
against acetonitrile, isopropanol, acetone, and DMSO; moreover, it was able to increase
the PUFA concentration from 43.2% to 72.2% using fish oil and had thermostability at
70 ◦C [115].

The study of López et al. [11] investigated the omega-3 enrichment of microalgal oil
from Nannochloropsis species using the commercial lipases Lipozyme TL 100 L, Lecitase®

Ultra, Lipozyme® CALB, Quara® LowP, Lipase D, Lipase DF, Lipase MER, Lipase AY, and
Lipase QLM®. It was found that the QLM lipase, extracted from Alcaligenes species, was
highly efficient in enriching EPA polar lipids as it exhibited 1,3 positional specificity and
this lipase was further used for a selecting solvent system. Moreover, lipase QLM was
immobilized on Accurel MP 1000 and was able to enrich EPA from 48.5% to 70% with a
recovery rate of 92% [11]. This study suggests that enzyme immobilization can be used to
reduce the cost of the process by recovering and reusing the enzyme.

Lipases can also be used for enriching PUFAs in fortified oils. The research group at
Deakin University used pure omega-3 ethyl esters that were then reacted with commercially
available immobilized lipases from Rhizomucor miehei (Lipozyme RMIM), Thermomyces
lanuginosus (Lipozyme TLIM), and Candida antarctica B (CALB, Novozym® 435), and the
monoacylglycerols and diacyglycerols obtained as products after the lipase Novozyme
435-mediated glycerolysis reaction were further fortified with extra virgin olive oil. The
resulting fortified oil treated with lipase accounted for an increase in EPA content from
0.75% to 13% and a DHA content of 16% [116]. Novozyme 435 was also used for producing
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glycerides containing concentrated levels of omega-3 PUFAs, and it was reported that
the synthesised glycerides had 1.21 and 2.71 times more EPA and DHA, respectively,
as compared to the crude fish oil [117]. Moreover, Novozyme 435’s ability to catalyse
acidolysis to produce DHA/EPA ethyl esters was also evaluated and analysed, and it was
found that the enzyme was able to produce concentrated DHA/EPA ethyl esters with a
94% conversion yield ratio [118].

These studies demonstrate the ability of marine lipases to enrich omega-3 essential
fatty acids using a simple process. The only bottlenecks are the risk of losing the lipase’s
stability and activity after a single use, and the recovery of the free form of lipases is difficult
to achieve. These constraints result in increased overall costs for producing enriched omega-
3 concentrates. To mitigate this, lipases have been employed in their immobilized form in
order to enhance reusability and recovery; moreover, the immobilization of lipases also
tends to improve their overall efficiency [119].

6. Enzyme Immobilization for Advancing the Enrichment of Omega-3 Fatty Acids

Over the last five decades, enzyme immobilization has been used to enhance the
ability of enzymes to catalyse reactions in a controlled manner. Immobilization of enzymes
has allowed enhanced reusability of enzymes in order to reduce the overall cost of the
enrichment process. Different immobilization strategies used to date are mentioned below
(Figure 2).
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6.1. Physical Methods

Physical methods for enzyme immobilization consist of two strategies, physical ad-
sorption and entrapment. In the former, enzyme adsorption occurs on a support material
(Figure 2) through weak forces such as hydrophobic interactions, ionic bonding, and Van
der Waals forces [120]. Hydrophobic supports, such as octyl-sepharose, have been used to
immobilize lipases via physical adsorption, which were further used for the hydrolysis of
sardine oil [121]. Moreover, it has been reported that ionic supports such as carboxymethyl
and sulfopropyl derivatives tested with immobilizing lipases had better selectivity towards
EPA and DHA during fish oil hydrolysis [122]. On the other hand, the latter entrapment
technique involves the confinement of the enzyme into a matrix without any chemical
reaction, which can reduce the distortion in the structure of the enzyme, affecting the lipase
activity [123]. Various sol–gel formulations such as tetramethoxysila, methyltrimethoxysila,
and ethytrimethoxysila can also be used for encapsulating lipases and the hydrolysis of oil
substrates such as olive oil [124].
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New encapsulation approaches such as electrospinning and metal–organic frame-
works (MOFs) have also been employed for immobilizing lipases. Recently, lipase from
Burkholderia cepacia was immobilized via double-needle electrospinning and the gelation
approach, collectively, by utilising hydrogel fibre–hydrophobic fibre hybrid membranes
(hg-HMs), and showed elevation in the specific activity compared to free enzyme [125].
Moreover, lipase immobilization using Zeolitic imidazolate frameworks (ZIF), a type of
MOF, was also used to immobilize lipases from genetically modified Thermomyces lanuginose,
which was demonstrated to have better catalytic activity [126]. However, electrospinning
and MOFs have not been investigated in lipase immobilization for the enrichment of
omega-3. The most important drawback of physical methods is the ease of disintegration
of the enzymes from the support material, leading to enzyme leaching and the requirement
for more enzymes.

6.2. Chemical Methods

Chemical methods are further classified into two categories: crosslinking and covalent
bonding (Figure 2). Crosslinking is the technique that uses crosslinking agents such as
glutaraldehyde in order to improve the interaction between the enzyme and support
material. Different support materials such as polyolefin [127] and chitosan-chitin [128] have
been used to immobilize enzymes by crosslinking. In one study, crosslinking of C. rugosa
lipases was carried out using glutaraldehyde, and it was found that the enantioselectivity
of the crosslinked enzyme had improved when used for the hydrolysis of olive oil [129].
However, there are various limitations in this technique, such as poor mechanical stability
and inefficient reproducibility, which make it less desirable for lipase immobilization.

On the other hand, covalent bonding has been proven to provide better mechanical
stability with support that extremely reduces the chances of enzyme leaching into the media
and also allows the reactivation of enzymes [130]; moreover, through covalent binding
immobilization, the highest enzymatic activity was reported when compared to other
methods. Various support materials were used for immobilizing enzymes through covalent
bonding, as shown in Table 4.

Table 4. Different materials used for covalent bonding of lipases for immobilization with a comparison
of stability, activity, reusability, and omega-3 enrichment as compared to free enzyme form.

Material Used Lipase Source

Activity and
Stability

(Compared to Free
Enzyme)

Reusability
Omega-3

Enrichment
Ability

Reference

Carboxymethyl
and sulfopropyl
agarose beads

Geotrichum
candidum

10-fold stability
retained at 50 ◦C

Stable up to 2
cycles

3.2-fold increase in
hydrolysis [131]

Silica Epoxy Rhizomucor miehei 25% increase in
activity at 50 ◦C

Stable up to 5
cycles

6.8:1 (released
EPA–released

DHA)
[132]

Magnetic
nanoparticles

Recombinant
Bacillus subtilis

10% increase in
activity at 95 ◦C

Stable up to 7
cycles

1.5 times higher
DHA selectivity [133]

Nanoparticles
Nano–silica system Candida rugosa 2-fold increase in

activity at 45 ◦C Not mentioned 2.5-fold EPA
enrichment [134]

Crosslinked
enzyme (CLE)

Thermomyces
lanuginosus

60% activity was
retained at 25 ◦C

Stable up to 5
cycles

22:1 (released
EPA–released

DHA)
[135]

Covalent Bonding-Based Immobilization of Lipase for the Enrichment of Omega-3 PUFAs

Covalent bonding is highly efficient in terms of enzyme stability due to its strong
interaction with the support, which reduces enzyme loss. This valuable characteristic
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of covalent bonding has led to an increased number of studies carried out, which are
associated with the immobilization of lipase through covalent bonding (Table 4). The
amination of lipases from Geotrichum candidum was carried out to facilitate covalent bonding
with carboxymethyl and sulfopropyl agarose beads for efficient immobilization, and it was
found that the immobilized enzyme was stable up to two cycles and its overall stability
had increased by 3.2-fold in hydrolysis compared to the free aminated enzyme [131].
Furthermore, epoxy-functionalised silica particles were also used for immobilizing lipases
from Rhizomucor miehei and it was reported that the immobilized enzyme can be reused up
to five cycles, where it was able to enrich EPA and DHA content with a ratio of 6.8:1, which
was higher compared to the free enzyme [132]. In 2019, ferrous nanoparticles were used for
easier recyclability of the enzyme through magnetic separation. The research concluded
that the immobilized enzyme had shown around 65% activity up to seven reuse cycles and
had better thermostability, even at higher temperatures of 95 ◦C [133].

Moreover, the application of an ecofriendly support matrix for immobilizing enzymes
is also gaining interest as it can assist in mitigating various environmental problems. For
instance, silica from agricultural waste such as rice husk was utilised to create amino-
functionalised nano–silica systems that were used to immobilize lipases derived from
Candida rugosa through covalent bonding. A 2-fold increase in relative enzyme activity
was obtained at 45 ◦C and a 2.5-fold increase in EPA content was reported using this
immobilized enzyme for the hydrolysis of oil derived from N. oceanica [134]. In a recent
study, crosslinker azelaic acid was employed, which allowed the covalent bond between
lipase molecules to form crosslinked enzymes, and a selectivity ratio of 22 was obtained
for EPA and DHA that retained activity up to 60% for five cycles [135]. Thus, covalent
bonding-based immobilization can be ascribed as a promising method for enzyme immobi-
lization; however, further studies are required for the immobilization of lipases generated
from marine-derived sources that can support their claim of being suitable lipases for
pharmaceutical and nutraceutical applications.

7. Concluding Remarks and Future Directions

The amount of research carried out in the area of omega-3 enrichment clearly suggests
the importance of PUFAs in the medical and commercial sectors. Lipases are enzymes
able to enrich omega-3 from different substrates such as fish oils and algal oils. Lipases
from marine microorganisms hold an advantage due to their unique properties such as
thermostability and tolerance against organic solvents; however, there is always a risk of
loss in stability and activity of lipases over time. The method of covalent bonding-based
immobilization of lipases to various support materials is the current solution that is applied
to overcome this problem; however, the support materials used should have a minimal
negative impact on the environment. Thus, greener and more inexpensive options for
this method need to be investigated, such as the immobilization of lipases on plasma-
polymerised surfaces as it does not demand the use of any organic solvents during the
process. Furthermore, omega-3-enriched concentrates generated from marine microorgan-
ism lipases—that will further be used in food fortification—need to be investigated for their
effects on the human gut microbiome as it can be helpful to understand the biochemical
route through which omega-3 can infer positive effects on human health. Nevertheless,
there are very limited studies carried out using oil from sources such as microalgae to
meet the demand for essential omega-3 concentrates. Microalgae can be considered a
suitable and sustainable oil source as it falls under the category of GRAS, can be grown in a
controlled manner, and various species of microalgae such as thraustochytrids have been
reported with higher amounts of EPA and DHA content. In this way, enriched omega-3
concentrates can also sustain the market demand for populations that follow a vegetarian
diet. In summary, further development and studies are required to improve enzymatic
enrichment using cost-effective and sustainable approaches and to divert the focus towards
using oils from sources that can be consumed by a larger number of the population.
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