Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia
Abstract
:1. Why Does the Sea Matter for Human Health?
2. Marine Pharmacology in the Mists of Time
3. The Origins of Marine Pharmacology and Immunology in the West
4. The Evolution of Marine Materia Medica in the Far East
The Yin Yang Dialectic of Autoimmunity
5. The Birth of Marine Microbiology: Sailing on the Ocean of Chemodiversity
5.1. Prokaryotes and Metazoan-Associated Microbiota
5.2. Fungi and Protists
5.3. Marine Eukaryotic Microalgae and Cyanoprokaryotes
6. Mining the Seabed for Novel Bioactive Compounds
6.1. Deep-Sea Prokaryotes
6.2. Deep-Sea Fungi
Molecule | Source Organism(s) | Biological Activity—Half Maximal Inhibitory Concentration (IC50) | Development Stage | Ref. |
---|---|---|---|---|
7,13-epoxyl-macrolactin A | Bacillus subtilis B5 (Gram-positive bacterium) | Suppression of inducible nitric oxide synthase, IL-1β, and IL-6 expression in cultured activated murine macrophages (IC50 N.D.). | Preclinical trial | [232] |
Extracellular Exopolysaccharide | Planococcus rifietoensis AP-5 (Gram-positive bacterium) | Stimulation of IL-10, IL-6, IL-1β, and TNF-α production by human cultured monocytes (IC50 N.D.). | Preclinical trial | [233] |
Cyclopenol (7-membered 2,5-dioxopiperazine alkaloid) | Aspergillus sp. (Ascomycota) | Suppression of nitric oxide release by cultured activated murine macrophages via inhibition of the NF-κB pathway. Down-regulation of inducible nitric oxide synthase, IL-1β and IL-6 in cultured activated murine microglia (IC50 30 µM). | Preclinical trial | [237] |
Hepialiamides (fusaric acid derivatives) | Samsoniella hepiali W7 (Ascomycota) | Suppression of nitric oxide release by cultured activated murine microglia (IC50 1 µM). | Preclinical trial | [238] |
Polyketide hepialide | Samsoniella hepiali W7 (Ascomycota) | Suppression of nitric oxide release by cultured activated murine microglia (IC50 1 µM). | Preclinical trial | [238] |
5′-O-acetyladenosine, uridine, ergosterol, walterolactone A | Samsoniella hepiali W7 (Ascomycota) | Suppression of nitric oxide release by cultured activated murine microglia (IC50 1 µM). | Preclinical trial | [238] |
(4R,5S)-5-hydroxyhexan-4-olide | Samsoniella hepiali W7 (Ascomycota) | Suppression of nitric oxide release by cultured activated murine microglia (IC50 426 nM). | Preclinical trial | [238] |
2-benzoyl tetrahydrofuran enantiomers (−)-1S-myrothecol, (+)-1R-myrothecol | Myrothecium sp. (Ascomycota) | Suppression of nitric oxide release by cultured activated murine macrophages (IC50 1.20 and 1.41 µgmL−1). | Preclinical trial | [239] |
Acremeremophilanes Eremophilane-Type Sesquiterpenoids | Acremonium sp. (Ascomycota) | Suppression of nitric oxide release by cultured activated murine macrophages (IC50 8 to 45 μM). | Preclinical trial | [240] |
Eremophilane-Type Sesquiterpenoids | Eutypella sp. (Ascomycota) | Suppression of nitric oxide production by cultured activated murine macrophages (IC50 8 to >50 μM). | Preclinical trial | [241] |
Oxaline (A), isorhodoptilometrin (B), and 5-hydroxy-7-(2′-hydroxypropyl)-2-methyl-chromone (C). | Penicillium oxalicum (Ascomycota) | Suppression of nitric oxide and prostaglandin E2 production by cultured murine microglia cells. Down-regulation of inducible nitric oxide synthase and cyclo-oxygenase-2 expression. Inhibition of TNF-α, IL-1β, IL-6, and IL-12 production via interference with the NF-κB and MAPK pathways (IC50 A 9, B 15, and C 75 μM). | Preclinical trial | [242] |
Dimeric nitrophenyl trans-epoxyamides Chrysamides A-C | Penicillium chrysogenum (Ascomycota) | Suppression pro-inflammatory cytokine IL-17 production by cultured murine naïve T cells (IC50 C 75 μM). | Preclinical trial | [243] |
Phenazostatins (Diphenazine derivatives) | Cystobasidium laryngis (Basidiomycota) | Suppression of nitric oxide and IL-6 production by activated murine macrophages in vitro via inhibition of NF-κB pathway. Suppression of IL-1β, IL-6, and inducible nitric oxide synthase expression in cultured murine microglia cells (IC50 0,30–170 μM). | Preclinical trial | [244] |
7. Emerging Marine Immunomodulatory Lead Compounds
7.1. Seaweeds (Macroalgae)
7.2. Invertebrates
7.3. Mangrove Habitats
8. Marine Pharmacology, Quo Vadis?
8.1. The Sea Urchin Echinochrome A and Its Applications in Systemic Sclerosis
8.2. Deep-Sea Bacteria Exopolysaccharides and Their Applications in Cancer Immunotherapy
8.3. Synthetic Biology and Molecular Pharming in Microalgae
8.4. The Marine Viral Dark Matter and Its Potential for Medical Biotechnology
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paine, L. The Sea and Civilization: A Maritime History of the World; Knopf Doubleday Publishing Group: New York, NY, USA, 2013. [Google Scholar]
- Deacon, M. Scientists and the Sea, 1650–1900: A Study of Marine Science; Academic Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.; Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef] [PubMed]
- Louca, S.; Mazel, F.; Doebeli, M.; Parfrey, L.W. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 2019, 17, e3000106. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P.; Větrovský, T.; Lepinay, C.; Kohout, P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 2022, 114, 539–547. [Google Scholar] [CrossRef]
- Bouchet, P.; Decock, W.; Lonneville, B.; Vanhoorne, B.; Vandepitte, L. Marine biodiversity discovery: The metrics of new species descriptions. Front. Mar. Sci. 2023, 10, 929989. [Google Scholar] [CrossRef]
- Wainwright, C.L.; Teixeira, M.M.; Adelson, D.L.; Braga, F.C.; Buenz, E.J.; Campana, P.R.V.; David, B.; Glaser, K.B.; Harata-Lee, Y.; Howes, M.-J.R.; et al. Future directions for the discovery of natural product-derived immunomodulating drugs: An IUPHAR positional review. Pharmacol. Res. 2022, 177, 106076. [Google Scholar] [CrossRef] [PubMed]
- Moles, J.; Torrent, A.; Alcaraz, M.J.; Ruhí, R.; Avila, C. Anti-inflammatory activity in selected Antarctic benthic organisms. Front. Mar. Sci. 2014, 1, 24. [Google Scholar] [CrossRef]
- Lindequist, U. Marine-Derived Pharmaceuticals—Challenges and Opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Kraiem, M.; Ben Hamouda, S.; Eleroui, M.; Ajala, M.; Feki, A.; Dghim, A.; Boujhoud, Z.; Bouhamed, M.; Badraoui, R.; Pujo, J.M.; et al. Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences. Mar. Drugs 2024, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Haque, N.; Parveen, S.; Tang, T.; Wei, J.; Huang, Z. Marine Natural Products in Clinical Use. Mar. Drugs 2022, 20, 528. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.; Pierce, M.; Reji, M.; Wu, A.C.; Jekielek, K.K.; Le, H.Q.; Howe, K.; Butt, M.; Seo, S.; Newman, D.J.; et al. Marine-Derived Pharmaceuticals in Clinical Trials in 2022. J. Pharmacol. Exp. Ther. 2023, 385, 299. [Google Scholar]
- Carroll, A.R.; Copp, B.R.; Grkovic, T.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2024, 41, 162–207. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Jin, Y.; Xing, Y.; Abate, M.D.; Abbasian, M.; Abbasi-Kangevari, M.; Abbasi-Kangevari, Z.; Abd-Allah, F.; Abdelmasseh, M.; Abdollahifar, M.-A.; et al. Global, regional, and national incidence of six major immune-mediated inflammatory diseases: Findings from the global burden of disease study 2019. eClinicalMedicine 2023, 64, 102193. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.W. The increasing prevalence of autoimmunity and autoimmune diseases: An urgent call to action for improved understanding, diagnosis, treatment, and prevention. Curr. Opin. Immunol. 2023, 80, 102266. [Google Scholar] [CrossRef] [PubMed]
- Michels, N.; Aart, C.v.; Morisse, J.; Huybrechts, I. Chronic Inflammation Toward Cancer Incidence: An Epidemiological Systematic Review. J. Glob. Oncol. 2018, 4, 24s. [Google Scholar] [CrossRef]
- Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocińska, M.K.; Majka, M. Immunomodulation—A general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front. Immunol. 2023, 14, 1127704. [Google Scholar] [CrossRef] [PubMed]
- Wraith, D.C. The Future of Immunotherapy: A 20-Year Perspective. Front. Immunol. 2017, 8, 1668. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.H.; Azha, N.u.; Farooq, R.; Sheikh, S.A.; Ganie, M.A.; Parray, M.N.; Mushtaq, H.; Hameed, I.; Lone, M.A. Exploring the potential of marine natural products in drug development: A comprehensive review. Phytochem. Lett. 2024, 59, 124–135. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol. 2022, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Bisaria, K.; Sinha, S.; Srivastava, A.; Singh, R. Marine Pharmacognosy: An Overview of Marine-Derived Pharmaceuticals. In Marine Niche: Applications in Pharmaceutical Sciences: Translational Research; Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G., Eds.; Springer: Singapore, 2020; pp. 361–381. [Google Scholar]
- Li, C.-Q.; Ma, Q.-Y.; Gao, X.-Z.; Wang, X.; Zhang, B.-L. Research Progress in Anti-Inflammatory Bioactive Substances Derived from Marine Microorganisms, Sponges, Algae, and Corals. Mar. Drugs 2021, 19, 572. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.S.; Pierce, M.L.; Howe, K.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2018: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Pharmacol. Res. 2022, 183, 106391. [Google Scholar] [CrossRef]
- Ahmad, B.; Shah, M.; Choi, S. Oceans as a Source of Immunotherapy. Mar. Drugs 2019, 17, 282. [Google Scholar] [CrossRef] [PubMed]
- Montuori, E.; de Pascale, D.; Lauritano, C. Recent Discoveries on Marine Organism Immunomodulatory Activities. Mar. Drugs 2022, 20, 422. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, M.; Ghelani, H.; Jan, R.K.; Adrian, T.E. Anti-Inflammatory Effects of Bioactive Compounds from Seaweeds, Bryozoans, Jellyfish, Shellfish and Peanut Worms. Mar. Drugs 2023, 21, 524. [Google Scholar] [CrossRef] [PubMed]
- Bekiari, M. Marine Bioprospecting: Understanding the Activity and Some Challenges Related to Environmental Protection, Scientific Research, Ethics, and the Law. In Blue Planet Law: The Ecology of our Economic and Technological World; Garcia, M.d.G., Cortês, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 237–252. [Google Scholar]
- Reverter, M.; Rohde, S.; Parchemin, C.; Tapissier-Bontemps, N.; Schupp, P.J. Metabolomics and Marine Biotechnology: Coupling Metabolite Profiling and Organism Biology for the Discovery of New Compounds. Front. Mar. Sci. 2020, 7, 613471. [Google Scholar] [CrossRef]
- Bayona, L.M.; de Voogd, N.J.; Choi, Y.H. Metabolomics on the study of marine organisms. Metabolomics 2022, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Thukral, M.; Allen, A.E.; Petras, D. Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics. ISME J. 2023, 17, 2147–2159. [Google Scholar] [CrossRef] [PubMed]
- Antunes, E.M.; Beukes, D.R.; Caro-Diaz, E.J.E.; Narchi, N.E.; Tan, L.T.; Gerwick, W.H. Chapter 5—Medicines from the sea. In Oceans and Human Health (Second Edition); Fleming, L.E., Alcantara Creencia, L.B., Gerwick, W.H., Goh, H.C., Gribble, M.O., Maycock, B., Solo-Gabriele, H., Eds.; Academic Press: San Diego, CA, USA, 2023; pp. 103–148. [Google Scholar] [CrossRef]
- Oyebode, O.; Kandala, N.-B.; Chilton, P.J.; Lilford, R.J. Use of traditional medicine in middle-income countries: A WHO-SAGE study. Health Policy Plan. 2016, 31, 984–991. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Report on Traditional and Complementary Medicine 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Jansen, C.; Baker, J.D.; Kodaira, E.; Ang, L.; Bacani, A.J.; Aldan, J.T.; Shimoda, L.M.N.; Salameh, M.; Small-Howard, A.L.; Stokes, A.J.; et al. Medicine in motion: Opportunities, challenges and data analytics-based solutions for traditional medicine integration into western medical practice. J. Ethnopharmacol. 2021, 267, 113477. [Google Scholar] [CrossRef] [PubMed]
- Buenz, E.J.; Verpoorte, R.; Bauer, B.A. The Ethnopharmacologic Contribution to Bioprospecting Natural Products. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 509–530. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lloréns, J.L.; Mouritsen, O.G.; Rhatigan, P.; Cornish, M.L.; Critchley, A.T. Seaweeds in mythology, folklore, poetry, and life. J. Appl. Phycol. 2020, 32, 3157–3182. [Google Scholar] [CrossRef]
- Moseley, M.E. The Maritime Foundations of Andean Civilization; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Dillehay, T.D.; Ramírez, C.; Pino, M.; Collins, M.B.; Rossen, J.; Pino-Navarro, J.D. Monte Verde: Seaweed, food, medicine, and the peopling of South America. Science 2008, 320, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Déléris, P.; Nazih, H.; Bard, J.M. Chapter 10—Seaweeds in Human Health. In Seaweed in Health and Disease Prevention; Fleurence, J., Levine, I., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 319–367. [Google Scholar] [CrossRef]
- Ruiz Vigo, W.M. Importancia de las Cyanophytas. Rev. Perspect. 2019, 20, 240–244. [Google Scholar] [CrossRef]
- Godínez-Ortega, J.L.; Ortega, M.M.; Garduño-Solórzano, G.; Oliva, M.G.; Vilaclara, G. Traditional knowledge of Mexican continental algae. J. Ethnobiol. 2001, 21, 57–88. [Google Scholar]
- Sowunmi, A.A. Fin-fishes in Yorùbá natural healing practices from southwest Nigeria. J. Ethnopharmacol. 2007, 113, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Begossi, A.; Ramires, M. Fish Folk Medicine of Caiçara (Atlantic Coastal Forest) and Caboclo (Amazon Forest) Communities. In Animals in Traditional Folk Medicine: Implications for Conservation; Alves, R.R.N., Rosa, I.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 91–108. [Google Scholar]
- El-Deir, A.C.A.; Collier, C.A.; Almeida Neto, M.S.d.; Silva, K.M.d.S.; Policarpo, I.d.S.; Araujo, T.A.S.; Alves, R.R.N.; de Albuquerque, U.P.; Moura, G.J.B.d. Ichthyofauna used in traditional medicine in Brazil. Evid.-Based Complement. Altern. Med. 2012, 2012, 474716. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.R.; Rosa, I.L. From cnidarians to mammals: The use of animals as remedies in fishing communities in NE Brazil. J. Ethnopharmacol. 2006, 107, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Nong, Y.; Zhang, T.; Zhang, S.; Hu, R. The use and sustainable development of marine animal drugs by the Kinh people in Beibu Gulf. Front. Mar. Sci. 2023, 10, 1175316. [Google Scholar] [CrossRef]
- Alino, P.M.; Cajipe, G.J.B.; Ganzon-Fortes, E.T.; Licuanan, W.R.Y.; Montano, N.E.; Tupas, L.M. The Use of Marine Organisms in Folk Medicine and Horticulture: A Preliminary Study; Seaweed Information Center (SICEN), University of the Philippines: Quezon City, Philippines, 1990. [Google Scholar]
- Salleh, H.; Mohamed, W.N.; Mat, N.H.N.; Yusof, Y.; Syamimi, N. Traditional medicines from marine resources: Understanding the consumer’s knowledge and perceptions. Int. J. Adv. Appl. Sci. 2020, 7, 110–118. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Sanaa, D.A.; Zengin, G.; Gallo, M.; Montesano, D. Traditional Therapeutic Uses of Marine Animal Parts and Derived Products as Functional Foods—A Systematic Review. Food Rev. Int. 2023, 39, 827–857. [Google Scholar] [CrossRef]
- Guo, Y.; Ding, Y.; Xu, F.; Liu, B.; Kou, Z.; Xiao, W.; Zhu, J. Systems pharmacology-based drug discovery for marine resources: An example using sea cucumber (Holothurians). J. Ethnopharmacol. 2015, 165, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.A.; McClenachan, L.; Uni, Y.; Phocas, G.; Hagemann, M.E.; Van Houtan, K.S. The historical development of complex global trafficking networks for marine wildlife. Sci. Adv. 2019, 5, eaav5948. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Baruah, S.; Wu, Y.S.; Yuansah, S.C.; Castro-Muñoz, R.; Szymkowiak, A.; Kulawik, P. Investigating the sustainability, utilisation, consumption and conservation of sea mammals—A systematic review. Sustain. Prod. Consum. 2024, 46, 400–417. [Google Scholar] [CrossRef]
- O’Malley, M.p.; Townsend, K.A.; Hilton, P.; Heinrichs, S.; Stewart, J.D. Characterization of the trade in manta and devil ray gill plates in China and South-east Asia through trader surveys. Aquat. Conserv. Mar. Freshw. Ecosyst. 2017, 27, 394–413. [Google Scholar] [CrossRef]
- Huxtable, R.J. The pharmacology of extinction. J. Ethnopharmacol. 1992, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Porter, L.; Lai, H.Y. Marine Mammals in Asian Societies; Trends in Consumption, Bait, and Traditional Use. Front. Mar. Sci. 2017, 4, 47. [Google Scholar] [CrossRef]
- Nurse, A. Preventing marine wildlife crime: An evaluation of legal protection and enforcement perspectives. Front. Conserv. Sci. 2023, 3, 1102823. [Google Scholar] [CrossRef]
- Müller, W.E.; Batel, R.; Schröder, H.C.; Müller, I.M. Traditional and Modern Biomedical Prospecting: Part I-the History: Sustainable Exploitation of Biodiversity (Sponges and Invertebrates) in the Adriatic Sea in Rovinj (Croatia). Evid. Based Complement. Altern. Med. 2004, 1, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Voultsiadou, E. Therapeutic properties and uses of marine invertebrates in the ancient Greek world and early Byzantium. J. Ethnopharmacol. 2010, 130, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Quave, C.L.; Pieroni, A. Mediterranean Zootherapy: A Historical to Modern Perspective. In Animals in Traditional Folk Medicine: Implications for Conservation; Alves, R.R.N., Rosa, I.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–316. [Google Scholar]
- Papadopoulos, D. Medical Knowledge and the Aquatic Animals in Claudius Aelianus’s on the Characteristics of Animals. Available online: https://journals.openedition.org/rursuspicae/2357 (accessed on 26 May 2024).
- Pérez-Lloréns, J.L.; Critchley, A.T.; Cornish, M.L.; Mouritsen, O.G. Saved by seaweeds (II): Traditional knowledge, home remedies, medicine, surgery, and pharmacopoeia. J. Appl. Phycol. 2023, 35, 2049–2068. [Google Scholar] [CrossRef]
- Buckley, S.; Hardy, K.; Hallgren, F.; Kubiak-Martens, L.; Miliauskienė, Ž.; Sheridan, A.; Sobkowiak-Tabaka, I.; Subirà, M.E. Human consumption of seaweed and freshwater aquatic plants in ancient Europe. Nat. Commun. 2023, 14, 6192. [Google Scholar] [CrossRef]
- Cavaillon, J.M. Once upon a time, inflammation. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021, 27, e20200147. [Google Scholar] [CrossRef] [PubMed]
- Millward, J.A.; Millward, J.A. The biological silk road. In The Silk Road: A Very Short Introduction; Oxford University Press: Oxford, UK, 2013; p. 39. [Google Scholar] [CrossRef]
- Millward, J.A.; Millward, J.A. The technological silk road. In The Silk Road: A Very Short Introduction; Oxford University Press: Oxford, UK, 2013; p. 64. [Google Scholar] [CrossRef]
- Peters, M.A. The ancient Silk Road and the birth of merchant capitalism. Educ. Philos. Theory 2021, 53, 955–961. [Google Scholar] [CrossRef]
- Bradley, S. The Silk Road and Sources of Chinese Medicine Expansion: Part 2—Formularies. Chin. Med. Cult. 2018, 1, 68–70. [Google Scholar] [CrossRef]
- Bradley, S. The Silk Road and Sources of Chinese Medicine Expansion: Part 1—Materia Medica. Chin. Med. Cult. 2018, 1, 29–31. [Google Scholar] [CrossRef]
- Díaz, J.L. Ethnopharmacology of sacred psychoactive plants used by the Indians of Mexico. Annu. Rev. Pharmacol. Toxicol. 1977, 17, 647–675. [Google Scholar] [CrossRef]
- Anderson, T.C. Medicine and Travel in the Colonies (1600–1750). In Encyclopedia of Early Modern Philosophy and the Sciences; Jalobeanu, D., Wolfe, C.T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–11. [Google Scholar]
- World Health Organization. The International Pharmacopoeia; World Health Organization: Geneva, Switzerland, 2022; Online Version. [Google Scholar]
- Silverstein, A.M. Autoimmunity versus horror autotoxicus: The struggle for recognition. Nat. Immunol. 2001, 2, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Mackay, I.R. Travels and travails of autoimmunity: A historical journey from discovery to rediscovery. Autoimmun. Rev. 2010, 9, A251–A258. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.E. Immunology’s Coming of Age. Front. Immunol. 2019, 10, 684. [Google Scholar] [CrossRef] [PubMed]
- Plytycz, B.; Seljelid, R. From inflammation to sickness: Historical perspective. Arch. Immunol. Ther. Exp. 2003, 51, 105–109. [Google Scholar]
- Tilden, J.E. The marine and fresh water algae of China. Lingnan Sci. J. 1929, 7, 349–398. [Google Scholar]
- Gao, K. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: A review. J. Appl. Phycol. 1998, 10, 37–49. [Google Scholar] [CrossRef]
- Chase, F.M. Useful Algae; Government Printing Office: Washington, DC, USA, 1942. [Google Scholar]
- Tseng, C.K. The Past, Present and Future of Phycology in China; Springer: Dordrecht, The Netherlands, 2004; pp. 11–20. [Google Scholar]
- Zhao, Z.; Guo, P.; Brand, E. A concise classification of bencao (materia medica). Chin. Med. 2018, 13, 18. [Google Scholar] [CrossRef]
- Pan, M.H.; Chiou, Y.S.; Tsai, M.L.; Ho, C.T. Anti-inflammatory activity of traditional Chinese medicinal herbs. J. Tradit. Complement. Med. 2011, 1, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Church, S.K.; Galambos, I.; Li, H.; Zheng, C. The Silk Road and Cultural Exchanges between East and West; Brill: Leiden, The Netherlands, 2022; pp. 93–123. [Google Scholar] [CrossRef]
- Ming, C. The Transmission of Foreign Medicine via the Silk Roads in Medieval China: A Case Study of Haiyao Bencao. Asian Med. 2007, 3, 241–264. [Google Scholar] [CrossRef]
- Chen, X.; Ni, L.; Fu, X.; Wang, L.; Duan, D.; Huang, L.; Xu, J.; Gao, X. Molecular Mechanism of Anti-Inflammatory Activities of a Novel Sulfated Galactofucan from Saccharina japonica. Mar. Drugs 2021, 19, 430. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Fu, T.; Cheng, H.; Mi, J.; Shang, Q.; Yu, G. Polysaccharide from edible alga Gloiopeltis furcata attenuates intestinal mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans. Carbohydr. Polym. 2022, 278, 118921. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.S.; Huang, L.Q. Foreign medicinal materials in Bencao Tujing. Zhonghua Yi Shi Za Zhi 2021, 51, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Xiu, L.-L.; Xu, S.-C.; Wang, Q.-X.; Chen, S.-H.; Liu, H.-Y.; Zhong, G.-S. Achievements of the Compendium Bencao Tujing (Illustrated Classic of Materia Medica): A Preliminary Study. Chin. Med. Cult. 2022, 5, 84–90. [Google Scholar] [CrossRef]
- Zhilin, Y.; ZHANG, Y. Zhu Fan Zhi and the Maritime Road of Aromatic Medicine in the Song Dynasty. Chin. Med. Cult. 2023, 6, 349–356. [Google Scholar] [CrossRef]
- Buell, P.D. Eurasia, Medicine and Trade: Arabic Medicine in East Asia—How It Came to Be There and How It Was Supported, Including Possible Indian Ocean Connections for the Supply of Medicinals. In Early Global Interconnectivity across the Indian Ocean World, Volume II: Exchange of Ideas, Religions, and Technologies; Schottenhammer, A., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 261–293. [Google Scholar]
- Buell, P.D.; Anderson, E.N. Arabic Medicine in China: Tradition, Innovation, and Change; Brill: Leiden, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Y.; Zhou, X.; Zhao, L.; Li, X.; Yusuf, A.; Hosseini, M.; Sefidkon, F.; Hu, X. The current status of old traditional medicine introduced from Persia to China. Front. Pharmacol. 2022, 13, 953352. [Google Scholar] [CrossRef] [PubMed]
- Marcon, F.; Marcon, F. The Bencao gangmu and the World It Created. In The Knowledge of Nature and the Nature of Knowledge in Early Modern Japan; University of Chicago Press: Chicago, IL, USA, 2015; p. 28. [Google Scholar] [CrossRef]
- Yang, L.-E.; Lu, Q.-Q.; Brodie, J. A review of the bladed Bangiales (Rhodophyta) in China: History, culture and taxonomy. Eur. J. Phycol. 2017, 52, 251–263. [Google Scholar] [CrossRef]
- May, B.T. Takako Seahorses in the Ben cao gang mu and contemporary Chinese medicine. J. Aust. Chin. Med. Educ. Res. Counc. 2002, 7, 2–13. [Google Scholar]
- Qian, Z.-J.; Ryu, B.; Kim, M.-M.; Kim, S.-K. Free radical and reactive oxygen species scavenging activities of the extracts from seahorse, Hippocampus kuda Bleeler. Biotechnol. Bioprocess Eng. 2008, 13, 705–715. [Google Scholar] [CrossRef]
- Ryu, B.; Qian, Z.J.; Kim, S.K. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation. Chem. Biol. Interact. 2010, 184, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Ryu, B.; Qian, Z.J.; Kim, S.K. SHP-1, a novel peptide isolated from seahorse inhibits collagen release through the suppression of collagenases 1 and 3, nitric oxide products regulated by NF-kappaB/p38 kinase. Peptides 2010, 31, 79–87. [Google Scholar] [CrossRef]
- Malemud, C.J. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2018, 10, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.D.; Claudio, E.; Siebenlist, U. The roles of the classical and alternative nuclear factor-kappaB pathways: Potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res. Ther. 2008, 10, 212. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Z.J.; Kim, S.K. Cathepsin B inhibitory activities of three new phthalate derivatives isolated from seahorse, Hippocampus Kuda Bleeler. Bioorg Med. Chem. Lett. 2008, 18, 6130–6134. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Zwerina, J.; Firestein, G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Law, S. Dried seahorse in traditional medicine: A narrative review. Infect. Dis. Herb. Med. 2021, 2, 158. [Google Scholar] [CrossRef]
- Rosa, I.L.; Defavari, G.R.; Alves, R.R.N.; Oliveira, T.P.R. Seahorses in Traditional Medicines: A Global Overview. In Animals in Traditional Folk Medicine: Implications for Conservation; Alves, R.R.N., Rosa, I.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 207–240. [Google Scholar]
- Nakamura, J.K. Blaise: Implementing the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) through National Fisheries Legal Frameworks: A Study and a Guide. FAO Legal Guide; FAO: Rome, Italy, 2020. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2023. [Google Scholar]
- Walravens, H. Father Verbiest’s Chinese World Map (1674). Imago Mundi 1991, 43, 31–47. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q. Restructuring Trade: Circulation of Medicinal Materials in East Asia in the 18th Century. Uisahak 2023, 32, 279–319. [Google Scholar] [CrossRef]
- Elshakry, M. When Science Became Western: Historiographical Reflections. Isis 2010, 101, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Luk, C.Y.L. The First Marine Biological Station in Modern China: Amoy University and Amphioxus. In Why Study Biology by the Sea? Matlin, K.S., Maienschein, J., Ankeny, R.A., Eds.; University of Chicago Press: Chicago, IL, USA, 2020; p. 68. [Google Scholar] [CrossRef]
- Liu, J.; Gu, Y.-c.; Su, M.-z.; Guo, Y.-w. Chemistry and bioactivity of secondary metabolites from South China Sea marine fauna and flora: Recent research advances and perspective. Acta Pharmacol. Sin. 2022, 43, 3062–3079. [Google Scholar] [CrossRef] [PubMed]
- Neushul, P.; Wang, Z. Between the Devil and the Deep Sea: C. K. Tseng, Mariculture, and the Politics of Science in Modern China. Isis 2000, 91, 59–88. [Google Scholar] [CrossRef]
- Liang, Y.; Cheng, X.; Zhu, H.; Shutes, B.; Yan, B.; Zhou, Q.; Yu, X. Historical Evolution of Mariculture in China During Past 40 Years and Its Impacts on Eco-environment. Chin. Geogr. Sci. 2018, 28, 363–373. [Google Scholar] [CrossRef]
- Fu, X.-M.; Zhang, M.-Q.; Shao, C.-L.; Li, G.-Q.; Bai, H.; Dai, G.-L.; Chen, Q.-W.; Kong, W.; Fu, X.-J.; Wang, C.-Y. Chinese Marine Materia Medica Resources: Status and Potential. Mar. Drugs 2016, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Liu, J.; Dai, Y.; Zhou, Y.; Li, R.; Yu, P. Bibliometric Analysis of Marine Traditional Chinese Medicine in Pharmacopoeia of the People’s Republic of China: Development, Differences, and Trends Directions. Evid.-Based Complement. Altern. Med. 2022, 2022, 3971967. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.H.-l. Neither Donkey nor Horse: Medicine in the Struggle over China’s Modernity; University of Chicago Press: Chicago, IL, USA, 2014. [Google Scholar] [CrossRef]
- Wang, Y. The scientific nature of traditional Chinese medicine in the post-modern era. J. Tradit. Chin. Med. Sci. 2019, 6, 195–200. [Google Scholar] [CrossRef]
- Ju, L.; Jiang, J.; Jin, Y.; Armand, J.-P.; Charron, D. Modern immunology is crucial to revealing the biological mechanisms of traditional Chinese medicine. J. Tradit. Chin. Med. Sci. 2023, 10, 383–394. [Google Scholar] [CrossRef]
- Jaeger, S. A Geomedical Approach to Chinese Medicine: The Origin of the Yin-Yang Symbol; IntechOpen: London, UK, 2012. [Google Scholar]
- Verbeke, G. L’evolution de la Doctrine du Pneuma: Du Stoicisme a S. Augustin; Desclee de Brouwer: Bilbao, Spain, 1945. [Google Scholar]
- Li, Y.M.; Kelley, K.W. Traditional Chinese medicine: What does modern immunology have to do with it? Brain Behav. Immun. Integr. 2024, 5, 100044. [Google Scholar] [CrossRef]
- Bottaccioli, F.; Bottaccioli, A.G. The suggestions of ancient Chinese philosophy and medicine for contemporary scientific research, and integrative care. Brain Behav. Immun. Integr. 2024, 5, 100024. [Google Scholar] [CrossRef]
- Sun, L.; Su, Y.; Jiao, A.; Wang, X.; Zhang, B. T cells in health and disease. Signal Transduct. Target. Ther. 2023, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.; Bigley, V. Human dendritic cell subsets: An update. Immunology 2018, 154, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.R. The Balance of Th17 versus Treg Cells in Autoimmunity. Int. J. Mol. Sci. 2018, 19, 730. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.D.; Deng, Y.R.; Tian, Z.; Lian, Z.X. Traditional Chinese medicine and immune regulation. Clin. Rev. Allergy Immunol. 2013, 44, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, D.; Ko, C.-N.; Wang, K.; Wang, H. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy. Front. Immunol. 2023, 14, 1133050. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, P.-J.; Robertson, L.; Welzel, J.; Zhang, M.; Zhihua, Y.; Kaixin, G.; Runyue, H.; Zehuai, W.; Korotkova, M.; Göransson, U. Where traditional Chinese medicine meets Western medicine in the prevention of rheumatoid arthritis. J. Intern. Med. 2022, 292, 745–763. [Google Scholar] [CrossRef] [PubMed]
- Leeuwenhoek, A.V. Observations, communicated to the publisher by Mr. Antony van Leewenhoeck, in a dutch letter of the 9th Octob. 1676. here English’d: Concerning little animals by him observed in rain-well-sea- and snow water; as also in water wherein pepper had lain infused. Philos. Trans. R. Soc. Lond. 1677, 12, 821–831. [Google Scholar] [CrossRef]
- Hooke, R. Micrographia, or, Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses: With Observations and Inquiries Thereupon. Available online: https://www.biodiversitylibrary.org/bibliography/904 (accessed on 24 May 2024).
- Fischer, B. Die Bakterien des Meeres Nach den Untersuchungen der Plankton-Expedition: Unter Gleichzeitiger Berücksichtigung Einiger Älterer und Neuerer Untersuchungen; Lipsius & Tischer: Chicago, IL, USA, 1894. [Google Scholar]
- ZoBell, C.E. Marine Microbiology: A Monograph on Hydrobacteriology; Chronica Botanica Company: Waltham, MA, USA, 1946. [Google Scholar]
- Waterbury, J.B.; Watson, S.W.; Guillard, R.R.L.; Brand, L.E. Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 1979, 277, 293–294. [Google Scholar] [CrossRef]
- Chisholm, S.W.; Olson, R.J.; Zettler, E.R.; Goericke, R.; Waterbury, J.B.; Welschmeyer, N.A. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 1988, 334, 340–343. [Google Scholar] [CrossRef]
- Petersen, L.-E.; Kellermann, M.Y.; Schupp, P.J. Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology. In YOUMARES 9—The Oceans: Our Research, Our Future: Proceedings of the 2018 Conference for YOUng MArine RESearcher in Oldenburg, Germany; Jungblut, S., Liebich, V., Bode-Dalby, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 159–180. [Google Scholar]
- Venter, J.C.; Remington, K.; Heidelberg, J.F.; Halpern, A.L.; Rusch, D.; Eisen, J.A.; Wu, D.; Paulsen, I.; Nelson, K.E.; Nelson, W. Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, H. Sorcerer II: The search for microbial diversity roils the waters. PLoS Biol. 2007, 5, e74. [Google Scholar] [CrossRef] [PubMed]
- Rusch, D.B.; Halpern, A.L.; Sutton, G.; Heidelberg, K.B.; Williamson, S.; Yooseph, S.; Wu, D.; Eisen, J.A.; Hoffman, J.M.; Remington, K.; et al. The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007, 5, e77. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M. Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 2015, 24, 11–14. [Google Scholar] [CrossRef]
- Vincent, F.; Ibarbalz, F.M.; Bowler, C. Chapter 15—Global marine phytoplankton revealed by the Tara Oceans expedition. In Advances in Phytoplankton Ecology; Clementson, L.A., Eriksen, R.S., Willis, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 531–561. [Google Scholar] [CrossRef]
- Acinas, S.G.; Sánchez, P.; Salazar, G.; Cornejo-Castillo, F.M.; Sebastián, M.; Logares, R.; Royo-Llonch, M.; Paoli, L.; Sunagawa, S.; Hingamp, P.; et al. Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Commun. Biol. 2021, 4, 604. [Google Scholar] [CrossRef] [PubMed]
- Laiolo, E.; Alam, I.; Uludag, M.; Jamil, T.; Agusti, S.; Gojobori, T.; Acinas, S.G.; Gasol, J.M.; Duarte, C.M. Metagenomic probing toward an atlas of the taxonomic and metabolic foundations of the global ocean genome. Front. Sci. 2024, 1, 1038696. [Google Scholar] [CrossRef]
- Um, S.; Pyee, Y.; Kim, E.-H.; Lee, S.K.; Shin, J.; Oh, D.-C. Thalassospiramide G, a New γ-Amino-Acid-Bearing Peptide from the Marine Bacterium Thalassospira sp. Mar. Drugs 2013, 11, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Coppola, D.; Russo, R.; Denaro, R.; Giuliano, L.; Lauro, F.M.; di Prisco, G.; Verde, C. Chapter Four—Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles. In Advances in Microbial Physiology; Poole, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 66, pp. 357–428. [Google Scholar]
- Wei, B.; Hu, G.-A.; Zhou, Z.-Y.; Yu, W.-C.; Du, A.-Q.; Yang, C.-L.; Yu, Y.-L.; Chen, J.-W.; Zhang, H.-W.; Wu, Q.; et al. Global analysis of the biosynthetic chemical space of marine prokaryotes. Microbiome 2023, 11, 144. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.J.C.; de Carvalho, C.C.C.R. Cultivating marine bacteria under laboratory conditions: Overcoming the “unculturable” dogma. Front. Bioeng. Biotechnol. 2022, 10, 964589. [Google Scholar] [CrossRef]
- Mu, D.-S.; Ouyang, Y.; Chen, G.-J.; Du, Z.-J. Strategies for culturing active/dormant marine microbes. Mar. Life Sci. Technol. 2021, 3, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Andryukov, B.; Mikhailov, V.; Besednova, N. The Biotechnological Potential of Secondary Metabolites from Marine Bacteria. J. Mar. Sci. Eng. 2019, 7, 176. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, Y.-Y.; Shao, C.-L.; Wang, C.-Y. Metabolites from marine invertebrates and their symbiotic microorganisms: Molecular diversity discovery, mining, and application. Mar. Life Sci. Technol. 2019, 1, 60–94. [Google Scholar] [CrossRef]
- Wilson, M.C.; Mori, T.; Rückert, C.; Uria, A.R.; Helf, M.J.; Takada, K.; Gernert, C.; Steffens, U.A.E.; Heycke, N.; Schmitt, S.; et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014, 506, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Cahn, J.K.B.; Wilson, M.C.; Meoded, R.A.; Wiebach, V.; Martinez, A.F.C.; Helfrich, E.J.N.; Albersmeier, A.; Wibberg, D.; Dätwyler, S.; et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc. Natl. Acad. Sci. USA 2018, 115, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Lackner, G.; Peters, E.E.; Helfrich, E.J.N.; Piel, J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc. Natl. Acad. Sci. USA 2017, 114, E347–E356. [Google Scholar] [CrossRef] [PubMed]
- Rath, C.M.; Janto, B.; Earl, J.; Ahmed, A.; Hu, F.Z.; Hiller, L.; Dahlgren, M.; Kreft, R.; Yu, F.; Wolff, J.J.; et al. Meta-omic Characterization of the Marine Invertebrate Microbial Consortium That Produces the Chemotherapeutic Natural Product ET-743. ACS Chem. Biol. 2011, 6, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, S.; Jóhannsson, R.; Marteinsson, V. Co-cultivation of the marine sponge Halichondria panicea and its associated microorganisms. Sci. Rep. 2019, 9, 10403. [Google Scholar] [CrossRef]
- Kamat, S.; Kumar, S.; Philip, S.; Kumari, M. Chapter 10—Secondary metabolites from marine fungi: Current status and application. In Microbial Biomolecules; Kumar, A., Bilal, M., Ferreira, L.F.R., Kumari, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 181–209. [Google Scholar] [CrossRef]
- Xu, J.; Yi, M.; Ding, L.; He, S. A Review of Anti-Inflammatory Compounds from Marine Fungi, 2000-2018. Mar. Drugs 2019, 17, 636. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Bellavita, R.; Falanga, A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023, 13, 1021. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, E.A.; Caferri, R.; Campitiello, R.; Cutolo, M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar. Drugs 2023, 21, 630. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, G.A.; Rodrigues, C.; Wiatek, A.M.; de Melo Pereira, G.V.; de Carvalho, J.C.; Martinez-Burgos, W.J.; Karp, S.G.; Soccol, V.T.; Letti, L.A.J.; Soccol, C.R. Exploring the potential of Thraustochytrids and other microorganisms for sustainable omega-3 production: A comprehensive review of patents, perspectives, and scale-up strategies. Syst. Microbiol. Biomanuf. 2024, 4, 448–462. [Google Scholar] [CrossRef]
- Chen, Z.-L.; Yang, L.-H.; He, S.-J.; Du, Y.-H.; Guo, D.-S. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol. 2023, 385, 129434. [Google Scholar] [CrossRef]
- Dawczynski, C.; Dittrich, M.; Neumann, T.; Goetze, K.; Welzel, A.; Oelzner, P.; Völker, S.; Schaible, A.M.; Troisi, F.; Thomas, L.; et al. Docosahexaenoic acid in the treatment of rheumatoid arthritis: A double-blind, placebo-controlled, randomized cross-over study with microalgae vs. sunflower oil. Clin. Nutr. 2018, 37, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Barone, G.D.; Cernava, T.; Ullmann, J.; Liu, J.; Lio, E.; Germann, A.T.; Nakielski, A.; Russo, D.A.; Chavkin, T.; Knufmann, K.; et al. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023, 9, e14708. [Google Scholar] [CrossRef] [PubMed]
- Levasseur, W.; Perré, P.; Pozzobon, V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnol. Adv. 2020, 41, 107545. [Google Scholar] [CrossRef]
- Riccio, G.; Lauritano, C. Microalgae with Immunomodulatory Activities. Mar. Drugs 2019, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Ghallab, D.S.; Ibrahim, R.S.; Mohyeldin, M.M.; Shawky, E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. Mar. Pollut. Bull. 2024, 199, 116023. [Google Scholar] [CrossRef] [PubMed]
- Dullius, A.; Buffon, G.; Junior, M.F.; Giuliatti, S. Artificial Intelligence in Phycochemicals Recognition. In Value-Added Products from Algae: Phycochemical Production and Applications; Abomohra, A., Ende, S., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 97–122. [Google Scholar]
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Miranda, L.A.; Iñiguez-Moreno, M. An extensive review of marine pigments: Sources, biotechnological applications, and sustainability. Aquat. Sci. 2023, 85, 68. [Google Scholar] [CrossRef] [PubMed]
- Generalić Mekinić, I.; Šimat, V.; Rathod, N.B.; Hamed, I.; Čagalj, M. Algal Carotenoids: Chemistry, Sources, and Application. Foods 2023, 12, 2768. [Google Scholar] [CrossRef] [PubMed]
- Razzak, S.A. Comprehensive overview of microalgae-derived carotenoids and their applications in diverse industries. Algal Res. 2024, 78, 103422. [Google Scholar] [CrossRef]
- Chekanov, K.; Lukyanov, A.; Boussiba, S.; Aflalo, C.; Solovchenko, A. Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back. Photosynth. Res. 2016, 128, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Samhat, K.; Kazbar, A.; Takache, H.; Gonçalves, O.; Drouin, D.; Ismail, A.; Pruvost, J. Optimization of continuous astaxanthin production by Haematococcus pluvialis in nitrogen-limited photobioreactor. Algal Res. 2024, 80, 103529. [Google Scholar] [CrossRef]
- Liaqat, F.; Khazi, M.I.; Bahadar, A.; He, L.; Aslam, A.; Liaquat, R.; Agathos, S.N.; Li, J. Mixotrophic cultivation of microalgae for carotenoid production. Rev. Aquac. 2023, 15, 35–61. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Duan, C.; Yi, S.; Gao, Z.; Xiao, C.; Agathos, S.N.; Wang, G.; Li, J. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol. Adv. 2020, 43, 107602. [Google Scholar] [CrossRef]
- McQuillan, J.L.; Cutolo, E.A.; Evans, C.; Pandhal, J. Proteomic characterization of a lutein-hyperaccumulating Chlamydomonas reinhardtii mutant reveals photoprotection-related factors as targets for increasing cellular carotenoid content. Biotechnol. Biofuels Bioprod. 2023, 16, 166. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.; Carvalho, A.P.; Gomes, A.M. Factors impacting the microbial production of eicosapentaenoic acid. Appl. Microbiol. Biotechnol. 2024, 108, 368. [Google Scholar] [CrossRef]
- Riccio, G.; De Luca, D.; Lauritano, C. Monogalactosyldiacylglycerol and Sulfolipid Synthesis in Microalgae. Mar. Drugs 2020, 18, 237. [Google Scholar] [CrossRef] [PubMed]
- Lopes, D.; Aveiro, S.S.; Conde, T.; Rey, F.; Couto, D.; Melo, T.; Moreira, A.S.P.; Domingues, M.R. Chapter 6—Algal lipids: Structural diversity, analysis and applications. In Functional Ingredients from Algae for Foods and Nutraceuticals, 2nd ed.; Dominguez, H., Pereira, L., Kraan, S., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 335–396. [Google Scholar] [CrossRef]
- Conde, T.A.; Zabetakis, I.; Tsoupras, A.; Medina, I.; Costa, M.; Silva, J.; Neves, B.; Domingues, P.; Domingues, M.R. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int. J. Mol. Sci. 2021, 22, 9825. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Gallant, P.; Stefanova, R.; Melanson, R.; O’Leary, S.J. Monogalactosyldiacylglycerols, potent nitric oxide inhibitors from the marine microalga Tetraselmis chui. Nat. Prod. Res. 2013, 27, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Maciel, F.; Madureira, L.; Geada, P.; Teixeira, J.A.; Silva, J.; Vicente, A.A. The potential of Pavlovophyceae species as a source of valuable carotenoids and polyunsaturated fatty acids for human consumption. Biotechnol. Adv. 2024, 74, 108381. [Google Scholar] [CrossRef]
- Thurn, A.-L.; Schobel, J.; Weuster-Botz, D. Photoautotrophic Production of Docosahexaenoic Acid- and Eicosapentaenoic Acid-Enriched Biomass by Co-Culturing Golden-Brown and Green Microalgae. Fermentation 2024, 10, 220. [Google Scholar] [CrossRef]
- García-García, P.; Ospina, M.; Señoráns, F.J. Tisochrysis lutea as a source of omega-3 polar lipids and fucoxanthin: Extraction and characterization using green solvents and advanced techniques. J. Appl. Phycol. 2024. [Google Scholar] [CrossRef]
- Pierella Karlusich, J.J.; Cosnier, K.; Zinger, L.; Henry, N.; Nef, C.; Bernard, G.; Scalco, E.; Dvorak, E.; Jimenez Vieira, F.R.; Delage, E.; et al. Patterns and drivers of diatom diversity and abundance in the global ocean. bioRxiv 2024. [Google Scholar] [CrossRef]
- Peng, K.; Amenorfenyo, D.K.; Rui, X.; Huang, X.; Li, C.; Li, F. Effect of Iron Concentration on the Co-Production of Fucoxanthin and Fatty Acids in Conticribra weissflogii. Mar. Drugs 2024, 22, 106. [Google Scholar] [CrossRef] [PubMed]
- Mogal, A.; Kukreja, S.; Gautam, S. Sustainable Production of Diatom-Based Omega-3 Fatty Acids. In Biotechnological Processes for Green Energy, and High Value Bioproducts by Microalgae, and Cyanobacteria Cultures; Martínez-Roldán, A.d.J., Ed.; Springer International Publishing: Cham, Switzerland, 2024; pp. 131–137. [Google Scholar]
- Di Dato, V.; Orefice, I.; Amato, A.; Fontanarosa, C.; Amoresano, A.; Cutignano, A.; Ianora, A.; Romano, G. Animal-like prostaglandins in marine microalgae. ISME J. 2017, 11, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Di Costanzo, F.; Di Dato, V.; Ianora, A.; Romano, G. Prostaglandins in Marine Organisms: A Review. Mar. Drugs 2019, 17, 428. [Google Scholar] [CrossRef] [PubMed]
- Di Dato, V.; Barbarinaldi, R.; Amato, A.; Di Costanzo, F.; Fontanarosa, C.; Perna, A.; Amoresano, A.; Esposito, F.; Cutignano, A.; Ianora, A.; et al. Variation in prostaglandin metabolism during growth of the diatom Thalassiosira rotula. Sci. Rep. 2020, 10, 5374. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Benemann, J.R.; Zhang, X.; Hu, H.; Qin, S. Microalgal industry in China: Challenges and prospects. J. Appl. Phycol. 2016, 28, 715–725. [Google Scholar] [CrossRef]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Manzano-Agugliaro, F.; Acien-Fernandez, F.G.; Molina-Grima, E. Microalgae research worldwide. Algal Res. 2018, 35, 50–60. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, W.; Huang, Y.; Wen, Y.; Chu, Y.; Zhao, C. Global seaweed farming and processing in the past 20 years. Food Prod. Process. Nutr. 2022, 4, 23. [Google Scholar] [CrossRef]
- Selvam, J.; Mal, J.; Singh, S.; Yadav, A.; Giri, B.S.; Pandey, A.; Sinha, R. Bioprospecting marine microalgae as sustainable bio-factories for value-added compounds. Algal Res. 2024, 79, 103444. [Google Scholar] [CrossRef]
- Rojas-Villalta, D.; Gómez-Espinoza, O.; Murillo-Vega, F.; Villalta-Romero, F.; Guerrero, M.; Guillén-Watson, R.; Núñez-Montero, K. Insights into Co-Cultivation of Photosynthetic Microorganisms for Novel Molecule Discovery and Enhanced Production of Specialized Metabolites. Fermentation 2023, 9, 941. [Google Scholar] [CrossRef]
- Badary, A.; Hidasi, N.; Ferrari, S.; Mayfield, S.P. Isolation and characterization of microalgae strains able to grow on complex biomass hydrolysate for industrial application. Algal Res. 2024, 78, 103381. [Google Scholar] [CrossRef]
- Occhipinti, P.S.; Russo, N.; Foti, P.; Zingale, I.M.; Pino, A.; Romeo, F.V.; Randazzo, C.L.; Caggia, C. Current challenges of microalgae applications: Exploiting the potential of non-conventional microalgae species. J. Sci. Food Agric. 2024, 104, 3823–3833. [Google Scholar] [CrossRef] [PubMed]
- Diankristanti, P.A.; Hei Ernest Ho, N.; Chen, J.-H.; Nagarajan, D.; Chen, C.-Y.; Hsieh, Y.-M.; Ng, I.S.; Chang, J.-S. Unlocking the potential of microalgae as sustainable bioresources from up to downstream processing: A critical review. Chem. Eng. J. 2024, 488, 151124. [Google Scholar] [CrossRef]
- Menon, R.; Thomas, R.; Sood, N.; Gokhale, T. Marine Phytoplankton: Bioactive Compounds and Their Applications in Medicine. In Marine Bioactive Molecules for Biomedical and Pharmacotherapeutic Applications; Veera Bramhachari, P., Berde, C.V., Eds.; Springer Nature: Singapore, 2023; pp. 251–282. [Google Scholar]
- Tan, L.T.; Phyo, M.Y. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020, 25, 2197. [Google Scholar] [CrossRef] [PubMed]
- Gómez, P.I.; Mayorga, J.; Flaig, D.; Castro-Varela, P.; Jaupi, A.; Ulloa, P.A.; Soto-Bartierra, J.; Henríquez, V.; Rojas, V. Looking beyond Arthrospira: Comparison of antioxidant and anti-inflammatory properties of ten cyanobacteria strains. Algal Res. 2023, 74, 103182. [Google Scholar] [CrossRef]
- Cruz, J.D.; Delattre, C.; Felpeto, A.B.; Pereira, H.; Pierre, G.; Morais, J.; Petit, E.; Silva, J.; Azevedo, J.; Elboutachfaiti, R.; et al. Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Sci. Rep. 2023, 13, 13561. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Singh, V.K.; Singh, A.P.; Gupta, A.; Rana, P.; Sinha, R.P. The Radiant World of Cyanobacterial Phycobiliproteins: Examining Their Structure, Functions, and Biomedical Potentials. Targets 2024, 2, 32–51. [Google Scholar] [CrossRef]
- Ismail, M.M.; El-Fakharany, E.M.; Hegazy, G.E. Purification and fractionation of phycobiliproteins from Arthrospira platensis and Corallina officinalis with evaluating their biological activities. Sci. Rep. 2023, 13, 14270. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.C.; Subhashini, J.; Mahipal, S.V.; Bhat, V.B.; Srinivas Reddy, P.; Kiranmai, G.; Madyastha, K.M.; Reddanna, P. C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 2003, 304, 385–392. [Google Scholar] [CrossRef]
- Chen, H.; Qi, H.; Xiong, P. Phycobiliproteins—A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar. Drugs 2022, 20, 450. [Google Scholar] [CrossRef] [PubMed]
- Khazi, M.I.; Li, C.; Liaqat, F.; Malec, P.; Li, J.; Fu, P. Acclimation and Characterization of Marine Cyanobacterial Strains Euryhalinema and Desertifilum for C-Phycocyanin Production. Front. Bioeng. Biotechnol. 2021, 9, 752024. [Google Scholar] [CrossRef] [PubMed]
- Forbes, E.; Godwin-Austen, R.A.C. The Natural History of the European Seas; By the Late Prof. Edw. Forbes; John Van Voorst: London, UK, 1859. [Google Scholar]
- Carpenter, W.B.; Jeffreys, J.G.; Thomson, C.T.W. Preliminary report of the scientific exploration of the deep sea in H. M. surveying-vessel ‘Porcupine’, during the summerof 1869. Proc. R. Soc. Lond. 1870, 18, 397–492. [Google Scholar] [CrossRef]
- Thomson, C.W.S.; Carpenter, W.B.; Jeffreys, J.G. The Depths of the Sea: An Account of the General Results of the Dredging Cruises of H.M. SS. Porcupine and Lightning during the Summers of 1868, 1869 and 1870, under the Scientific Direction of Dr. Carpenter, F.R.S., J. Gwyn Jeffreys, F.R.S., and Dr. Wyville Thomson, F.R.S.; Macmillan and Co: London, UK, 1873. [Google Scholar]
- Thomson, C.W.S. The Voyage of the “Challenger”: The Atlantic: A Preliminary Account of the General Results of the Exploring Voyage of H.M.S. “Challenger” during the Year 1873 and the Early Part of the Year 1876; Harper & Brothers: New York, NY, USA, 1878; Volume 1. [Google Scholar]
- Certes, A.-A. Sur la culture, à l’abri des germes atmosphériques, des eaux et des sédiments rapportés par les expéditions du Travailleur et du Talisman. In Comptes Rendue Hebdomadaire des Séances de l’Académie des Sciences; Comptes rendus de l’Académie des Sciences: Paris, France, 1884; pp. 690–693. [Google Scholar]
- Certes, A.-A. Note relative à l’action des hautes pressions sur la vitalité des microorganismes d’eau douce et d’eau de mer. Comptes Rendue Hebd. Des Séances De L’académie Des Sci. 1884, 36, 385–388. [Google Scholar]
- Dohrn, A. The Foundation of Zoological Stations. Nature 1872, 5, 277–280. [Google Scholar] [CrossRef]
- Groeben, C. The Stazione Zoologica Anton Dohrn as a place for the circulation of scientific ideas: Vision and management. In Proceedings of the 31st Annual Conference of IAMSLIC, Rome, Italy, 10–14 October 2005. [Google Scholar]
- Danske dybhavsekspedition jorden, R.; Bruun, A.F. The Galathea Deep Sea Expedition, 1950–1952, Described by Members of the Expedition; Macmillan: New York, NY, USA, 1956. [Google Scholar]
- Zobell, C.E. Bacterial Life at the Bottom of the Philippine Trench. Science 1952, 115, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Yayanos, A.A.; Dietz, A.S.; Van Boxtel, R. Obligately barophilic bacterium from the Mariana trench. Proc. Natl. Acad. Sci. USA 1981, 78, 5212–5215. [Google Scholar] [CrossRef] [PubMed]
- Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; von Herzen, R.P.; Ballard, R.D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; et al. Submarine Thermal Springs on the Galápagos Rift. Science 1979, 203, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Finore, I.; Romano, I.; Gioiello, A.; Lama, L.; Nicolaus, B. Microbial Diversity in Extreme Marine Habitats and Their Biomolecules. Microorganisms 2017, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Cario, A.; Oliver, G.C.; Rogers, K.L. Exploring the Deep Marine Biosphere: Challenges, Innovations, and Opportunities. Front. Earth Sci. 2019, 7, 225. [Google Scholar] [CrossRef]
- Sun, C.; Mudassir, S.; Zhang, Z.; Feng, Y.; Chang, Y.; Che, Q.; Gu, Q.; Zhu, T.; Zhang, G.; Li, D. Secondary Metabolites from Deep-Sea Derived Microorganisms. Curr. Med. Chem. 2020, 27, 6244–6273. [Google Scholar] [CrossRef] [PubMed]
- Saide, A.; Lauritano, C.; Ianora, A. A Treasure of Bioactive Compounds from the Deep Sea. Biomedicines 2021, 9, 1556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Peng, Y.; Liu, X.; Wang, J.; Dong, X. Deep-sea microbial genetic resources: New frontiers for bioprospecting. Trends Microbiol. 2024, 32, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.N.; Meng, L.H.; Wang, B.G. Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms. Mar. Drugs 2020, 18, 614. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.A.; Becker, K.P.; Casagrande, D.; Daniels, J.; Roberts, P.; Orenstein, E.; Vogt, D.M.; Teoh, Z.E.; Wood, R.; Yin, A.H.; et al. An in situ digital synthesis strategy for the discovery and description of ocean life. Sci. Adv. 2024, 10, eadj4960. [Google Scholar] [CrossRef] [PubMed]
- Zhivkoplias, E.; Pranindita, A.; Dunshirn, P.; Jouffray, J.-B.; Blasiak, R. Novel Database Reveals Growing Prominence Of Deep-Sea Life for Marine Bioprospecting; Research Square: Durham, NC, USA, 2023. [Google Scholar]
- Li, G.; Wong, T.-W.; Shih, B.; Guo, C.; Wang, L.; Liu, J.; Wang, T.; Liu, X.; Yan, J.; Wu, B.; et al. Bioinspired soft robots for deep-sea exploration. Nat. Commun. 2023, 14, 7097. [Google Scholar] [CrossRef]
- Pettit, R.K. Culturability and secondary metabolite diversity of extreme microbes: Expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar. Biotechnol. 2011, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Bartlett, D.H.; Xiao, X. Current developments in marine microbiology: High-pressure biotechnology and the genetic engineering of piezophiles. Curr. Opin. Biotechnol. 2015, 33, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhou, Y.-X.; Tang, X.-X.; Liu, X.-X.; Yi, Z.-W.; Fang, M.-J.; Wu, Z.; Jiang, F.-Q.; Qiu, Y.-K. Macrolactins from Marine-Derived Bacillus subtilis B5 Bacteria as Inhibitors of Inducible Nitric Oxide and Cytokines Expression. Mar. Drugs 2016, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, S.; Li, F.; Zhang, X.; Pan, Y.; Lu, J.; Li, Y.; Bao, M. The structure, characterization and immunomodulatory potential of exopolysaccharide produced by Planococcus rifietoensis AP-5 from deep-sea sediments of the Northwest Pacific. Int. J. Biol. Macromol. 2023, 245, 125452. [Google Scholar] [CrossRef] [PubMed]
- Busch, K.; Slaby, B.M.; Bach, W.; Boetius, A.; Clefsen, I.; Colaço, A.; Creemers, M.; Cristobo, J.; Federwisch, L.; Franke, A.; et al. Biodiversity, environmental drivers, and sustainability of the global deep-sea sponge microbiome. Nat. Commun. 2022, 13, 5160. [Google Scholar] [CrossRef]
- Wang, Z.; Qader, M.; Wang, Y.; Kong, F.; Wang, Q.; Wang, C. Progress in the discovery of new bioactive substances from deep-sea associated fungi during 2020-2022. Front. Mar. Sci. 2023, 10, 1232891. [Google Scholar] [CrossRef]
- Kamjam, M.; Sivalingam, P.; Deng, Z.; Hong, K. Deep Sea Actinomycetes and Their Secondary Metabolites. Front. Microbiol. 2017, 8, 760. [Google Scholar] [CrossRef]
- Wang, L.; Li, M.; Lin, Y.; Du, S.; Liu, Z.; Ju, J.; Suzuki, H.; Sawada, M.; Umezawa, K. Inhibition of cellular inflammatory mediator production and amelioration of learning deficit in flies by deep sea Aspergillus-derived cyclopenin. J. Antibiot. 2020, 73, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.-B.; Wu, T.-Z.; Yang, L.-H.; He, X.-W.; Liu, W.-Y.; Zhang, K.; Xie, C.-L.; Xie, M.-M.; Zhang, Y.; Yang, X.-W.; et al. Hepialiamides A–C: Aminated Fusaric Acid Derivatives and Related Metabolites with Anti-Inflammatory Activity from the Deep-Sea-Derived Fungus Samsoniella hepiali W7. Mar. Drugs 2023, 21, 596. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; He, J.; Wu, Y.; Du, N.; Li, X.; Ju, J.; Hu, Z.; Umezawa, K.; Wang, L. Isolation and characterization of new anti-inflammatory and antioxidant components from deep marine-derived fungus Myrothecium sp. Bzo-l062. Mar. Drugs 2020, 18, 597. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhao, J.; Liu, D.; Proksch, P.; Zhao, Z.; Lin, W. Eremophilane-type sesquiterpenoids from an Acremonium sp. fungus isolated from deep-sea sediments. J. Nat. Prod. 2016, 79, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Liu, D.; Shao, Z.; Proksch, P.; Lin, W. Eremophilane-type sesquiterpenoids in a deep-sea fungus Eutypella sp. activated by chemical epigenetic manipulation. Tetrahedron 2018, 74, 7310–7325. [Google Scholar] [CrossRef]
- Kim, D.-C.; Quang, T.H.; Tien, N.T.; Kim, K.-W.; Kim, Y.-C.; Ngan, N.T.T.; Cuong, N.X.; Nam, N.H.; Oh, H. Anti-neuroinflammatory effect of oxaline, isorhodoptilometrin, and 5-hydroxy-7-(2′-hydroxypropyl)-2-methyl-chromone obtained from the marine fungal strain Penicillium oxalicum CLC-MF05. Arch. Pharmacal Res. 2022, 45, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, J.; Lin, X.; Zhao, B.; Wei, X.; Li, G.; Kaliaperumal, K.; Liao, S.; Yang, B.; Zhou, X. Chrysamides A–C, three dimeric nitrophenyl trans-epoxyamides produced by the deep-sea-derived fungus Penicillium chrysogenum SCSIO41001. Org. Lett. 2016, 18, 3650–3653. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Kang, J.S.; Cho, D.-Y.; Choi, D.-K.; Shin, H.J. Isolation, Structure Determination, and Semisynthesis of Diphenazine Compounds from a Deep-Sea-Derived Strain of the Fungus Cystobasidium laryngis and Their Biological Activities. J. Nat. Prod. 2022, 85, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Kazłowska, K.; Hsu, T.; Hou, C.C.; Yang, W.C.; Tsai, G.J. Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. J. Ethnopharmacol. 2010, 128, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liao, W.; Liu, Y.; Guo, Y.; Jiang, S.; Zhao, C. An overview on the nutritional and bioactive components of green seaweeds. Food Prod. Process. Nutr. 2023, 5, 18. [Google Scholar] [CrossRef]
- Souza, C.R.M.; Bezerra, W.P.; Souto, J.T. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Mar. Drugs 2020, 18, 147. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Valado, A. Harnessing the power of seaweed: Unveiling the potential of marine algae in drug discovery. Explor. Drug Sci. 2023, 1, 475–496. [Google Scholar] [CrossRef]
- Pradhan, B.; Rout, L.; Ki, J.-S. Immunomodulatory and anti-inflammatory and anticancer activities of porphyran, a sulfated galactan. Carbohydr. Polym. 2023, 301, 120326. [Google Scholar] [CrossRef] [PubMed]
- Costa, V.V.; Amaral, F.A.; Coelho, F.M.; Queiroz-Junior, C.M.; Malagoli, B.G.; Gomes, J.H.; Lopes, F.; Silveira, K.D.; Sachs, D.; Fagundes, C.T.; et al. Lithothamnion muelleri treatment ameliorates inflammatory and hypernociceptive responses in antigen-induced arthritis in mice. PLoS ONE 2015, 10, e0118356. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.J.; You, D.-J.; Lee, K.-W. Characterization and Immunomodulatory Effects of High Molecular Weight Fucoidan Fraction from the Sporophyll of Undaria pinnatifida in Cyclophosphamide-Induced Immunosuppressed Mice. Mar. Drugs 2019, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B.; Bhuyan, P.P.; Ki, J.-S. Immunomodulatory, Antioxidant, Anticancer, and Pharmacokinetic Activity of Ulvan, a Seaweed-Derived Sulfated Polysaccharide: An Updated Comprehensive Review. Mar. Drugs 2023, 21, 300. [Google Scholar] [CrossRef] [PubMed]
- Vasarri, M.; Leri, M.; Barletta, E.; Ramazzotti, M.; Marzocchini, R.; Degl’Innocenti, D. Anti-inflammatory properties of the marine plant Posidonia oceanica (L.) Delile. J. Ethnopharmacol. 2020, 247, 112252. [Google Scholar] [CrossRef] [PubMed]
- Premarathna, A.D.; Ahmed, T.A.E.; Rjabovs, V.; Hammami, R.; Critchley, A.T.; Tuvikene, R.; Hincke, M.T. Immunomodulation by xylan and carrageenan-type polysaccharides from red seaweeds: Anti-inflammatory, wound healing, cytoprotective, and anticoagulant activities. Int. J. Biol. Macromol. 2024, 260, 129433. [Google Scholar] [CrossRef] [PubMed]
- Sarithakumari, C.H.; Renju, G.L.; Kurup, G.M. Anti-inflammatory and antioxidant potential of alginic acid isolated from the marine algae, Sargassum wightii on adjuvant-induced arthritic rats. Inflammopharmacology 2013, 21, 261–268. [Google Scholar] [CrossRef]
- Jung, H.A.; Jin, S.E.; Ahn, B.R.; Lee, C.M.; Choi, J.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol. 2013, 59, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.M.; Valentão, P.; Andrade, P.B. Chapter 7—Lessons from the Sea: Distribution, SAR, and Molecular Mechanisms of Anti-inflammatory Drugs from Marine Organisms. In Studies in Natural Products Chemistry; Atta ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 40, pp. 205–228. [Google Scholar]
- Senthilkumar, K.; Kim, S.-K. Marine Invertebrate Natural Products for Anti-Inflammatory and Chronic Diseases. Evid.-Based Complement. Altern. Med. Ecam 2013, 2013, 572859. [Google Scholar] [CrossRef] [PubMed]
- Dokalahy, E.E.; El-Seedi, H.R.; Farag, M.A. Soft Coral Biodiversity in the Red Sea Family Alcyoniidae: A Biopharmaceutical and Ecological Perspective. In Biodiversity and Chemotaxonomy; Ramawat, K.G., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 55–85. [Google Scholar]
- Imbs, A.B.; Dembitsky, V.M. Coral Lipids. Mar. Drugs 2023, 21, 539. [Google Scholar] [CrossRef] [PubMed]
- Bautista, C.A.; Puentes, C.A.; Vargas-Peláez, C.M.; Santos-Acevedo, M.; Ramos, F.A.; Gómez-León, J.; Castellanos Hernández, L. The state of the art of marine natural products in Colombia. Rev. Colomb. De Química 2022, 51, 24–39. [Google Scholar] [CrossRef]
- Lai, K.-H.; Fan, Y.-C.; Peng, B.-R.; Wen, Z.-H.; Chung, H.-M. Capnellenes from Capnella imbricata: Deciphering Their Anti-Inflammatory-Associated Chemical Features. Pharmaceuticals 2023, 16, 916. [Google Scholar] [CrossRef]
- González, Y.; Torres-Mendoza, D.; Jones, G.E.; Fernandez, P.L. Marine Diterpenoids as Potential Anti-Inflammatory Agents. Mediat. Inflamm. 2015, 2015, 263543. [Google Scholar] [CrossRef]
- Mustonen, A.-M.; Nieminen, P. Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis—A Complex Field with Significant Potential for Future Treatments. Curr. Rheumatol. Rep. 2021, 23, 41. [Google Scholar] [CrossRef] [PubMed]
- Valmsen, K.; Järving, I.; Boeglin, W.E.; Varvas, K.; Koljak, R.; Pehk, T.; Brash, A.R.; Samel, N. The origin of 15R-prostaglandins in the Caribbean coral Plexaura homomalla: Molecular cloning and expression of a novel cyclooxygenase. Proc. Natl. Acad. Sci. USA 2001, 98, 7700–7705. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.Y.; Lin, S.C.; Feng, C.W.; Chen, P.C.; Su, Y.D.; Li, C.M.; Yang, S.N.; Jean, Y.H.; Sung, P.J.; Duh, C.Y.; et al. Anti-Inflammatory and Analgesic Effects of the Marine-Derived Compound Excavatolide B Isolated from the Culture-Type Formosan Gorgonian Briareum excavatum. Mar. Drugs 2015, 13, 2559–2579. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.J.; Chen, B.Y.; Lin, M.R.; Hwang, T.L.; Wang, W.H.; Sheu, J.H.; Wu, Y.C. Excavatoids E and F: Discovery of two new briaranes from the cultured octocoral Briareum excavatum. Mar. Drugs 2009, 7, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.Y.; Jean, Y.H.; Lee, H.P.; Chen, W.F.; Sun, Y.M.; Su, J.H.; Lu, Y.; Huang, S.Y.; Hung, H.C.; Sung, P.J.; et al. A soft coral-derived compound, 11-epi-sinulariolide acetate suppresses inflammatory response and bone destruction in adjuvant-induced arthritis. PLoS ONE 2013, 8, e62926. [Google Scholar] [CrossRef] [PubMed]
- Ayed, Y.; Sghaier, R.M.; Laouini, D.; Bacha, H. Evaluation of anti-proliferative and anti-inflammatory activities of Pelagia noctiluca venom in Lipopolysaccharide/Interferon-γ stimulated RAW264.7 macrophages. Biomed. Pharmacother. 2016, 84, 1986–1991. [Google Scholar] [CrossRef] [PubMed]
- La Paglia, L.; Vazzana, M.; Mauro, M.; Urso, A.; Arizza, V.; Vizzini, A. Bioactive Molecules from the Innate Immunity of Ascidians and Innovative Methods of Drug Discovery: A Computational Approach Based on Artificial Intelligence. Mar. Drugs 2024, 22, 6. [Google Scholar] [CrossRef] [PubMed]
- Silva, O.N.; de la Fuente-Núñez, C.; Haney, E.F.; Fensterseifer, I.C.M.; Ribeiro, S.M.; Porto, W.F.; Brown, P.; Faria-Junior, C.; Rezende, T.M.B.; Moreno, S.E.; et al. An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Sci. Rep. 2016, 6, 35465. [Google Scholar] [CrossRef] [PubMed]
- Ju, Z.; Su, M.; Hong, J.; La Kim, E.; Moon, H.R.; Chung, H.Y.; Kim, S.; Jung, J.H. Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory ascidian metabolites. Eur. J. Med. Chem. 2019, 180, 86–98. [Google Scholar] [CrossRef]
- Casertano, M.; Esposito, E.; Bello, I.; Indolfi, C.; Putra, M.Y.; Di Cesare Mannelli, L.; Ghelardini, C.; Menna, M.; Sorrentino, R.; Cirino, G.; et al. Searching for Novel Sources of Hydrogen Sulfide Donors: Chemical Profiling of Polycarpa aurata Extract and Evaluation of the Anti-Inflammatory Effects. Mar. Drugs 2023, 21, 641. [Google Scholar] [CrossRef]
- Sansone, C.; Balestra, C.; Pistelli, L.; Del Mondo, A.; Osca, D.; Brunet, C.; Crocetta, F. A Comparative Analysis of Mucus Immunomodulatory Properties from Seven Marine Gastropods from the Mediterranean Sea. Cells 2022, 11, 2340. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fu, Y.; Zheng, J.; Li, D. Anti-inflammatory activity and mechanism of a lipid extract from hard-shelled mussel (Mytilus coruscus) on chronic arthritis in rats. Mar. Drugs 2014, 12, 568–588. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, G.; Zhang, X.; Xing, G.; Hu, X.; Yang, L.; Li, D. Lipid extract from hard-shelled mussel (Mytilus coruscus) improves clinical conditions of patients with rheumatoid arthritis: A randomized controlled trial. Nutrients 2015, 7, 625–645. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.B.; Taveira, M.; Valentão, P.; Sousa, C.; Andrade, P.B. Fatty acids from edible sea hares: Anti-inflammatory capacity in LPS-stimulated RAW 264.7 cells involves iNOS modulation. RSC Adv. 2015, 5, 8981–8987. [Google Scholar] [CrossRef]
- Ghelani, H.; Khursheed, M.; Adrian, T.E.; Jan, R.K. Anti-Inflammatory Effects of Compounds from Echinoderms. Mar. Drugs 2022, 20, 693. [Google Scholar] [CrossRef] [PubMed]
- Park, G.-T.; Yoon, J.-W.; Yoo, S.-B.; Song, Y.-C.; Song, P.; Kim, H.-K.; Han, J.; Bae, S.-J.; Ha, K.-T.; Mishchenko, N.P.; et al. Echinochrome A Treatment Alleviates Fibrosis and Inflammation in Bleomycin-Induced Scleroderma. Mar. Drugs 2021, 19, 237. [Google Scholar] [CrossRef] [PubMed]
- Olivera-Castillo, L.; Grant, G.; Kantún-Moreno, N.; Acevedo-Fernández, J.J.; Puc-Sosa, M.; Montero, J.; Olvera-Novoa, M.A.; Negrete-León, E.; Santa-Olalla, J.; Ceballos-Zapata, J.; et al. Sea cucumber (Isostichopus badionotus) body-wall preparations exert anti-inflammatory activity in vivo. PharmaNutrition 2018, 6, 74–80. [Google Scholar] [CrossRef]
- Jo, S.-H.; Kim, C.; Park, S.-H. Novel Marine Organism-Derived Extracellular Vesicles for Control of Anti-Inflammation. Tissue Eng. Regen. Med. 2021, 18, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Shady, N.H.; El-Hossary, E.M.; Fouad, M.A.; Gulder, T.A.M.; Kamel, M.S.; Abdelmohsen, U.R. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios. Molecules 2017, 22, 781. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.T.; Ibrahim, A.K.; Khalifa, S.I.; Mesbah, M.K.; Mayer, A.M.; van Soest, R.W. New anti-inflammatory sterols from the Red Sea sponges Scalarispongia aqabaensis and Callyspongia siphonella. Nat. Prod. Commun. 2010, 5, 27–31. [Google Scholar] [PubMed]
- Hort, M.A.; Silva Júnior, F.M.R.d.; Garcia, E.M.; Peraza, G.G.; Soares, A.; Lerner, C.; Muccillo-Baisch, A.L. Antinociceptive and Anti-inflammatory Activities of Marine Sponges Aplysina Caissara, Haliclona sp. and Dragmacidon Reticulatum. Braz. Arch. Biol. Technol. 2018, 61, e18180104. [Google Scholar] [CrossRef]
- Ji, Y.K.; Lee, S.M.; Kim, N.-H.; Tu, N.V.; Kim, Y.N.; Heo, J.D.; Jeong, E.J.; Rho, J.-R. Stereochemical Determination of Fistularins Isolated from the Marine Sponge Ecionemia acervus and Their Regulatory Effect on Intestinal Inflammation. Mar. Drugs 2021, 19, 170. [Google Scholar] [CrossRef] [PubMed]
- Vidal, I.; Castilla, L.; Marrero, A.D.; Bravo-Ruiz, I.; Bernal, M.; Manrique, I.; Quesada, A.R.; Medina, M.; Martínez-Poveda, B. The Sponge-Derived Brominated Compound Aeroplysinin-1 Impairs the Endothelial Inflammatory Response through Inhibition of the NF-κB Pathway. Mar. Drugs 2022, 20, 605. [Google Scholar] [CrossRef] [PubMed]
- Ciaglia, E.; Malfitano, A.M.; Laezza, C.; Fontana, A.; Nuzzo, G.; Cutignano, A.; Abate, M.; Pelin, M.; Sosa, S.; Bifulco, M. Immuno-modulatory and anti-inflammatory effects of dihydrogracilin A, a terpene derived from the marine sponge Dendrilla membranosa. Int. J. Mol. Sci. 2017, 18, 1643. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Oskarsson, J.T.; Omarsdottir, S.; Freysdottir, J.; Hardardottir, I. Lipophilic fractions from the marine sponge Halichondria sitiens decrease secretion of pro-inflammatory cytokines by dendritic cells and decrease their ability to induce a Th1 type response by allogeneic CD4(+) T cells. Pharm. Biol. 2017, 55, 2116–2122. [Google Scholar] [CrossRef] [PubMed]
- Palit, K.; Rath, S.; Chatterjee, S.; Das, S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environ. Sci. Pollut. Res. 2022, 29, 32467–32512. [Google Scholar] [CrossRef] [PubMed]
- Nabeelah Bibi, S.; Fawzi, M.M.; Gokhan, Z.; Rajesh, J.; Nadeem, N.; Rengasamy Kannan, R.R.; Albuquerque, R.D.D.G.; Pandian, S.K. Ethnopharmacology, Phytochemistry, and Global Distribution of Mangroves―A Comprehensive Review. Mar. Drugs 2019, 17, 231. [Google Scholar] [CrossRef] [PubMed]
- Obón, C.; Rivera, D.; Verde, A.; Alcaraz, F. Ethnopharmacology and Medicinal Uses of Extreme Halophytes. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.-N., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–29. [Google Scholar]
- Murugesan, M.; Theivendram, T.; Thangapandian, R.; Murugesan, A. Survey of the ethnomedicinal use of marine halophytes among the indigenes of coastal regions of Tamil Nadu, India. Phytocoenologia 2020, 50, 173–186. [Google Scholar] [CrossRef]
- Das, S.K.; Das, B.; Jena, A.B.; Pradhan, C.; Sahoo, G.; Dandapat, J. Therapeutic Potential and Ethnopharmacology of Dominant Mangroves of Bhitarkanika National Park, Odisha, India. Chem. Biodivers. 2022, 19, e202100857. [Google Scholar] [CrossRef]
- Roome, T.; Dar, A.; Ali, S.; Naqvi, S.; Choudhary, M.I. A study on antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective actions of Aegiceras corniculatum (stem) extracts. J. Ethnopharmacol. 2008, 118, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Kumari, C.S.; Yasmin, N.; Hussain, M.R.; Babuselvam, M. Invitro anti-inflammatory and anti-artheritic property of Rhizopora mucronata leaves. Int. J. Pharma Sci. Res. 2015, 6, 482–485. [Google Scholar]
- Islam, M.T. Chemical profile and biological activities of Sonneratia apetala (Buch.-Ham.). Adv. Tradit. Med. 2020, 20, 123–132. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Wang, S.-W.; Hwang, T.-L.; Wei, B.-L.; Su, C.-J.; Chang, F.-R.; Cheng, Y.-B. Components from the leaves and twigs of mangrove Lumnitzera racemosa with anti-angiogenic and anti-inflammatory effects. Mar. Drugs 2018, 16, 404. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.-P.; Yu, Y.; Shen, L. Agallolides AM, including two rearranged ent-atisanes featuring a bicyclo [3.2. 1] octane motif, from the Chinese Excoecaria agallocha. Bioorganic Chem. 2020, 104, 104206. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.; Darsan, M.B.; Ramalingam, C. In Vitro Evaluation of the antioxidant, anti-inflammatory and antiproliferative activities of the leaf extracts of Excoecaria agallocha L. Int. J. Pharm. Sci. 2015, 7, 346–352. [Google Scholar]
- Babuselvam, M.; Ravikumar, S.; Farook, K.M.; Abideen, S.; Mohamed, M.P.; Uthiraselvam, M. Evaluation of anti-inflammatory and analgesic effects on the extracts of different parts of Excoecaria agallocha L. J. Appl. Pharm. Sci. 2012, 2, 108–112. [Google Scholar] [CrossRef]
- Cavalcante, S.B.; dos Santos Biscaino, C.; Kreusch, M.G.; da Silva, A.F.; Duarte, R.T.D.; Robl, D. The hidden rainbow: The extensive biotechnological potential of Antarctic fungi pigments. Braz. J. Microbiol. 2023, 54, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Cai, J.; Chen, T.; Wang, Y.; Chen, Y.; Zhu, Y.; Chen, C.; Yang, B.; Zhou, X.; Tao, H. Two New Sesquiterpenoids and a New Shikimic Acid Metabolite from Mangrove Sediment-Derived Fungus Roussoella sp. SCSIO 41427. Mar. Drugs 2024, 22, 103. [Google Scholar] [CrossRef] [PubMed]
- Daniotti, S.; Re, I. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literature and Business Models. Mar. Drugs 2021, 19, 61. [Google Scholar] [CrossRef] [PubMed]
- Papon, N.; Copp, B.R.; Courdavault, V. Marine drugs: Biology, pipelines, current and future prospects for production. Biotechnol. Adv. 2022, 54, 107871. [Google Scholar] [CrossRef] [PubMed]
- Shikov, A.N.; Flisyuk, E.V.; Obluchinskaya, E.D.; Pozharitskaya, O.N. Pharmacokinetics of Marine-Derived Drugs. Mar. Drugs 2020, 18, 557. [Google Scholar] [CrossRef] [PubMed]
- Malaweera, D.B.O.; Wijesundara, N.M. Trends in Development of Marine-based Anti-inflammatory Pharmaceuticals. In Encyclopedia of Marine Biotechnology; Wiley: Hoboken, NJ, USA, 2020; pp. 2471–2485. [Google Scholar] [CrossRef]
- Cappello, E.; Nieri, P. From Life in the Sea to the Clinic: The Marine Drugs Approved and under Clinical Trial. Life 2021, 11, 1390. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Nailwal, N.; Kumar, M.; Barve, K. Recent Patents and Discovery of Anti-inflammatory Agents from Marine Source. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, E.R.; Andréasson, K.; Smith, V. Systemic sclerosis. Lancet 2023, 401, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Micallef, L.; Vedrenne, N.; Billet, F.; Coulomb, B.; Darby, I.A.; Desmoulière, A. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 2012, 5, S5. [Google Scholar] [CrossRef] [PubMed]
- Corallo, C.; Cutolo, M.; Volpi, N.; Franci, D.; Aglianò, M.; Montella, A.; Chirico, C.; Gonnelli, S.; Nuti, R.; Giordano, N. Histopathological findings in systemic sclerosis-related myopathy: Fibrosis and microangiopathy with lack of cellular inflammation. Ther. Adv. Musculoskelet. Dis. 2017, 9, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Soldano, S.; Smith, V. Pathophysiology of systemic sclerosis: Current understanding and new insights. Expert. Rev. Clin. Immunol. 2019, 15, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Anderson, H.A.; Mathieson, J.W.; Thomson, R.H. Distribution of spinochrome pigments in echinoids. Comp. Biochem. Physiol. 1969, 28, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Sedova, K.; Bernikova, O.; Azarov, J.; Shmakov, D.; Vityazev, V.; Kharin, S. Effects of echinochrome on ventricular repolarization in acute ischemia. J. Electrocardiol. 2015, 48, 181–186. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Sadek, S.A.; Hassanein, S.S.; Soliman, A.M. Hepatoprotective Effect of Echinochrome Pigment in Septic Rats. J. Surg. Res. 2019, 234, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Lennikov, A.; Kitaichi, N.; Noda, K.; Mizuuchi, K.; Ando, R.; Dong, Z.; Fukuhara, J.; Kinoshita, S.; Namba, K.; Ohno, S.; et al. Amelioration of endotoxin-induced uveitis treated with the sea urchin pigment echinochrome in rats. Mol. Vis. 2014, 20, 171–177. [Google Scholar]
- Lebed’ko, O.A.; Ryzhavskii, B.Y.; Demidova, O.V. Effect of Antioxidant Echinochrome A on Bleomycin-Induced Pulmonary Fibrosis. Bull. Exp. Biol. Med. 2015, 159, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Kikionis, S.; Papakyriakopoulou, P.; Mavrogiorgis, P.; Vasileva, E.A.; Mishchenko, N.P.; Fedoreyev, S.A.; Valsami, G.; Ioannou, E.; Roussis, V. Development of Novel Pharmaceutical Forms of the Marine Bioactive Pigment Echinochrome A Enabling Alternative Routes of Administration. Mar. Drugs 2023, 21, 250. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Coley, W.B. The treatment of malignant tumors by repeated inoculations of erysipelas: With a report of ten original cases, 1893. Clin. Orthop. Relat. Res. 1991, 266, 3–11. [Google Scholar]
- Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S. Elie Metchnikoff: Father of natural immunity. Eur. J. Immunol. 2008, 38, 3257–3264. [Google Scholar] [CrossRef] [PubMed]
- Tardito, S.; Martinelli, G.; Soldano, S.; Paolino, S.; Pacini, G.; Patane, M.; Alessandri, E.; Smith, V.; Cutolo, M. Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun. Rev. 2019, 18, 102397. [Google Scholar] [CrossRef]
- Toledo, D.M.; Pioli, P.A. Macrophages in Systemic Sclerosis: Novel Insights and Therapeutic Implications. Curr. Rheumatol. Rep. 2019, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Long, K.B.; Beatty, G.L. Harnessing the antitumor potential of macrophages for cancer immunotherapy. Oncoimmunology 2013, 2, e26860. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Brzostek, J.; Gascoigne, N.R.; Rybakin, V. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition. Front. Immunol. 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Amarnath, S.; Mangus, C.W.; Wang, J.C.; Wei, F.; He, A.; Kapoor, V.; Foley, J.E.; Massey, P.R.; Felizardo, T.C.; Riley, J.L.; et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci. Transl. Med. 2011, 3, 111ra120. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef] [PubMed]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Castillo Gutiérrez, E.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Kostine, M.; Finckh, A.; Bingham, C.O.; Visser, K.; Leipe, J.; Schulze-Koops, H.; Choy, E.H.; Benesova, K.; Radstake, T.; Cope, A.P.; et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann. Rheum. Dis. 2021, 80, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Campitiello, R.; Gotelli, E.; Soldano, S. The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front. Immunol. 2022, 13, 867260. [Google Scholar] [CrossRef]
- Goold, H.D.; Moseley, J.L.; Lauersen, K.J. The synthetic future of algal genomes. Cell Genom. 2024, 4, 100505. [Google Scholar] [CrossRef]
- Li, J.; Agathos, S.N.; Gao, Z. Editorial: Emerging trends in genetic engineering of microalgae. Front. Bioeng. Biotechnol. 2024, 12, 1403711. [Google Scholar] [CrossRef]
- Torres-Tiji, Y.; Sethuram, H.; Gupta, A.; McCauley, J.; Dutra-Molino, J.V.; Pathania, R.; Saxton, L.; Kang, K.; Hillson, N.J.; Mayfield, S.P. Bioinformatic prediction and high throughput in vivo screening to identify cis-regulatory elements for the development of algal synthetic promoters. bioRxiv 2024. [Google Scholar] [CrossRef]
- McQuillan, J.L.; Berndt, A.J.; Sproles, A.E.; Mayfield, S.P.; Pandhal, J. Novel cis-regulatory elements as synthetic promoters to drive recombinant protein expression from the Chlamydomonas reinhardtii nuclear genome. New Biotechnol. 2022, 68, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Jacobebbinghaus, N.; Lauersen, K.J.; Kruse, O.; Baier, T. Bicistronic expression of nuclear transgenes in Chlamydomonas reinhardtii. Plant J. 2024, 118, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Ross, I.L.; Budiman, S.; Le, H.P.; Xiong, D.; Hemker, F.; Millen, E.A.; Oey, M.; Hankamer, B. Strategy for unlimited cycles of scarless oligonucleotide directed gene editing in Chlamydomonas reinhardtii. bioRxiv 2024. [Google Scholar] [CrossRef]
- Cutolo, E.A.; Mandalà, G.; Dall’Osto, L.; Bassi, R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022, 10, 743. [Google Scholar] [CrossRef]
- Inckemann, R.; Chotel, T.; Brinkmann, C.K.; Burgis, M.; Andreas, L.; Baumann, J.; Sharma, P.; Klose, M.; Barret, J.; Ries, F.; et al. Advancing chloroplast synthetic biology through high-throughput plastome engineering of Chlamydomonas reinhardtii. bioRxiv 2024. [Google Scholar] [CrossRef]
- Xie, Z.; He, J.; Peng, S.; Zhang, X.; Kong, W. Biosynthesis of protein-based drugs using eukaryotic microalgae. Algal Res. 2023, 74, 103219. [Google Scholar] [CrossRef]
- Dubey, K.K.; Kumar, A.; Baldia, A.; Rajput, D.; Kateriya, S.; Singh, R.; Nikita; Tandon, R.; Mishra, Y.K. Biomanufacturing of glycosylated antibodies: Challenges, solutions, and future prospects. Biotechnol. Adv. 2023, 69, 108267. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Khan, M.A.; Ahmed, N.; Bhatti, R.; Pervaiz, R.; Malik, K.; Tahir, S.; Abbas, R.; Ashraf, F.; Ali, Q. Cloning and expression of an anti-cancerous cytokine: Human IL-29 gene in Chlamydomonas reinhardtii. AMB Express 2023, 13, 23. [Google Scholar] [CrossRef]
- Torres-Tiji, Y.; Fields, F.J.; Yang, Y.; Heredia, V.; Horn, S.J.; Keremane, S.R.; Jin, M.M.; Mayfield, S.P. Optimized production of a bioactive human recombinant protein from the microalgae Chlamydomonas reinhardtii grown at high density in a fed-batch bioreactor. Algal Res. 2022, 66, 102786. [Google Scholar] [CrossRef]
- Stavridou, E.; Karapetsi, L.; Nteve, G.M.; Tsintzou, G.; Chatzikonstantinou, M.; Tsaousi, M.; Martinez, A.; Flores, P.; Merino, M.; Dobrovic, L.; et al. Landscape of microalgae omics and metabolic engineering research for strain improvement: An overview. Aquaculture 2024, 587, 740803. [Google Scholar] [CrossRef]
- Cao, K.; Cui, Y.; Sun, F.; Zhang, H.; Fan, J.; Ge, B.; Cao, Y.; Wang, X.; Zhu, X.; Wei, Z.; et al. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol. Adv. 2023, 68, 108236. [Google Scholar] [CrossRef]
- Sharma, A.; Nawkarkar, P.; Kapase, V.U.; Chhabra, M.; Kumar, S. Engineering of ketocarotenoid biosynthetic pathway in Chlamydomonas reinhardtii through exogenous gene expression. Syst. Microbiol. Biomanuf. 2024. [Google Scholar] [CrossRef]
- Kneip, J.S.; Kniepkamp, N.; Jang, J.; Mortaro, M.G.; Jin, E.; Kruse, O.; Baier, T. CRISPR/Cas9-Mediated Knockout of the Lycopene ε-Cyclase for Efficient Astaxanthin Production in the Green Microalga Chlamydomonas reinhardtii. Plants 2024, 13, 1393. [Google Scholar] [CrossRef] [PubMed]
- Marcolungo, L.; Bellamoli, F.; Cecchin, M.; Lopatriello, G.; Rossato, M.; Cosentino, E.; Rombauts, S.; Delledonne, M.; Ballottari, M. Haematococcus lacustris genome assembly and annotation reveal diploid genetic traits and stress-induced gene expression patterns. Algal Res. 2024, 80, 103567. [Google Scholar] [CrossRef]
- Hammel, A.; Cucos, L.-M.; Caras, I.; Ionescu, I.; Tucureanu, C.; Tofan, V.; Costache, A.; Onu, A.; Hoepfner, L.; Hippler, M.; et al. The red alga Porphyridium as a host for molecular farming: Efficient production of immunologically active hepatitis C virus glycoprotein. Proc. Natl. Acad. Sci. USA 2024, 121, e2400145121. [Google Scholar] [CrossRef] [PubMed]
- Hammel, A.; Neupert, J.; Bock, R. Optimized transgene expression in the red alga Porphyridium purpureum and efficient recombinant protein secretion into the culture medium. Plant Mol. Biol. 2024, 114, 18. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liu, M.; Yu, L.; Sun, H.; Liu, J. Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar. Drugs 2024, 22, 54. [Google Scholar] [CrossRef] [PubMed]
- Mariam, I.; Bettiga, M.; Rova, U.; Christakopoulos, P.; Matsakas, L.; Patel, A. Ameliorating microalgal OMEGA production using omics platforms. Trends Plant Sci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Græsholt, C.; Brembu, T.; Volpe, C.; Bartosova, Z.; Serif, M.; Winge, P.; Nymark, M. Zeaxanthin epoxidase 3 Knockout Mutants of the Model Diatom Phaeodactylum tricornutum Enable Commercial Production of the Bioactive Carotenoid Diatoxanthin. Mar. Drugs 2024, 22, 185. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, J.; Li, Y.; Yang, S.; Chen, D.D.; Tu, Y.; Liu, J.; Sun, Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem. Pharmacol. 2024, 220, 115958. [Google Scholar] [CrossRef] [PubMed]
- Melis, A.; Hidalgo Martinez, D.A.; Betterle, N. Perspectives of cyanobacterial cell factories. Photosynth. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bourgade, B.; Stensjö, K. Synthetic biology in marine cyanobacteria: Advances and challenges. Front. Microbiol. 2022, 13, 994365. [Google Scholar] [CrossRef] [PubMed]
- Middelboe, M.; Brussaard, C.P.D. Marine Viruses: Key Players in Marine Ecosystems. Viruses 2017, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, Y.; Yan, W.; Wang, Y.; Cai, L.; Luo, T.; Li, H.; Weinbauer, M.G.; Jiao, N. Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun. Biol. 2020, 3, 256. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Rodriguez, T.M.; Hollister, E.B. Unraveling the viral dark matter through viral metagenomics. Front. Immunol. 2022, 13, 1005107. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.J.; Cicéron, F.; Monier, A. The potential of nature’s unseen industrious heroes: Marine viruses. Biochem. 2022, 44, 18–21. [Google Scholar] [CrossRef]
- D’Adamo, S.; Kormelink, R.; Martens, D.; Barbosa, M.J.; Wijffels, R.H. Prospects for viruses infecting eukaryotic microalgae in biotechnology. Biotechnol. Adv. 2021, 54, 107790. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.H.; Van Etten, J.L.; Allen, M.J. The Phycodnaviridae: The story of how tiny giants rule the world. Curr. Top. Microbiol. Immunol. 2009, 328, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Shitrit, D.; Hackl, T.; Laurenceau, R.; Raho, N.; Carlson, M.C.G.; Sabehi, G.; Schwartz, D.A.; Chisholm, S.W.; Lindell, D. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022, 16, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Novikova, O.; Topilina, N.; Belfort, M. Enigmatic distribution, evolution, and function of inteins. J. Biol. Chem. 2014, 289, 14490–14497. [Google Scholar] [CrossRef]
- Allen, M.J.; Lanzén, A.; Bratbak, G. Characterisation of the coccolithovirus intein. Mar. Genom. 2011, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 629629. [Google Scholar] [CrossRef]
- Evans, L.S.; Buchan, P.M.; Fortnam, M.; Honig, M.; Heaps, L. Putting coastal communities at the center of a sustainable blue economy: A review of risks, opportunities, and strategies. Front. Political Sci. 2023, 4, 1032204. [Google Scholar] [CrossRef]
- Niner, H.J.; Ardron, J.A.; Escobar, E.G.; Gianni, M.; Jaeckel, A.; Jones, D.O.B.; Levin, L.A.; Smith, C.R.; Thiele, T.; Turner, P.J.; et al. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim. Front. Mar. Sci. 2018, 5, 53. [Google Scholar] [CrossRef]
- Paulus, E. Shedding Light on Deep-Sea Biodiversity—A Highly Vulnerable Habitat in the Face of Anthropogenic Change. Front. Mar. Sci. 2021, 8, 667048. [Google Scholar] [CrossRef]
- Ferguson, D.K.; Li, C.; Chakraborty, A.; Gittins, D.A.; Fowler, M.; Webb, J.; Campbell, C.; Morrison, N.; MacDonald, A.; Hubert, C.R.J. Multi-year seabed environmental baseline in deep-sea offshore oil prospective areas established using microbial biodiversity. Mar. Pollut. Bull. 2023, 194, 115308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, S. Overview of research on marine resources and economic development. Mar. Econ. Manag. 2022, 5, 69–83. [Google Scholar] [CrossRef]
- Ibarbalz, F.M.; Henry, N.; Brandão, M.C.; Martini, S.; Busseni, G.; Byrne, H.; Coelho, L.P.; Endo, H.; Gasol, J.M.; Gregory, A.C.; et al. Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 2019, 179, 1084–1097.e1021. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; AbdElgawad, H.; Castellano, I.; Selim, S.; Beemster, G.T.S.; Asard, H.; Buia, M.C.; Palumbo, A. Effects of ocean acidification on the levels of primary and secondary metabolites in the brown macroalga Sargassum vulgare at different time scales. Sci. Total Environ. 2018, 643, 946–956. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cutolo, E.A.; Campitiello, R.; Caferri, R.; Pagliuca, V.F.; Li, J.; Agathos, S.N.; Cutolo, M. Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia. Mar. Drugs 2024, 22, 304. https://doi.org/10.3390/md22070304
Cutolo EA, Campitiello R, Caferri R, Pagliuca VF, Li J, Agathos SN, Cutolo M. Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia. Marine Drugs. 2024; 22(7):304. https://doi.org/10.3390/md22070304
Chicago/Turabian StyleCutolo, Edoardo Andrea, Rosanna Campitiello, Roberto Caferri, Vittorio Flavio Pagliuca, Jian Li, Spiros Nicolas Agathos, and Maurizio Cutolo. 2024. "Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia" Marine Drugs 22, no. 7: 304. https://doi.org/10.3390/md22070304
APA StyleCutolo, E. A., Campitiello, R., Caferri, R., Pagliuca, V. F., Li, J., Agathos, S. N., & Cutolo, M. (2024). Immunomodulatory Compounds from the Sea: From the Origins to a Modern Marine Pharmacopoeia. Marine Drugs, 22(7), 304. https://doi.org/10.3390/md22070304