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Abstract: The current 2019–2021 marine pharmacology literature review provides a continuation
of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research
during 2019–2021 was published by researchers in 42 countries and contributed novel mechanism-
of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed
marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal,
antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with
antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while
another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which
upon further investigation, may contribute to several pharmacological classes. Thus, in 2019–2021, a
very active preclinical marine natural product pharmacology pipeline provided novel mechanisms
of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the
therapy of several disease categories.

Keywords: drug; marine; sea; pharmacology; pharmaceutical; review; toxicology; pipeline; preclinical;
mechanism

1. Introduction

The aim of the present review is to consolidate the 2019–2021 preclinical marine phar-
macology literature, with a similar format to our previous 12 reviews of this series, which
cover the period 1998–2018 [1–12]. The scientific electronic databases MarinLit, PubMed,
PubChem, ScienceDirect, and Google Scholar were used to search and retrieve the peer-
reviewed published literature. In contrast with our previous reviews, we have focused the
current review only on structurally characterized marine chemicals, classified into six major
chemical classes, namely, polyketides, terpenes, peptides, alkaloids, shikimates, and sugars,
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including compounds with mixed biogenetic origin, using a modification of Schmitz’s
chemical classification [13]. Mechanism-of-action studies of marine chemicals demonstrat-
ing antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological
activities are summarized in Table 1, and the corresponding structures are presented in
Figure 1. Similarly, mechanism-of-action studies with marine compounds with immune
and nervous system activities, as well as antidiabetic and anti-inflammatory bioactivities,
are listed in Table 2, with their respective structures consolidated in Figure 2. Finally,
marine compounds with miscellaneous mechanisms of action shown to affect multiple
cellular and molecular targets, but with no currently assigned pharmacological category,
are presented in Table 3, with their structures depicted in Figure 3.

Table 1. Marine pharmacology in 2019–2021: mechanism-of-action studies with marine compounds
demonstrating antibacterial, antifungal, antituberculosis, antiprotozoal and antiviral activities.

Drug Class Compound/
Organism a Chemistry Pharmacologic

Activity IC50
b MMOA c Country/

Territory d References

Antibacterial adipostatin E (1)/
bacterium Polyketide h

B. subtilis and
L.

monocytogenes
inhibition

3.4, 5.9 µM PPCS inhibition CRI, USA [14]

Antibacterial arenicin-3 (2)/worm Peptide f
E. coli and

K. pneumoniae
inhibition

0.38–0.76 µM +
Cell membrane
disruption and

ATP release

AUS, CHE,
CHN, DNK,
DEU, GBR,

IRL
[15]

Antibacterial bisanhydroaklavinone
(3)/bacterium Polyketide h S. aureus

inhibition 16.6 µM +
Cell membrane

damage and
DNA leakage

PHL, SGP [16]

Antibacterial cladodionen (4)/
fungus Polyketide h

P. aeruginosa
quorum
sensing

inhibition

<400 µM
Downregulation

of quorum
sensing genes

CHN [17]

Antibacterial cyclo(L-leucyl-L-
prolyl) (5)/bacterium Peptide f S. marcescens

inhibition 952 µM +
Biofilm

formation
inhibition

IND [18]

Antibacterial C. cervicornis
diterpene (6)/alga Terpenoid e MR S. aureus

inhibition 22 µM + Inhibition of
efflux pump BRA [19]

Antibacterial chrysophaentin I
(7)/alga Polyketide h S. aureus

inhibition 15.5 µM +
Cytoskeletal
protein FtsZ

inhibition
USA [20]

Antibacterial crustin (8)/shrimp Peptide f M. luteus
inhibition 2.5 µM +

Membrane
disruption and
depolarization

CHN [21]

Antibacterial D. candidum alkaloid
(9)/ascidian Alkaloid f

S. aureus, E.
coli, K.

pneumoniae
inhibition

18.5 µM +
Biofilm

formation
inhibition

ITA [22]

Antibacterial doscadenamide A
(10)/cyanobacterium

Peptide f/
Polyketide h

P. aeruginosa
quorum
sensing

activation
<10 µM AHL-binding

site USA [23]

Antibacterial kalafungin (11)/
bacterium Polyketide h S. aureus

inhibition 27, 53 µM +
Non-competitive

β-lactamase
inhibition

IND [24]

Antibacterial korormicin A
(12)/bacterium Polyketide h

V. cholerae and
P. aeruginosa

inhibition
10–30 µM +

Reactive oxygen
species

production

BRA, JPN,
USA [25]

Antibacterial lactoquinomycin A
(13)/bacterium Polyketide h

MR S. aureus
and S. enterica

inhibition
0.06–0.55 µM +

Induction of
DNA

damage
S. KOR [26]

Antibacterial octominin (14)/
octopus Peptide f S. parauberis

inhibition 18.8 µM +

Membrane
disruption

and
chromosomal
DNA binding

S. KOR [27]
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Table 1. Cont.

Drug Class Compound/
Organism a Chemistry Pharmacologic

Activity IC50
b MMOA c Country/

Territory d References

Antibacterial
P. chrysogenum
dipeptide (15)/

fungus
Peptide f

C. violaceum
and P.

aeruginosa
inhibition

91.4 mM + Anti-quorum
sensing activity CHN [28]

Antibacterial piscidin 5 (16)/fish Peptide f

V. para-
haemolyticus

and P. damselae
inhibition

1.5–6.2 µM
Membrane

disruption and
DNA binding

CHN [29]

Antibacterial phorbaketal B and C
(17, 18)/sponge Terpenoid e

S. aureus
biofilm

inhibition
<125 µM

Downregulation
of

hemolysin-
related genes

S. KOR [30]

Antibacterial S. algae polyketide
(19)/bacterium Polyketide h

E. coli and MR
S. aureus

inhibition
9.3 µM +

MRSA penicillin-
binding protein

active site
docking

IND [31]

Antibacterial S. algae polyketide
(20)/bacterium Polyketide h

VR E. faecalis
and MR S.

aureus
inhibition

2–6 µM +
Siderophore

mechanism of
action

IND [32]

Antibacterial securamine H
(21)/bryozoan Alkaloid f S. aureus

inhibition 3.13 µM +
Reduction in

metabolic
activity

NOR [33]

Antibacterial turgencin A (22)/
ascidian Peptide f

C. glutamicum
and B. subtilis

inhibition
0.4 µM + Cell membrane

disruption AUS, NOR [34]

Antibacterial tyramine (23)/
bacterium Alkaloid f

P. aeruginosa
quorum
sensing

inhibition

7.3 mM +
Pyoverdine
production
inhibition

ESP [35]

Antifungal amantelide A (24)/
cyanobacterium Polyketide h S. cervisiae

inhibition 12.5, 50 µM

Ergosterol
binding

and actin
polymerization

promotion

JPN, PHL,
USA [36]

Antifungal atranone Q (25)/
fungus Terpenoid e

C. albicans
growth

inhibition
20.5 µM

Cytoplasm
agglutination

and cell
membrane
alterations

CHN [37]

Antifungal fusarilactone A
(26)/fungus Polyketide h P. theae growth

inhibition 118.2 µM HMG-CoA
inhibition CHN [38]

Antifungal
2-n-heptyl-4-

hydroxyquinoline
(27)/bacterium

Alkaloid f
C. albicans

hyphal growth
inhibition

46.9 µM
cAMP-Efg1

pathway
inhibition

S. KOR [39]

Antifungal oceanapiside
(28)/sponge Polyketide h C. glabrata

inhibition 15.4 µM
Sphingolipid

synthesis
inhibition

PHL, USA [40]

Antifungal puupehenone
(29)/sponge Terpenoid e

CAS-
insensitive C.

neoformans
inhibition

7.6–15.2 µM +
CWI integrity

pathway
disruption

USA [41]

Antifungal
S. olivaceus

butyrylamide
(30)/bacterium

Shikimate g

C. albicans
hyphal growth
inhibition and

adhesion

487.4 µM +

Downregulation
of

hyphal formation
genes

CHN [42]

Antimalarial capillasterquinone B
(31)/bacterium Polyketide h

P. falciparum
3D7

inhibition
29.3 µM

Lysyl-tRNA
synthetase

binding

DEU, EGY,
GBR, SAU [43]

Antimalarial kakeromamide B
(32)/cyanobacterium Peptide f

Blood-stage P.
falciparum
inhibition

8.9 µM
Binding to
Plasmodium

actin and sortilin
USA [44]

Antimalarial friomaramide
(33)/sponge Peptide f

P. falciparum
sporozoites

liver infection
inhibition

<6.1 µM *

Hepatocyte
nuclei

viability
confirmed

AUS, USA [45]
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Table 1. Cont.

Drug Class Compound/
Organism a Chemistry Pharmacologic

Activity IC50
b MMOA c Country/

Territory d References

Antimalarial nitenin (34)/sponge Terpenoid e P. falciparum
inhibition 0.29 µM

Ring to
trophozoite
transition

USA [46]

Antiprotozoal 4-epi-arbusculin A
(35)/zoanthid Terpenoid e A. castellanii

inhibition 26 µM Programmed cell
death induction ESP [47]

Antiprotozoal epinecidin-1 (36)/fish Peptide f
Trichomonas

vaginalis
inhibition

<26.7 µM Membrane
disruption TWN [48]

Antiprotozoal isololiolide (37)/
hydroid Terpenoid e

T. cruzi trypo-
mastigotes and

amastigotes
inhibition

32, 40 µM
Disruption of

membrane
integrity

BRA, USA [49]

Antiprotozoal dehydrothyrsiferol
(38)/alga Terpenoid e

A. castellanii
growth

inhibition
5.3 µM Mitochondrial

malfunction MEX, ESP [50]

Antiprotozoal gallinamide A
(39)/cyanobacterium Peptide f

T. cruzi
amastigote
inhibition

14.7 nM
Recombinant

cruzain
inhibition

USA [51]

Antiprotozoal 7-oxostaurosporine
(40)/bacterium Alkaloid f

A. castellanii
growth

inhibition
0.8, 0.9, 5.5 µM Mitochondrial

malfunction ECU, ESP [52]

Antiprotozoal polyaurine A (41)/
ascidian Alkaloid f S. mansoni

inhibition >100 µM
Egg-production

impairment
in vitro

IDN, ITA [53]

Antituberculosis fiscpropionate A
(42)/fungus Polyketide h

M. tuberculosis
MptpB

inhibition
5.1 µM Noncompetitive

inhibition CHN [54]

Antituberculosis fucoxanthin
(43)/alga Terpenoid e

M. tuberculosis
strains

inhibition
2.8–4.1
µM +

TBNAT
inhibition

CHL, CZE,
IRN, ROU [55]

Antiviral chartarlactam T
(44)/fungus Alkaloid f Zika virus

inhibition 10 µM * Protein E
inhibition CHN [56]

Antiviral
harzianoic acids A

and B (45,
46)/fungus

Terpenoid e HCV inhibition 35,43 µM
Virus replication

and
entry inhibition

CHN, DEU [57]

Antiviral homoseongomycin
(47)/bacterium Polyketide h

VEEV and
EEEV

inhibition
8.6 µM Viral replication

inhibition TWN, USA [58]

Antiviral penicillixanthone A
(48)/fungus Polyketide h

HIV-1
replication
inhibition

0.36 µM
CCR5/CXCR4

receptor
antagonist

CHN [59]

Antiviral portimine (49)/
dinoflagellate Polyketide h

HIV-1
replication
inhibition

4.1 nM
Reverse-

transcriptase
inhibition

JPN [60]

a Organism: Kingdom Animalia: worm (Phylum Annelida); shrimp (Phylum Arthropoda); bryozoa (Phylum
Bryozoa); ascidian, fish (Phylum Chordata); hydroid, zoanthid (Phylum Cnidaria), dinoflagellate (Phylum Di-
noflagellata); octopus (Phylum Mollusca); sponge (Phylum Porifera); Kingdom Monera: bacterium, cyanobacterium
(Phylum Cyanobacteria); Kingdom Fungi: fungus; Kingdom Plantae: alga; b IC50: concentration of a compound
required for 50% inhibition in vitro, *: estimated IC50; + MIC: minimum inhibitory concentration, c MMOA:
molecular mechanism of action; d Country/Territory: AUS: Australia; BRA: Brazil; CHE: Switzerland; CHL:
Chile; CHN: China; CRI: Costa Rica; CZE: Czech Republic; DNK: Denmark; DEU: Germany; ECU: Ecuador;
EGY: Egypt; ESP: Spain; GBR: United Kingdom; IDN: Indonesia; IND: India; IRL: Ireland; IRN: Iran; ITA: Italy;
JPN: Japan; MEX: Mexico; NOR: Norway; PHL: Philippines (the); ROU: Romania; SAU: Saudi Arabia; SGP:
Singapore; S. KOR: South Korea; TWN: Taiwan; Chemistry: e terpene; f nitrogen-containing compound; g shiki-
mate; h polyketide; Abbreviations: AHL: acylated homoserine lactone; cAMP: cyclic AMP; CAS: caspofungin;
CCR5: C-C chemokine receptor type 5; CWI: cell-wall integrity; CXCR4: C-X-C chemokine receptor type 4;
EEEV: Eastern equine encephalitis virus; Efg1: elongation factor 1 transcription factor; HCV: hepatitis C virus;
HIV-1: human immunodeficiency virus type-1; HMG-CoA: 3-hydroxy-3-methylglutaryl-CoA; M: Mycobacterium;
MptpB: protein tyrosine phosphatase B; MR: methicillin-resistant; MRSA: methicillin-resistant Staphylococcus
aureus; PPCS: phosphopantothenoylcysteine synthetase; S: Staphylococcus; TBNAT: arylamine-N-acetyltransferase;
VEEV: Venezuelan equine encephalitis virus; T: Trypanosoma; VR: vancomycin-resistant.



Mar. Drugs 2024, 22, 309 5 of 58Mar. Drugs 2024, 22, 309 5 of 58 
 

 

 

Figure 1. Cont.



Mar. Drugs 2024, 22, 309 6 of 58Mar. Drugs 2024, 22, 309 6 of 58 
 

 

 

Figure 1. Cont.



Mar. Drugs 2024, 22, 309 7 of 58Mar. Drugs 2024, 22, 309 7 of 58 
 

 

 

 

Figure 1. Marine pharmacology in 2019–2021: marine compounds with antibacterial, antifungal, an-

tiprotozoal, antituberculosis and antiviral activities. 

Figure 1. Marine pharmacology in 2019–2021: marine compounds with antibacterial, antifungal,
antiprotozoal, antituberculosis and antiviral activities.



Mar. Drugs 2024, 22, 309 8 of 58

2. Marine Compounds with Antibacterial, Antifungal, Antiprotozoal, Antituberculosis
and Antiviral Activities

Table 1 presents 2019–2021 mechanism-of-action studies with 49 structurally character-
ized marine compounds (1–49) that demonstrated antibacterial, antifungal, antiprotozoal,
antituberculosis, and antiviral pharmacological activities and that are shown in Figure 1.

2.1. Antibacterial Activity

As shown in Table 1 and Figure 1, during 2019–2021, studies with 22 structurally
characterized marine natural products (1–22) isolated from bacteria, fungi, sponges, worms,
shrimp, ascidians, bryozoa, octopus, fish and algae reported novel antibacterial mechanisms
of pharmacological action targeting bacterial coenzyme-A biosynthesis, membrane disrup-
tion, quorum sensing, efflux pumps, cytoskeletal FTsZ protein, biofilm formation, produc-
tion of reactive oxygen species, DNA damage, and penicillin-binding protein (PBP)2a.

Gomez Rodriguez and colleagues identified the polyketide adipostatin E (1), dis-
covered in the marine Streptomyces blancoensis strain 20733-1, as a potent inhibitor of
Streptococcus pneumoniae coenzyme-A biosynthesis, by targeting phosphopantothenoyl-
cysteine synthetase (PPCS), which was considered “an effective drug target” [14]. Elliott
and colleagues investigated an amphipathic peptide arenicin-3 (2), found in the marine
polychaete lugworm Arenicola marina, which induced a “potent and rapid antimicrobial
activity in vitro against various multidrug-resistant Gram-negative bacteria and exten-
sively drug-resistant pathogenic Gram-negative bacteria” by a mechanism of action that
resulted from “bacterial membrane binding and disruption of membrane integrity” as well
as ATP release [15]. Paderog and colleagues reported that the anthracycline polyketide
bisanhydroaklavinone (3), isolated from Philippine marine-sediment-derived Steptomyces
griseorubens strain DSD069, was shown to cause cell-membrane damage to multidrug-
resistant Staphylococcus aureus by “leakage and loss of vital cell constituents. . .and increase
membrane permeability” [16].

Wang and colleagues discovered the polyketide cladodionen (4), purified from the
marine fungus Cladosporium sp. Z148, which was shown to be a novel quorum sensing
inhibitor by a mechanism involving the inhibition of quorum-sensing-related gene ex-
pression as well as biofilm formation [17]. Gowrishankar and colleagues characterized
the cyclic dipeptide cyclo(L-leucyl-L-prolyl) (5), isolated from the mangrove rhizosphere
bacterium Bacillus amyloliquefaciens, which inhibited the uropathogen Serratia marcesens by a
mechanism that involved inhibition of quorum sensing, as revealed by dose-dependent de-
crease in prodigiosin secretion at sub-minimum inhibitory concentrations; thus, this study
was “the first. . . to uncover the potent antibiofilm efficacy of (5) against a Gram-negative
pathogen. . .” [18]. Silva de Figueiredo and colleagues showed that a known marine alga
Canistrocarpus cervicornis-derived diterpene (6) decreased the minimum inhibitory activity
of tetracycline against methicillin-resistant S. aureus by eight-fold, suggesting this seaweed
diterpene might be a “potential source(s) of antibiotic adjuvant, acting as (a) potential
inhibitor of efflux pump” [19].

Davison and Bewley identified a new polyketide chrysophaentin analog (7), purified
from laboratory cultures of the marine microalga Chrysophaeum taylorii NIED-1699, which
demonstrated bacterial Gram-positive activity by competitive inhibition of the bacterial
cytoskeletal FTsZ protein, a “promising target for novel antibiotic development” [20]. Wang
and colleagues investigated the peptide crustin (8), uncovered in the deep-sea hydrothermal
vent shrimp Rimicaris sp., which was lethal to Gram-positive bacteria by a mechanism that
involved membrane disruption and depolarization [21]. Campana and colleagues reported
that the marine bisindole alkaloid 2,2-bis(6-bromo-3-indolyl)ethylamine (9), discovered
in the California marine tunicate Didemnum candidum and the New Caledonian marine
sponge Orina spp., showed high antimicrobial activity against E. coli, S. aureus and K. pneu-
moniae by a mechanism that involved both biofilm formation inhibition and disaggregation,
highlighting the “potential of (9) as antimicrobial and anti-biofilm agent” [22].
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Liang and colleagues discovered that the peptide–polyketide doscadenamide A (10),
found in the marine cyanobacterium Moorea bouillonii, modulated quorum sensing in
the Gram-negative bacterium P. aeruginosa by a mechanism that involved binding to
intracellular receptor proteins, thus affecting a process that plays a critical role in bac-
terial pathogenesis [23]. Jabila and colleagues characterized the polyketide kalafungin
(11), found in a marine Streptomyces in Staphylococcus aureus-infected zebrafish, which
demonstrated beta-lactamase inhibition by a noncompetitive inhibition mechanism that
resulted in the “destruction of cell membrane” [24]. Maynard and colleagues showed that
the known polyketide antibiotic korormicin A (12), isolated from the marine bacterium
Pseudoalteromonas sp. J010, killed Gram-negative bacteria that express the Na+-pumping
NADH:quinone oxidoreductase by the production of reactive oxygen species “that cause
damage to cells” [25]. Chung and colleagues determined that the polyketide lactoquino-
mycin A (13), purified from the marine bacterium Streptomyces bacillaris strain MBTC38,
had potent activity against Gram-positive bacteria by damaging DNA by intercalation and
“switch(ed) from the supercoiled to relaxed form” [26].

Jayathilaka and colleagues reported that the peptide octominin (14), derived from a
Korean marine Octopus minor defense protein, demonstrated bactericidal activity against
multidrug-resistant Gram-positive bacterium Streptococcus parauberis, by causing “cytoplas-
mic membrane damage and permeability alterations. . . possible DNA binding” [27]. Yu
and colleagues identified a cyclic dipeptide cyclo(L-Tyr-L-Pro) (15), isolated from the marine
fungus Penicillium chrysogenum DXY-1, that decreased bacterial quorum sensing-mediated
pathogenicity by competitively binding to the receptor protein active pocket, thus becom-
ing “a potential pro-drug for treating drug-resistant P. aeruginosa infections” [28]. Pan and
colleagues investigated the peptide piscidin 5 (16), discovered in the marine bass Morone
chrysops, and determined that it damaged bacterial membranes by a mechanism involving
pathogen-associated molecular patterns, and in addition, “could interact with bacterial
genome DNA” [29]. Kim and colleagues reported that the bacterial antibiofilm activity of
terpenoids phorbaketal B and C (17, 18), derived from the marine sponge Phorbas sp., as
determined by transcriptional analysis, resulted from the inhibition of the “expression of
the biofilm-related hemolysin gen hla and the nuclease gene nuc1” [30]. Kizhakkekalam and
colleagues purified an aryl-enclosed macrocyclic polyketide (19), found in the intertidal
marine red macroalga Hypnea valentiae-associated heterotrophic bacterium Shewanella algae,
that demonstrated both antibacterial and antioxidant bioactivity which correlated with
docking “with the active site of target protein, penicillin-binding protein (PBP)2a” [31].
Chakraborty and colleagues similarly discovered a macrocyclic polyketide (20), isolated
from the marine red macroalga Hypnea valentia-associated heterotropic bacterium She-
wanella algae, with a siderophore mode of action that correlated with docking “with the
binding site of PBP2a” [32]. Hansen and colleagues characterized the alkaloid securamine
H (21), purified from the Arctic marine bryozoan Securiflustra securifrons, which potently
inhibited Staphylococcus aureus by a reduction in metabolic activity that did not appear to
involve cell membrane disruption nor “interfere(nce) with DNA replication, transcription
or translation” [33].

Hansen and colleagues reported the isolation and characterization of a cysteine-rich
peptide turgencin A (22) from the Arctic marine colonial ascidian Synoicum turgens, which
displayed potent Gram-negative and Gram-positive antimicrobial activity via a dose- and
time-dependent mechanism that caused immediate loss of “membrane integrity” resulting
in a “rapid effect on cell viability” [34]. Reina and colleagues described a tyramine (23)
from the Gram-negative marine bacterium Vibrio alginolyticus, and demonstrated that this
quorum-sensing compound inhibited pyoverdine production and motility in P. aeruginosa,
providing insight into “the use of naturally produced quorum-sensing inhibitors as a
possible strategy to combat bacterial infections” [35].
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2.2. Antifungal Activity

As shown in Table 1 and Figure 1, during 2019–2021, seven studies with structurally
characterized marine natural products (24–30), isolated from bacteria, fungi and sponges,
reported novel pharmacological mechanisms of action targeting ergosterol-containing
membranes, the fungal cell wall, 3-hydroxy-3-methylglutaryl CoA synthase, conversion of
phytosphingosine to phytoceramide, echinocandin (CAS)-responding gene-induction, and
fungal genes involved in filament formation and cell adhesion.

Elsadek and colleagues characterized a novel polyhydroxylated macrolide amantelide
A (24), discovered in the marine cyanobacterium Lyngbya majuscula, and demonstrated
that its mechanism of action is similar to polyene antifungals, as “it binds to ergosterol-
containing membranes”, leading to cell death [36]. Yang and colleagues described the new
dolabellane-type diterpenoid atranone Q (25), derived from the marine-derived fungus
Stachybotrys chartarum, observing that at high in vitro concentrations, it had a “destructive
effect on the cell wall and cell membrane of C. albicans” [37]. Tang and colleagues identified
a novel β-lactone fusarilactone A (26), found in the mangrove sediment-derived fungus
Fusarium solani H915, that inhibited 3-hydroxy-3-methylglutaryl CoA synthase, an enzyme
present in eukaryotes that when inhibited “as shown potential for antiviral, antibacterial
and cardiovascular protection” [38]. Kim and colleagues investigated the known alkaloid
2-n-heptyl-4-hydroxyquinoline (27), isolated from a marine actinomycete Streptomyces sp.
MBTG13, that affected the fungus C. albicans filamentous growth induction by inhibiting
mRNAs “related to the cAMP-Efg1 (signaling) pathway” [39]. Dalisay and colleagues
reported that the polyketide oceanapiside (28), purified from the marine sponge Oceanapia
phillipensis, inhibited C. glabrata sphingolipid metabolism by targeting “the step converting
phytosphingosine to phytoceramide” [40]. Tripathi and colleagues showed that the marine
sesquiterpene quinone puupehenone (29), uncovered in the marine sponge Hyrtios sp.,
potentiated the clinically used antifungal echinocandin (CAS) against CAS-insensitive
Candida neoformans, by inhibiting CAS-responding gene-induction that is required for
fungal cell wall repair [41]. Meng and colleagues characterized the shikimate 3-methyl-N-
(2′-phenethyl)-butyrylamide (30), discovered in the marine bacterium Streptomyces olivaceus,
that exhibited excellent activity against C. albicans by regulating the expression of several
genes “associated with filament formation and cell adhesion” [42].

2.3. Antiprotozoal and Antituberculosis Activity

As shown in Table 1 and Figure 1, in 2019–2021, 13 antiprotozoal (antimalarial, antileish-
manial and antitrypanosomal) and antituberculosis studies with structurally characterized
marine natural products (31–43), isolated from bacteria, sponges, ascidians, zoanthids,
hydroids, fish and algae, reported novel pharmacological mechanisms of action target-
ing Plasmodium falciparum (P. falciparum) lysyl-tRNA synthetase, P. falciparum proteins
actin and sortilin, P. falciparum liver-stage parasite, P. falciparum transition ring to early
trophozoite transition, amoeba Acanthamoeba castellani programmed cell death induction
mechanisms, Trichomonas vaginalis membrane disruption, Trypanosoma cruzi trypomastigote
and amastigote plasma membrane integrity, Trypanosoma cruzi cysteine protease cruzain,
and Schistosoma mansoni parasite egg production.

Malaria is a global disease in humans caused by protozoans of the genus Plasmodium
(P. falciparum, P. ovale, P. vivax and P. malariae), which, as described in the World Health Or-
ganization (WHO) website (https://www.who.int/news-room/fact-sheets/detail/malaria
(accessed on 20 May 2024) currently affects several million people worldwide. Alhadrami
and colleagues characterized the anthraquinone capillasterquinone B (31), discovered in
a coculture of the Red Sea sponge-derived actinobacteria Actinokineospora spheciospongiae
strain EG-49 and Rhodococcus sp. UR59, which showed antimalarial activity by binding to
Plasmodium falciparum lysyl-tRNA synthetase at “several amino acids inside the enzyme’s
active site” [43]. Sweeney-Jones and colleagues described a new cyclic peptide kakero-
mamide B (32), derived from the Fijian marine cyanobacterium Moorea producens, that
was predicted to bind to Plasmodium falciparum proteins actin and sortilin, thus suggesting

https://www.who.int/news-room/fact-sheets/detail/malaria
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“possible interference with parasite invasion of host cells” [44]. Knestrick and colleagues
identified a highly modified linear hexapeptide friomaramide (33), found in the Antarctic
marine sponge Inflatella coelosphaeroide, that inhibited Plasmodium falciparum liver-stage
parasite development, showing “similar inhibitory activity to the known liver-stage an-
timalarial drug primaquine” [45]. Wright and colleagues communicated that the known
terpene nitenin (34), isolated from the deep-water marine sponge Spongia lamella, potently
inhibited Plasmodium falciparum chloroquine-resistant strain Dd2 by targeting the parasite’s
early transition “from ring to early trophozoite”, a novel property for an antimalarial [46].

Rodríguez-Expósito and collaborators investigated the terpenoid 4-epi-arbusculin A
(35), purified from the Canary Islands indigenous marine zoanthid Palythoa aff. clavata,
which affected the life cycle of the free-living amoebae Acanthamoeba castellani Neff by
several programmed cell death induction mechanisms [47]. Huang and colleagues re-
ported that the antimicrobial peptide epinecidin-1 (36) uncovered in the marine grouper
Epinephelus coloides was reported to decrease the metronidazole-resistant protozoan parasite
Trichomonas vaginalis multiplication both in vitro and in vivo, with mechanism of action
involving “membrane disruption” [48]. Lima and colleagues showed that the terpenoid
isololiolide (37), discovered in the marine hydroid Macrorhynchia philippina, inhibited both
trypomastigote and intracellular amastigotes of Trypanosoma cruzi by causing disruption
“of the plasma membrane integrity and a strong depolarization of the mitochondrial mem-
brane potential” [49]. Lorenzo-Morales and colleagues characterized the oxasqualenoid
terpenoid dehydrothyrsiferol (38), derived from the marine red alga Laurencia viridis, which
demonstrated cysticidal activity against Acanthamoeba castellanii trophozoites inducing
chromatin condensation, mitochondrial dysfunction and increased membrane permeabil-
ity [50]. Boudreau and colleagues determined that the peptide gallinamide A (39), origi-
nally reported from the Panamanian marine cyanobacterium Schizothrix sp., was cytotoxic
to the intracellular amastigote stage of the Chagas disease-causative agent Trypanosoma
cruzi, by potently inhibiting the ”validated drug target” cysteine protease cruzain, thus
representing “a new candidate for the treatment of Chagas disease” [51]. Cartuche and
colleagues identified the indolocarbazole alkaloid 7-oxostaurosporine (40), found in cul-
tures of the Ecuadorian mangrove-derived Streptomyces sanyensis PBLC04, which inhibited
anti-Acanthamoeba spp., an agent affecting “millions of people worldwide”, by a mechanism
that resulted in “chromatin condensation”, as well as “affecting membrane permeability
and causing mitochondrial damage” [52]. Casertano and colleagues investigated the novel
alkaloid polyaurine A (41), isolated from the Indonesian marine ascidian Polycarpa aurata,
which, while not cytotoxic to mammalian cells, affected blood-dwelling Schistosoma mansoni
parasite egg production, observed as being “smaller, deformed, and/or fragmented” [53].

Tuberculosis is a disease caused by Mycobacterium tuberculosis in both humans and
animals, and as noted on the WHO’s website (https://www.who.int/news-room/fact-
sheets/detail/tuberculosis (accessed on 20 May 2024), remains a global health challenge
affecting millions of people worldwide, a fact that continues to stimulate ongoing search
for novel marine-derived metabolites as potential therapeutic leads. As shown in Table 1
and Figure 1, during 2019–2021, two antituberculosis studies with structurally characterized
marine natural products (42, 43) reported novel mechanisms of pharmacological action.

Liu and colleagues reported a new bioactive polyketide polypropionate fiscpropionate
A (42), isolated from a deep-sea-derived fungus Aspergillus fischeri FS452, that inhibited
Mycobacterium tuberculosis protein tyrosine phosphatase B by a noncompetitive inhibition
mechanism [54].

2.4. Antiviral Activity

Sudomova and colleagues determined that marine brown algal carotenoid terpenoid
fucoxanthin (43) was bacteriostatic to all clinical Mycobacterium tuberculosis strains tested
by potently and competitively binding to “crucial drug targets” mycobacterial cell-wall
biosynthesis enzymes UDP-galactopyranose mutase and arylamine-N-acetyltransferase,
thus demonstrating “great therapeutic value for the treatment of tuberculosis” [55]. As

https://www.who.int/news-room/fact-sheets/detail/tuberculosis
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shown in Table 1 and Figure 1, during 2019–2021, five antiviral studies with structurally
characterized marine chemicals (44–49), isolated from bacteria, fungi, and dinoflagellates,
reported novel mechanisms of pharmacological action targeting zika virus, hepatitis C
virus, Venezuelan and Eastern equine encephalitis viruses, and human immunodeficiency
virus type 1 (HIV-1).

Liu and colleagues reported a new phenylspirodrimane-type dimer alkaloid chartar-
lactam Q (44), isolated from the fermentation broth of a marine sponge-derived fungus
Stachybotrys chartarum WGC-25 C-6, that inhibited Zika virus African-lineage MR766 strain
by affecting the in vitro accumulation of viral proteins NS5 and E “in a dose-dependent
manner” [56]. Li and colleagues described two novel sesquiterpene-based analogues,
harzianoic acids A and B (45, 46), discovered in the marine sponge-associated fungus Tricho-
derma harzianum, that inhibited the hepatitis C virus (HCV) life cycle in vitro by binding to
both the HCV viral envelope E1/E2 glycoproteins as well as the host cell key protein CD81,
thus suggesting “potential for development as HCV inhibitors” [57]. Lin and colleagues
characterized the polyketide homoseongomycin (47), found in the marine actinomycete
bacterium K3-1, that potently inhibited Venezuelan and Eastern equine encephalitis viruses,
by affecting both the early and late stages (assembly and budding) of the viral life cycle,
with concomitant low toxicity [58]. Tan and colleagues determined that a natural xanthone
dimer polyketide penicillixanthone A (48), isolated from a marine jellyfish-derived fungus
Aspergillus fumigates, potently inhibited HIV-1 by binding to white blood cell membrane re-
ceptors C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 4 (CCR4),
thus suggesting that this new type of CCR5/CCR4 dual-coreceptor antagonist has potential
“for the development of anti-HIV therapeutics” [59]. Izumida and colleagues identified the
spirocyclic imine polyketide portimine (49), purified from the benthic marine dinoflagellate
Vulcanodinium rugosum, that exhibited significant inhibition of HIV-1 replication at the
nM range by targeting both the HIV-1 Gag or Pol protein as well as reverse transcriptase
directly, and thus was proposed as “a potent lead compound for development of novel
anti-HIV-1 drugs” [60].

3. Marine Compounds with Antidiabetic and Anti-Inflammatory Activity, and Affecting
the Immune and Nervous System

Table 2 presents 2019–2021 mechanism-of-action studies with structurally character-
ized marine compounds (50–124), as shown in Figure 2, that demonstrated antidiabetic or
anti-inflammatory activity and affected the immune or nervous system.

Table 2. Marine pharmacology in 2019–2021: mechanism-of-action studies with marine compounds
with antidiabetic and anti-inflammatory activity that affected the immune and nervous systems.

Drug Class Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

Antidiabetic
xyloccensin-1

(50)/
mangrove

Terpenoid f α-glucosidase
inhibition 0.25 mM Docking studies

completed IND [61]

Antidiabetic CYC27
(51)/alga Shikimate h Reduction in

blood glucose 50 mg/kg/day **
Insulin signaling

pathways
enhanced

CHN [62]

Antidiabetic fucoxanthin
(43)/alga Terpenoid f

α-amylase and
α-glucosidase

inhibition
121 µM Mixed-type

inhibition kinetics
DNK, MYS, S.

KOR, THA [63,64]

Antidiabetic fucoxanthin
(43)/alga Terpenoid f

Decrease ROS
production in

kidney
mensangial cell

line

0.5 µM *
Epigenomic and
transcriptomic

effects
USA [65]

Antidiabetic
abeo-

oleanene
(52)/alga

Terpenoid f
α-amylase and
α-glucosidase

inhibition
0.29 mM Docking studies

completed IND [66]
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Table 2. Cont.

Drug Class Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

Antidiabetic isophloroglucin
A (53)/alga Polyketide e

Glucose
homeostasis

improvement
1.35 mg/kg/day ** GLUT4 levels

increased S. KOR [67]

Antidiabetic
S. latiuscula

bromophenol
(54)/alga

Shikimate h α-glucosidase
inhibition 1.92 µM

PTP1B
competitive
inhibition

S. KOR [68]

Antidiabetic
H. fusiformis

fatty acid
(55)/alga

Fatty Acids α-glucosidase
inhibition 48 µM PTP1B inhibition S. KOR [69]

Antidiabetic tripalmitin
(56)/fungus Fatty Acids α-glucosidase

inhibition 3.75 µM Mixed-type
inhibition kinetics PAN [70]

Anti-
inflammatory

A. depilans
EnP(5,8)

(57)/sea hare
Terpenoid f

Macrophage NO,
COX-2, IL-6 and

TNF-α
18.4 µM

Nos2 and
COX-2 expression

decrease
ESP, PRT [71]

Anti-
inflammatory

Aspergillus sp.
aglycone

(58)/fungus
Polyketide e

Macrophage NO
release

inhibition
6 µM NF-κB inhibition CHN [72]

Anti-
inflammatory

brevenal (59)/
dinoflagellate Polyketide e Macrophage

TNF-α inhibition 0.1 nM
Macrophage

activation
inhibition

USA [73]

Anti-
inflammatory

caniferolide A
(60)/

bacterium
Polyketide e

Microglia NO,
IL-1β, IL-6

release inhibition
0.01 µM *

iNOS, ERK, JNK
expression
inhibition

ESP [74]

Anti-
inflammatory

C. inophyllum
terpenoids

(61,
62)/mangrove

Terpenoid f/
Shikimate h

Macrophage NO
and IL-1β

release inhibition
2.4, 7 µM

iNOS induction
and NF-κB
inhibition

VNM, S. KOR [75]

Anti-
inflammatory

curdepsidone
C (63)/fungus

Polyketide e/
Shikimate h

Human
macrophage IL-1β
release inhibition

7.5 µM JNK and ERK
inhibition CHN [76]

Anti-
inflammatory

collismycin C
(64)/

bacterium
Alkaloid g

Murine sepsis
inhibition and

survival
4 mg/kg ** NF-κB and p38

inhibition S. KOR [77]

Anti-
inflammatory

dieckol
(65)/alga Polyketide e

Decreased murine
liver

NLRP3 synthesis
2.5 mg/kg/day ** NF-κB and

NLRP3 inhibition S. KOR [78]

Anti-
inflammatory

dysiarenone
(66)/sponge Terpenoid f

Macrophage IL-6,
TNF-α and LTB4
release inhibition

2–8 µM * NF-κB, p38, ERK,
Akt inhibition CHN [79]

Anti-
inflammatory

epiloliolide
(67)/alga Terpenoid f

Human
periodontal
ligament cell

iNOS, IL-1, IL-6,
and TNF-α
inhibition

>10 µM *
NLRP3 decrease
and PKA/CREB

increase
S. KOR [80]

Anti-
inflammatory

fucoxanthin
(43)/

diatom
Terpenoid f

Murine sepsis
inhibition and

survival
1 mg/kg ** NF-κB inhibition CHN, TWN,

USA [81]

Anti-
inflammatory

fucoxanthin
(43)/

diatom
Terpenoid f

Murine liver
inflammation

inhibition
10–40 mg/kg **

NF-κB inhibition
and NRF2
increase

CHN [82]

Anti-
inflammatory

fucoxanthin
(43)/alga Terpenoid f

Macrophage
osteoclastogenesis

inhibition
<5 µM *

ERK, p38
inhibition and
NRF2 increase

S. KOR [83]

Anti-
inflammatory

fucoxanthin
(43)/alga Terpenoid f

Macrophage iNOS
and COX-2
expression
inhibition

5, 10 µM * NF-κB inhibition CHN, USA [84]

Anti-
inflammatory

fucoxanthinol
(68)/

diatom
Terpenoid f

Microglia NO and
PGE2 expression

inhibition
20 µM *

NF-κB, Akt,
MAPK inhibition

and NRF2
increase

CHN [85]
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Table 2. Cont.

Drug Class Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

Anti-
inflammatory

hirsutanol A
(69)/

fungus
Terpenoid f

LPS-induced
MMP-9 release
and lung injury

attenuation
30 mg/kg ** NF-κB, STAT3,

ERK inhibition RUS, TWN [86]

Anti-
inflammatory

2-epi-jaspine B
(70)/sponge Alkaloid g Rat arthritis

inhibition 30 mg/kg ** SphK1 inhibition CHN [87]

Anti-
inflammatory

L. glandulifera
diterpenes (71,

72)/alga
Terpenoid f

Macrophage NO
release

inhibition
2.3, 2.9 µM iNOS induction

inhibition GRC [88]

Anti-
inflammatory

mojabanchromanol
(73)/alga Terpenoid f

Murine alveolar
epithelial cell line

lipid
peroxidation

inhibition

147.4 µM * ERK, JNK
inhibition S. KOR [89]

Anti-
inflammatory

neuchromenin
(74)/

fungus
Polyketide e

Microglia NO and
PGE2

inhibition
2.7, 3.2 µM NF-κB and p38

inhibition S. KOR [90]

Anti-
inflammatory

O-
demethylrenierone
(75)/sponge

Alkaloid g

Human
macrophage NO

and PGE2,
inhibition

10 µM * NF-κB inhibition
and increase S. KOR, VNM [91]

Anti-
inflammatory

penicitrinone
A (76)/fungus Polyketide e

Human
neutrophil

superoxide anion
inhibition

2.7 µM

caspase-3-
dependent
apoptosis
induction

TWN [92]

Anti-
inflammatory

phyllohemiketal
A

(77)/sponge
Terpenoid f

Human
macrophage NO

and PGE2
inhibition

5 µM *

NF-κB, p38, ERK
and JNK

inhibition and
NRF2 increase

S. KOR [93]

Anti-
inflammatory

sclerketide C
(78)/

fungus
Alkaloid g

Macrophage NO
release

inhibition
2.7 µM

iNOS and COX-2
mRNA expression

decrease
CHN [94]

Anti-
inflammatory

grasshopper
ketone

(79)/alga
Terpenoid f

Macrophage NO,
IL-1β, IL-6

release inhibition
4.5–45 µM * NF-κB, p38, ERK,

JNK inhibition S. KOR [95]

Anti-
inflammatory

S. mastoidea
prodigiosins

(80,
81)/bacterium

Alkaloid g
Rat gastric

inflammation
inhibition

>100 mg/kg ** NF-κB inhibition
and HO-1 increase EGY [96]

Anti-
inflammatory

topsentin
(82)/sponge Alkaloid g

Human
keratinocyte

COX-2 expression
inhibition

1.2 µM AP-1, p38, JNK,
and Erk inhibition S. KOR [97]

Anti-
inflammatory

tuberatolide B
(83)/alga

Polyketide e/
Terpenoid f

Macrophage NO,
IL-1β, IL-6

release inhibition
29.6 µM * NF-κB, p38, ERK,

JNK inhibition S. KOR [98]

Immune
system

astaxanthin
(84)/alga Terpenoid f

Inhibition of
LPS-induced
dendritic cell
dysfunction

5–20 µM * HO-1 and
NRF-2 increase CHN [99]

Immune
system

crassolide
(85)/soft coral Terpenoid f

Suppression of
dendritic

cell maturation
and T

cell responses

2.5 µM *

DC maturation
and

pro-inflammatory
cytokines
inhibition

TWN [100]

Immune
system

C. sinensis
peptide

(86)/mollusk
Peptide g

Increased murine
macrophage
phagocytosis

25 µM * NF-κB and
NLRP3 increase CHN [101]

Immune
system

dieckol
(65)/alga Polyketide e

Decreased
intestinal Th17

cells and
increased Treg

cells

2.5 mg/kg/day ** NF-κB and IL-6
decrease S. KOR [102]
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Table 2. Cont.

Drug Class Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

Immune
system

echinochrome
A (87)/sea

urchin
Polyketide e

Expansion of
PBMC-derived

CD34+ cells
10 µM *

ROS and
p38MAPK/JNK
phosphorylation

decrease

S. KOR, RUS [103]

Immune
system

echinochrome
A (87)/sea

urchin
Polyketide e

Protection against
murine

inflammatory
bowel disease

10 mg/kg **
Regulatory T cell

production
increase

S. KOR, RUS [104]

Immune
system

echinochrome
A (87)/sea

urchin
Polyketide e

Inhibition of
murine

bleomycin-
induced

scleroderma

1 µM *
STAT3

phosphorylation
decrease

S. KOR, RUS [105]

Immune
system

eckol
(88)/alga Polyketide e

Inhibition murine
IgE-mediated
PCA reaction

50 µg/mouse **
FCεR and NF-κB

activation
decrease

S. KOR [106]

Immune
system

phomaketide
A (89)/fungus

Polyketide e/
Terpenoid f

Lymphangiogenesis
inhibition 3.7 µM

VEGFR-3
phosphorylation

and PKCδ
activation
decrease

TWN [107]

Immune
system

S. scabra
cembranoid

(90)/soft coral
Terpenoid f

LPS-induced B
lymphocyte
proliferation

4.4 µM
B cell proliferation

decrease and
IL-10 increase

CHN [108]

Immune
system

sticholysins I
and II

(proteins of
about

20KD)/sea
anemone

Peptide g Maturation of
dendritic cells 0.05 µM *

TLR4 and MYD88
activation
decrease

BRA, CUB,
USA [109]

Immune
system

T. weissflogii
phosphogly-

colipid
(91)/diatom

Polyketide e

Immune
stimulation of

human monocyte-
derived dendritic

cells

6.8 µM *
TLR4 and NF-κB

activation
decrease

ITA [110]

Nervous
system

alternarin A
(92)/fungus Terpenoid f

Neuronal
spontaneous Ca2+

oscillations (SCO)
inhibition

3.2 µM
SCO frequency
and amplitude

decreased
CHN, HU [111]

Nervous
system

anabaseine
(93)/worm Alkaloid g α7 nAChR

inhibition 1.85–3.85 µM Membrane
depolarization USA [112]

Nervous
system

A. insuetus
TMC-120Ac

and
TMC-120B (94,

95)/fungus

Alkaloid g
Mouse focal

seizure duration
reduction

10 mg/kg ** Undetermined BEL, DNK,
NOR [113]

Nervous
system

Ara and ETrA
(96, 97)/alga Fatty Acids AChE inhibition 1.6–2.4 mM Non-competitive

inhibition CHN [114]

Nervous
system

astaxanthin
(84)/shrimp Terpenoid f

Reduction in
LPS-induced

memory
impairment

30 or
50 mg/kg **

Inhibits STAT3
phosphorylation S. KOR, USA [115]

Nervous
system

astaxanthin
(84)/shrimp Terpenoid f

Cognitive
dysfunction
protection

10 mg/kg ** ROS reduction
and decreased Ab THA [116]

Nervous
system

8,8′-bieckol
(98)/alga Polyketide e BACE1 and AChE

inhibition 1.6–4.6 µM
Non-competitive

or competitive
inhibition

S. KOR [117]

Nervous
system

brevetoxin
(99)/

dinoflagellate
Polyketide e VGSC activator 2.4 nM

Shifts voltage
dependence,

slows inactivation
JPN, USA [118]

Nervous
system

C. austini
conorfamides

(100,
101)/cone

snail

Peptide g α7 nAChR
inhibition 0.68–0.76 µM Inhibition of Ca2+

ion flow AUS, MEX [119]
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Table 2. Cont.

Drug Class Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

Nervous
system

C. geographus
conosteroid

(102)/
cone snail

Terpenoid f
Hot plate murine

pain model
inhibition

2–10 mg/kg **
GABAAR

negative allosteric
modulator

USA [120]

Nervous
system

C. lividus
conotoxin

Lv1F
(103)/cone

snail

Peptide g

α3β2 nAChR
inhibition;

hotplate and
formalin

murine pain
inhibition

0.0089 µM;
25–100 µg/kg **

Competitive
binding;

unknown
CHN [121,122]

Nervous
system

Con-T[M8Q]
(104)/cone

snail
Peptide g

Inhibition of
murine

morphine
dependence

15 nmol/kg ** NMDAR GluN2B
antagonist CHN, USA [123]

Nervous
system

dictyol C
(105)/alga Terpenoid f Neuroprotection

of rat CIRI 80 µg/kg **
Increased
Nrf2/ARE

signaling pathway
CHN [124]

Nervous
system

echinochrome
A (87)/sea

urchin
Polyketide e

Mitigation of
cerebral

ischemic injury
10 µM **

Decreases
pro-apoptotic

factors; increased
survival factors

S. KOR, RUS [125]

Nervous
system

eckol
(88)/alga Polyketide e Dopamine D3/D4

agonist 42, 43 µM GPCR signaling S. KOR [126]

Nervous
system

eleganolone
(106)/alga Terpenoid f

Human
neuroblastoma

cells neurotoxicity
inhibition

0.1–1 µM *
Decreases ROS

levels and
apoptotic factors

BRA, ESP,
PRT [127]

Nervous
system

frondoside A
(107)/sea
cucumber

Terpenoid f
Dopaminergic
degeneration

inhibition
0.1, 0.5 µM *

Increase in protein
degradation

pathway, decrease
apoptotic factors

THA [128]

Nervous
system

fucosterol
(108)/alga Terpenoid f

Aβ-induced
neuronal
apoptosis

10 µM *

Decreased
pro-apoptotic

factors; decreased
APP mRNA

MYS [129]

Nervous
system

fucosterol
(108)/alga Terpenoid f

Neurodegenerative
disorders system

pharmacology
NA Neuronal survival

pathways S.KOR, [130]

Nervous
system

fucoxanthin
(43)/alga Terpenoid f Reduced corneal

denervation 10 mg/kg ** Increased Nrf2
expression TWN [131]

Nervous
system

fucoxanthin
(43)/alga Terpenoid f

Reduction in PC12
neurons

intracellular ROS
1 µM * Binds to Keap1 CHN [132]

Nervous
system

H. crispa
peptides

(109–111)/sea
anemone

Peptide g Inhibition of ASIC
ion channels 1.25–4.95 µM rASIC1a ion

channel inhibition RUS [133]

Nervous
system

H. scabra
2-BTHF

(112)/sea
cucumber

Polyketide e

Aβ-induced C.
elegans

paralysis
inhibition

6.9 µM *

Decreased the
formation of

Ab oligomers and
fibrils

THA [134]

Nervous
system

neo-
debromoaplysiatoxins
E and F (113,

114)/cyanobacterium

Terpenoid f/
Shikimate h Kv1.5 inhibition 1.22–2.85 µM Binding to Kv1.5

S6 domain CHN [135]

Nervous
system

okadaic acid
(115)/

dinoflagellate
Polyketide e

Chick embryo
neural

tube defects
0.5 µM *

Increased ROS,
decreased

Nrf2-signaling
pathway

CHN [136]

Nervous
system

pinnatoxins A
and G (116,

117)/dinoflagellate
Polyketide e

Synaptic
transmission

block
at neuromuscular

junction

2.8–3.1 nmol/
kg ** AChE inhibition FRA, USA [137]
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Table 2. Cont.

Drug Class Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

Nervous
system

PFF-A
(118)/alga Polyketide e hMAO-A

inhibition 9.2 µM Noncompetitive
inhibition S. KOR [138]

Nervous
system

sargachromanol
(119)/alga Terpenoid f AChE inhibition 0.79 µM Mixed reversible

inhibition S. KOR [139]

Nervous
system

santacruzamate
A

(120)/cyanobacterium
Alkaloid g Amelioration of

AD-like pathology 10 mg/kg **
Increased KDELR,

decreased ER
stress

CHN [140]

Nervous
system

Sinularia sp.
cembranoid
(121)/soft

coral
Terpenoid f Aβ42 inhibition >10 µM

Binds to
c-terminal of Ab

monomer
CHN [141]

Nervous
system

S. latiuscula
bromophenol

(54)/alga
Shikimate h HD3R inhibition 18.7 µM Binding to HD3R

orthosteric site S. KOR [142]

Nervous
system

S. japonica
GM2

(122)/alga
Sugar

PC12 neurons
increased
viability

270–540 µM

Increased
autophagy factors;

decreased
pro-apoptotic

factors

CHN [143]

Nervous
system

S. latiuscula
bromophenol

(54)/alga
Shikimate h

BACE1, AChE
and

BChe inhibition
2.3–4.03 µM

Non-competitive
or competitive

inhibition
S. KOR [144]

Nervous
system

stelletin B
(123)/sponge Terpenoid f

Reversal of
zebrafish
locomotor
deficiency

1 nM *

Increased
Nrf2/ARE
signaling;
decreased

pro-apoptotic
factors

TWN [145]

Nervous
system

androstatriol
(124)/

soft coral
Terpenoid f Retinal ganglion

cells protection 80 µg/eye **
Negative

regulation of
Keap1

CHN [146]

a Organism: Kingdom Animalia: worm (Phylum Annelida); shrimp (Phylum Arthropoda); coral, sea anemone
(Phylum Cnidaria); sea cucumber, sea urchin (Phylum Echinodermata); cone snail, mollusk, sea hare (Phylum Mol-
lusca); sponge (Phylum Porifera); Kingdom Chromista: dinoflagellate; Kingdom Fungi: fungus; Kingdom Plantae: alga;
diatoms, mangrove; Kingdom Monera: bacterium; cyanobacterium (Phylum Cyanobacteria); b IC50: concentration
of a compound required for 50% inhibition, *: apparent IC50, ** in vivo study; c MMOA: molecular mechanism of
action; d Country/Territory: AUS: Australia; BEL: Belgium; BRA: Brazil; CHN: China; CUB: Cuba; DNK: Denmark;
EGY: Egypt; ESP: Spain; FRA: France; GRC: Greece; HU: Hungary; IND, India; ITA: Italy; JPN: Japan; MEX: Mex-
ico; MYS: Malaysia; NLD: Netherlands; NOR: Norway; PAN: Panama; PRT: Portugal; RUS: Russia; S. KOR: South
Korea; THA: Thailand; TWN: Taiwan; VNM: Vietnam; Chemistry: e polyketide; f terpene; g nitrogen-containing
compound; h shikimate. Abbreviations: Aβ: amyloid-β peptide; Ach: acetylcholine; AChE: acetylcholinesterase;
AD: Alzheimer’s disease: AP-1: dimeric transcription factor; BChe: butyrylcholinesterase; Akt: also known as
protein kinase B is a serine/threonine protein kinase; APP: amyloid precursor protein; ASIC: acid-sensing ion
channel; BACE1: β-Secretase; 2-BTHF: 2-butoxytetrahydrofuran; CIRI: cerebral ischemia-reperfusion injury; COX:
cyclooxygenase; CREB: cAMP-response element binding protein; ER: endoplasmic reticulum; ERK: extracellular
signal-regulated kinase; EnP(5,8): 5α,8α-epidioxycholest-6-en-3β-ol; FCεR: high-affinity IgE receptor; GLUT4:
glucose transporter 4; GM2: Saccharina japonica fucoidan-derived glucuronomannan oligosaccharide; GPCR: G-
protein-coupled receptor; HD3R: human dopamine receptor 3; hMAO: human monoamine oxidase; HO-1: heme
oxygenase-1 protein; IgE: immunoglobulin E; IL: interleukin; iNOS: inducible nitric oxide synthase; JNK: c-jun
N-terminal kinase; KDELR: endoplasmic reticulum retention signal receptor; Keap1: Kelch-like ECH-associated
protein 1; Kv: voltage-gated potassium channel; LPS: lipopolysaccharide; LTB4: leukotriene B4; MAPK: mitogen-
activated protein kinase; MMP-9: matrix metalloproteinase 9; MAO: monoamine oxidase; nAChR: nicotinic
acetylcholine receptor; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3: NLR family
pyrin domain containing 3; NMDAR: N-methyl-D-aspartate receptor; NO: nitric oxide; Nos2: nitric oxide synthase
2; Nrf2-ARE: nuclear transcription factor E2-related factor antioxidant response element; PBMC: PB mononuclear
cells; PCA: passive cutaneous anaphylaxis; PFF-A: phlorofucofuroeckol-A; PGE2: prostaglandin E2; PK: protein
kinase; PTP1B: tyrosine phosphatase 1B; rASIC: rat acid-sensing ion channel; ROS: reactive oxygen species;
SPHK1: sphingosine kinase 1; STAT3: signal transducer and activator of transcription 3; Th17: T helper 17 cells, a
subset of CD4+ T helper cells; TNF-α: tumor necrosis factor-α; Tregs: regulatory T cells; TRIOL: 5α-androst-3β,
5α, 6β-triol; VEGFR-3: vascular endothelial growth factor receptor-3; VGSC: voltage-gated sodium channel.



Mar. Drugs 2024, 22, 309 18 of 58Mar. Drugs 2024, 22, 309 18 of 58 
 

 

 

Figure 2. Cont.



Mar. Drugs 2024, 22, 309 19 of 58Mar. Drugs 2024, 22, 309 19 of 58 
 

 

 

Figure 2. Cont.



Mar. Drugs 2024, 22, 309 20 of 58Mar. Drugs 2024, 22, 309 20 of 58 
 

 

 

Figure 2. Cont.



Mar. Drugs 2024, 22, 309 21 of 58Mar. Drugs 2024, 22, 309 21 of 58 
 

 

 

Figure 2. Cont.



Mar. Drugs 2024, 22, 309 22 of 58Mar. Drugs 2024, 22, 309 22 of 58 
 

 

 

 

Figure 2. Marine pharmacology in 2019–2021: marine compounds with antidiabetic and anti-inflam-

matory activity that affect the immune and nervous system. Figure 2. Marine pharmacology in 2019–2021: marine compounds with antidiabetic and anti-
inflammatory activity that affect the immune and nervous system.



Mar. Drugs 2024, 22, 309 23 of 58

3.1. Antidiabetic Activity

Diabetes is a disease that is characterized by high glucose blood levels that may lead
to cardiovascular disease, as well as kidney and nerve damage (https://www.niddk.nih.
gov/health-information/diabetes (accessed on 20 May 2024). As shown in Table 2 and
Figure 2, during 2019–2021, studies with eight structurally characterized marine natural
products (43, 50–56) isolated from fungi, algae and mangrove reported novel antidiabetic
mechanisms of pharmacological action targeting α-amylase and α-glucosidase, insulin
signaling pathways, oxidative stress, glucose transporter 4, and tyrosine phosphatase 1B.

Das and colleagues contributed the limonoid terpenoid xyloccensin-1 (50), discovered
in the mangrove Xylocarpus granatum, that demonstrated significant antidiabetic activity
resulting from potent in vitro inhibition of α-amylase and α-glucosidase, observations
confirmed with α-glucosidase enzyme molecular docking binding studies [61]. Luo and
colleagues described a synthetic derivative of shikimate bromophenol CYC27 (51), de-
rived from the marine red alga Rhodomela confervoides, which induced hypoglycemia in
diabetic mice by increased phosphorylation of insulin receptors and the enhancement
of insulin signaling pathways; in addition, “most regulated phosphoproteins (were) re-
lated to RNA splicing, mRNA processing and RNA processing” [62]. Zaharudin and
colleagues determined that the terpene fucoxanthin (43), found in the marine brown edible
alga Undaria pinnatifida, strongly inhibited yeast α-glucosidase enzyme with mixed-type
inhibition kinetics, commenting that “a compound that inhibits yeast α-glucosidase ac-
tivity will not necessary inhibit mammalian α-glucosidase activity” [63]. Interestingly,
Arthiya and colleages demonstrated that fucoxanthin (43), isolated from the marine mi-
croalga P. tricornutum, inhibited rat intestinal α-glucosidase enzyme by noncompetitive
inhibition [64]. Hudlikar and colleagues evaluated the protective effect of fucoxanthin
(43) on high glucose-induced oxidative stress in mouse kidney mesangial cells in vitro,
observing that fucoxanthin modified epigenomic and transcriptomic biomarkers, thus
protecting mesangial cells “from high glucose-induced oxidative stress and damage” [65].
Chakraborty and Antony identified the terpenoid abeo-oleanene (52), purified from the
intertidal marine red alga Gracilaria salicornia, and assessed potent in vitro antioxidant
and antidiabetic potential with dual inhibition of starch digestive enzymes α-amylase and
α-glucosidase, further confirmed by in silico molecular modeling studies, thus proposing
that this compound might “constitute prospective anti-hyperglycemic pharmaceutical
candidate” [66]. Yang and colleagues investigated the polyketide ishophloroglucin A (53),
uncovered in the marine brown edible seaweed Ishige okamurae, demonstrating it affected
glucose homeostasis in the pancreas and muscle of high-fat diet-fed (HFD) mice by target-
ing the glucose transporter 4 in the muscles, thus considering the compound “a functional
food for the prevention of diabetes” [67]. Paudel and colleagues reported the anti-diabetic
potential of a shikimate bis-(2,3,6-tribromo-4,5-dihydroxybenzylmethyl ether) (54), discov-
ered in the marine alga Symphyocladia latiuscula, and determined by both enzyme kinetics
and in silico molecular modeling potent tyrosine phosphatase 1B and α-glucosidase inhibi-
tion, as well as the enhancement of both insulin sensitivity and glucose uptake; thus, (54)
“may represent a novel class of anti-diabetic drugs” [68]. Seong and colleagues showed
that the fatty acid (Z)-hexadec-12-enoic acid (55), derived from the edible marine brown
seaweed Hizikia fusiformis, by detailed enzyme kinetics and molecular docking studies, was
a potent tyrosine phosphatase 1B and α-glucosidase inhibitor [69]. Lopez and colleagues
characterized the fatty acid tripalmitin (56), found in a mangrove-associated fungus Zas-
midium sp. strain EM5-10, as a mixed inhibitor of α-glucosidase as determined by enzyme
kinetic studies, with potential to bind the human intestinal α-glucosidase, and this was
“the first report on α-glucosidase inhibitory activity of triglycerides” [70].

3.2. Anti-Inflammatory Activity

As shown in Table 2 and Figure 2, during 2019–2021, studies with 28 structurally
characterized marine natural products (43, 57–83) isolated from bacteria, fungi, sponges,
sea hare, dinoflagellates, diatoms, algae and mangrove reported novel anti-inflammatory

https://www.niddk.nih.gov/health-information/diabetes
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pharmacological mechanisms of action that targeted NF-κB activation, pro-inflammatory
cytokine production, and reactive oxygen species generation.

Several marine-derived natural products investigated mechanistically during 2019–2021
demonstrated significant anti-inflammatory functions by targeting signal transduction
pathways, leading to NF-κB activation and pro-inflammatory cytokine production. The
anti-inflammatory activity of the terpenoid xanthophyll fucoxanthin (43) was reported in
several papers: Su and colleagues reported that the terpenoid fucoxanthin (43), discovered
in the marine diatom Conticribra weissflogii ND-8, prophylactically attenuated LPS-induced
sepsis in a whole animal mouse model by blocking NF-κB activation and the production
of pro-inflammatory cytokines [81]. Zheng and colleagues showed that edible brown
seaweed-derived terpenoid fucoxanthin (43) demonstrated protective effects in an in vivo
model of alcohol-induced liver damage by activation of the Nrf2-sginaling pathway and
decreasing NF-κB activation [82]. Ha and colleagues further characterized the terpenoid
fucoxanthin (43), and observed that in osteoclast-like RAW264.7 cells in vitro, fucoxanthin
increased Nrf2 activation and decreased the expression of osteoclast-specific markers, as
well as “osteoclast differentiation and bone resorption ability” [83]. Li and colleagues
determined that the terpenoid fucoxanthin (43), protected against LPS-induced murine
lung inflammation in vivo, by decreasing cellular infiltration and both lung tissue COX-2
and iNOS expression. Interestingly, molecular docking simulations demonstrated that
fucoxanthin (43) blocked LPS-induced signaling by binding to the TLR4 pocket that is
required for LPS stimulation [84]. Together, these findings indicate that fucoxanthin (43)
from both marine diatoms and seaweed has the potential to attenuate inflammation in vitro
and in vivo.

Wen and colleagues identified the polyketide phenolic aglycone (58), derived from the
marine fungus Aspergillus sp., and showed that it decreased LPS-induced NO production
and NF-κB-regulated cytokines such as IL-1β and IL-6 [72]. Keeler and colleagues investi-
gated the polyketide brevenal (59), isolated from the marine dinoflagellate Karenia brevis,
showing that in the context of lung inflammation, it blocked NF-κB activation and the de-
velopment of fully activated macrophages in vitro, which are critical players that promote
lung inflammation [73]. Alvariño and colleagues reported the polyketide caniferolide A
(60), found in the marine actinomycete Streptomyces caniferus, which blocked NF-κB, p38,
JNK, and MAPK activation with a concomitant increase in NRf2 that promoted the survival
of BV2 microglial cells, suggesting that (60) may target “many pathological markers of
Alzheimer’s disease” [74]. Ding and colleagues showed that the polyketide/shikimate
curdepsidone C (63), obtained from the marine fungus Curvularia sp. IFB-Z10, blocked
bacterial-induced THP-1 cell IL-1β production as well as the activation of MAPK signaling
pathways, presumably through direct interactions with the TLR1/2 receptor [76].

Ku and colleagues characterized the alkaloid collismycin C (64), isolated from the
marine red alga-associated Streptomyces sp. strain MC025, and determined that in vitro, it
decreased NF-κB phosphorylation of p38 and TNF-α production, and it was protective in a
PolyP model of murine sepsis in mice [77]. Oh and colleagues contributed the polyketide
dieckol (65), purified from brown seaweed Ecklonia cava, and showed that it attenuated
the development of nonalcoholic fatty liver disease by decreasing NLRP3 inflammasome
formation and pyroptosis in a mouse high-fat diet model [78]. Kim and colleagues evalu-
ated the terpenoid epiloliolide (67), uncovered in the marine brown alga Sargassum horneri,
on human periodontal ligament cells in vitro in the presence of P. gingivalis lipopolysac-
charide (LPS), and observed a decreased production of inflammatory mediators TNF-α,
IL-6, and IL-1β, and the promotion of cell growth and proliferation via the “regulation of
PKA/CREB signaling” [80]. Li and colleagues determined that the terpenoid fucoxanthinol
(68), discovered in the marine diatom Nitschia laevis, was able to block the LPS-induced
inflammatory response by microglia in vitro by increasing Nrf2 with a subsequent loss
of the expression iNOS, COX-2, and pro-inflammatory cytokines TNF-α and IL-6, and
PGE-2 [85]. Jan and colleagues identified the terpenoid hirsutanol A (69), derived from
the marine red alga-derived fungus Chondrostereum sp. NTOU4196, that attenuated LPS-
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induced lung inflammation in vivo and behavioral changes in a mouse endotoxemia model
by blocking LPS-induction of STAT3 and MMP-9 [86]. Chen and colleagues explored the
polyketide 2-epi-jaspine B (70) analog, isolated from the marine sponges Pachastrissa sp.
and Jaspis. sp., and in an in vivo rat model of complete Freund’s adjuvant rheumatoid
arthritis (RA), showed it acted as a SphK1 inhibitor in vitro and significantly improved RA
symptoms measured by decreased pro-inflammatory cytokines TNF-α, IL-6, and IL-1β,
swelling volume, and arthritis score [87]. Daskalaki and colleagues investigated the diter-
penes (71, 72), obtained from the red seaweed Laurencia glandulifera, which demonstrated
the ability to decrease the production of pro-inflammatory mediators in vitro and suppress
the development of dextran sulfate sodium-induced murine colitis in vivo [88].

Kim and colleagues reported that the alkaloid O-demethylrenierone (75), purified from
the marine sponge Haliclona sp., suppressed NF-κB nuclear translocation and subsequent
expression of NO synthase, cyclooxygenase-2, with a subsequent increase in Nrf2 using
human epithelial cell and monocyte cell lines [91]. Lee and colleagues showed that the
terpenoid deacetylphylloketal (77), a novel derivative uncovered in the marine sponge Phyl-
lospongia sp., inhibited LPS-induced NO, PGE2, and pro-inflammatory cytokines TNF-α,
IL-6, and IL-1β production in human epithelial cells and PMA-differentiated macrophages
by blocking NF-κB nuclear translocation and increasing HO-1 levels [93]. Kim and col-
leagues characterized the grasshopper terpenoid ketone (79), discovered in the marine
brown alga Sargassum fulvellum, that attenuated LPS-induced nitric oxide production
and pro-inflammatory cytokines IL-6, TNF-α and IL-1β by blocking multiple signaling
pathways, including NF-κB [95]. Abdelfattah and colleagues contributed the alkaloids
butylcycloprodigiosin and undecylprodigiosin (80, 81), derived from the red sea sponge
Spheciospongia mastoidea, which attenuated gastric inflammation and gastric mucosal apop-
tosis in vivo by decreasing both NF-κB and iNOS expression and while increasing HO-1
expression, suggesting that prodigiosins “exerted gastroprotective effects” [96]. Hwang
and colleagues described the bis(indole) alkaloid topsentin (82), found in the marine sponge
Spongosorites genitrix, observing that it protected a human epidermal keratinocyte cell line
in vitro from ultraviolet-induced inflammation by suppressing AP-1 and MAPK signaling
pathways [97].

Other marine-derived natural products investigated mechanistically during 2019–2021
demonstrated significant anti-inflammatory functions by targeting signaling pathways in-
volved in reactive oxygen radicals, i.e., superoxide and nitric oxide generation: Pereira and
colleagues determined that the steroidal endoperoxide terpenoid 5α,8α-epidioxycholest-
6-en-3β-ol (57), isolated from the sea hare Aplysia depilans, blocked the induction of nitric
oxide (NO) levels by decreasing the expression of iNOS and other pro-inflammatory mark-
ers [71]. Van Thanh and colleagues evaluated two novel terpenoids (61, 62), purified from
the leaves of the Vietnamese mangrove Calophyllum inophyllum, and observed that they
blocked LPS-induced NO production and the production of pro-inflammatory cytokines by
blocking the induction of iNOS and NF-κB activation, respectively [75]. Hu and colleagues
identified the meroterpenoid dysiarenone (66), isolated from the marine sponge Dysidea
arenaria, which blocked LPS-induction of inflammatory cytokines and other mediators,
such as ROS by increasing the production of HO-1 via an Nrf2-dependent mechanism [79].
Herath and colleagues investigated the terpenoid mojabanchromanol (73), a chromanol
uncovered in the marine brown alga Sargassum horneri, which decreased ROS-mediated
responses and TLR2/4/7 activation in a type II alveolar epithelial cell line, suggesting that
mojobanchromanol may become a potential treatment against airway inflammation in-
duced by particulate matter [89]. Ha and colleagues reported the polyketide neuchromenin
(74), discovered in the Antarctic marine-derived fungal strain Penicillium glabrum SF-7123,
that, in an in vitro model of microglial and macrophage activation, demonstrated the sup-
pression of LPS-induced NO-synthase (iNOS) and cyclooxygenase-2 (COX-2) expression
and downregulation of NF-κB and p38 pathways [90]. Chu and colleagues showed that
the polyketide penicitrinone A (76), derived from the marine fungus Penicillium citrinum,
decreased neutrophil activation and agonist-induced superoxide generation putatively
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“through Bcl-2, Bax and caspase 3 signaling cascades” [92]. Liu and colleagues contributed
the polyketide sclerketide C (78), found in the marine coral-derived fungus Penicillium
sclerotiorin, which inhibited NO production in LPS-induced macrophages, by binding to the
active site of the iNOS enzyme and blocking its activity [94]. Kim and colleagues described
the polyketide/terpenoid tuberatolide B (83), isolated from the marine brown alga Sar-
gassum macrocarpum, which had both in vitro anti-inflammatory properties by attenuating
LPS-induced NF-κB and MAPK phosphorylation, while in vivo, using a zebrafish model,
(83) blocked the induction iNOS and subsequent NO production [98]. Taken together,
these studies demonstrate the importance and potential of marine-derived compounds as
therapeutic options in the treatment of inflammatory diseases.

3.3. Marine Compounds with Activity on the Immune System

As shown in Table 2 and Figure 2, during 2019–2021, studies with nine structurally
characterized marine natural products (65, 84–91) isolated from fungi, sea anemones, soft
corals, mollusks, sea urchins, diatoms, and algae reported novel immune system pharmaco-
logical mechanisms of action that indicate that marine-derived compounds have the ability
to influence the immune system both in vitro and in vivo and provide evidence that these
compounds could have significant therapeutic impact upon further investigation.

As shown in Table 2 and Figure 2, the ability of marine-derived compounds to modu-
late dendritic cell function varied depending on the source of the compound. Two com-
pounds had anti-inflammatory effects both in vitro and in vivo. Firstly, Yin and colleagues
extended the pharmacology of the carotenoid pigment terpenoid astaxanthin (84), found
in “microalgae and seafood”, and demonstrated it altered murine dendritic cell activation
and reduced the production of pro-inflammatory cytokines TNF-α, IL-6, and IL-10 in vitro
by increasing HO-1 and Nrf2 levels [99]. Secondly, Lin and colleagues reported that the
cembranoid terpenoid crassolide (85), isolated from the soft coral Sarcophyton crassocaule,
also negatively impacted LPS-induced activation of dendritic cells and downstream T
cell responses in vitro, and these effects therapeutically attenuated the development of
autoantibodies and associated thrombosis in vivo [100]. In contrast, Laborde and col-
leagues showed that the large pore-forming proteins sticholysins I and II, purified from
the marine anemone Stichodactyla helianthus, enhanced bone marrow-derived dendritic
cell maturation in a TLR4-specific manner that resulted in enhanced activation of CD8+
cytotoxic T cells [109]. Finally, Manzo and colleagues characterized an “unprecedented”
polyketide phosphatidylmonogalactosyldiacylglycerol pool (91), uncovered in the marine
diatom Thalassiosira weissflogii, which was also immunostimulatory to dendritic cells by
acting directly as a TLR4 agonist that increased the ability of these cells to activate CD8+
T cells [110]. Taken together, the immunomodulatory effects of these molecules deserve
further insight and investigation.

During this time period, three studies investigated the effect on immune function of
the dark polyketide echinochrome A (87), isolated from sea urchins: Park and colleagues
determined that echinochrome A (87) promoted the expansion of CD34+ hematopoietic
precursors from the blood by decreasing p38-MAPK/JNK phosphorylation and ROS gener-
ation and subsequently enhancing activation of the p110δ/PI3K/Akt pathway in vitro [103].
Oh and colleagues reported that echinochrome A (87) attenuated experimental colitis in
a mouse model of inflammatory bowel disease through the generation of regulatory T
cells in vivo “that modulate the inflammatory response and immune homeostasis” [104].
Finally, Park and colleagues described, in another inflammatory autoimmune disease, that
echinochrome A (87) alleviated bleomycin-induced scleroderma in vivo by decreasing the
number of activated myofibroblasts and the number of pro-inflammatory macrophages
and cytokine levels [105].

Additional studies during 2019–2021 demonstrated a significant impact of marine
natural products on immune cell function both in vitro and in vivo. Li and colleagues
contributed a novel pentadecapeptide (86), isolated from a marine cultured bivalve mollusk
Cyclina sinensis, which showed enhanced activation of murine macrophage RAW 246.7 cells
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in vitro by increasing NF-κB and NLRP3, resulting in elevated release of pro-inflammatory
cytokines TNF-α, IL-6, and IL-1β [101]. Yang and colleagues identified a terpenoid cembra-
noid (90), purified from the South China sea soft coral Sinularia scabra, which attenuated
the mitogenic responses of both T cells and B cells in vitro, suggesting that upon further
study, this could become a “new class of potential immunosuppressive agents” [108]. Oh
and colleagues investigated purified polyketide dieckol (65), obtained from marine brown
alga Ecklonia cava in an in vivo rat model of spontaneous hypertension and observed that it
attenuated endothelial dysfunction in both the gut and aorta by modulating the Treg/Th17
axis towards Tregs that are immunoprotective [102]. Han and colleagues studied the
polyketide eckol (88), discovered in the marine brown alga Ecklonia cava, noting that it
attenuated IgE-mediated mast cell activation and cytokine production in vitro and IgE-
mediated allergic murine ear swelling in vivo [106]. Tai and colleagues reported for the first
time that the polyketide/terpenoid phomaketide A (89), derived from the marine fungus
Phoma sp. NTOU4195, decreased lymphatic endothelial cell lymphangiogenesis in vitro
by decreasing VEGFR-3 phosphorylation and eNOS. Additional studies demonstrated
the in vivo significance of these effects in that (89) blocked the development of lymphatic
vessels and tumor growth in a mouse tumor model, suggesting “this natural product could
potentially treat cancer metastasis” [107].

3.4. Marine Compounds Affecting the Nervous System

As shown in Table 2 and Figure 2, in 2019–2021, studies with 38 structurally character-
ized marine natural compounds (43, 54, 84, 87, 88, 92–124) isolated from bacteria, fungi,
sponges, soft corals, sea anemones, worms, cone snails, shrimp, sea urchins, sea cucum-
bers, dinoflagellates and algae reported novel nervous system pharmacological mechanisms
of action that affected ion channels and membrane potential, increasing the antioxidant
response pathway reducing reactive oxygen species (ROS), increasing survival factors and
decreasing apoptotic factors.

Four compounds (92–95) were shown to reduce seizurogenic activity. Wang and
colleagues reported that the terpenoid alternarin A (92), discovered in the South China
Sea soft coral Lobophytum crissum-derived fungus Alternaria sp., suppressed seizurogenic
4-aminopyridine (4-AP)-induced hyperactive spontaneous calcium oscillations in murine
neocortical cultures [111]. Andrud and colleagues showed that the alkaloid anabaseine (93),
derived from the Pacific Ocean marine worm Paranemertes peregina, demonstrated in vitro
binding to a4b2 and a7 nicotinic acetylcholine receptors (nAChRs) that are commonly
expressed in the brain, and caused depolarization in tsA201 cells expressing the human
a4b2 nAChR [112]. The synthetic derivative 3-(2,4-Dimethoxybenzylidene)-Anabaseine
(DMXBA; also called GTS-21) selectively targets a7 nAChRs and is the first anabaseine
derivative tested in clinical trials as a therapeutic agent for neurodegenerative and neu-
ropsychiatric conditions as well as modulating pain through anti-inflammatory mecha-
nisms [147]. Copmans and colleagues studied the alkaloids TMC-120A (94) and TMC-120B
(95), found in the marine fungus Aspergillus insuetus, ameliorated epileptiform discharges
in a pentylenetetrazole (PTZ)-induced seizure model in zebrafish and reduced seizure dura-
tion in a mouse psychomotor seizure model induced by corneal electrical stimulation [113].

Four compounds (84, 96–98) were observed to be neuroprotective and inform the de-
velopment of novel Alzheimer’s Disease (AD) therapeutics. Yang and colleagues extended
the pharmacology of the fatty acids arachidonic acid (Ara, 96) and eicosatrienoic acid (EtRA,
97), purified from the Pacific Ocean edible seaweed Hizika fusiforme, by showing them to
be noncompetitive inhibitors of acetylcholine esterase (AChE) with a modified Ellman’s
method, and also displayed antioxidant properties and anti-neuroinflammatory properties.
Thus, these compounds indicate putative anti-AD properties by reducing acetylcholine
breakdown, which is diminished in AD, as well as antioxidant properties potentially re-
ducing amyloid b (Ab) and tau tangles, which are caused by oxidative damage [114]. Han
and colleagues contributed findings with the terpenoid astaxanthin (84), present in the
red-orange pigment Asteroidea, salmon, trout, and the shells of crustaceans, that protected



Mar. Drugs 2024, 22, 309 28 of 58

against memory impairment in a murine model of AD via binding to signal transducer and
activator of transcription 3 (STAT3) and inhibiting phosphorylation and activation, result-
ing in reduced Ab levels and b-secretase (BACE1) activity [115]. Taksima and colleagues
determined that the terpenoid astaxanthin (84) decreased reactive oxygen species (ROS)
that may contribute to oxidative damage and protein aggregation and decreased Ab levels,
thus improving cognitive dysfunction in a rat model of AD assessed using the Morris water
maze, novel object recognition, and novel object location tests [116]. Lee and Jun described
the polyketide 8,8′-bieckol (98), discovered in the edible brown seaweed Ecklonia cava,
which was a competitive inhibitor of AChE and a noncompetitive inhibitor BACE1, and
thus should enhance cholinergic activity as well as decrease Ab protein aggregation [117].

Three compounds (99–101) were shown to affect ion channel flux. Konoki and col-
leagues investigated the polyketide brevetoxin (99), a voltage-gated sodium channel (VGSC)
activator produced by the marine dinoflagellate Karenia brevis, showing that it binds to
the VGSC at neurotoxin receptor 5 in Nav1.2 (brain isoform) and Nav1.4 (skeletal muscle
isoform), shifting the voltage dependence to a more negative level and slowing inactivation
in vitro using TsA-201 cells [118]. Jin and colleagues identified the novel peptides conor-
famides As1a (100) and As2a (101), derived from the Mexican cone snail Conus austini,
that inhibited neuronal a7 nAChR, resulting in an inhibition of calcium ion flow into the
intracellular space in SH-SY5Y human neuroblastoma cell line [119].

Four compounds (102–104) demonstrated effects on pain perception. Niu and col-
leagues reported that a novel terpenoid conosteroid (102), found in the cone snail Conus
geographus, was a negative allosteric modulator (NAM) of type-a g-aminobutyric acid
receptor (GABAAR), resulting in murine pain inhibition using the hot plate model, but
did not display anesthetic properties via the von Frey test or effects on inflammatory pain
with the formalin test [120]. Guo and colleagues showed that the peptide a-conotoxin
Lv1F (103), isolated from the sea snail Conus lividus, competitively bound and inhibited
a3b2 nAChR, resulting in a voltage-dependent blockade in Xenopus oocytes expressing
rat a3b2 nAChR, which are normally expressed in the dorsal-root ganglion (DRG) of the
spinal cord and are involved in pain and sensory perception [121,122]. Similarly, Qiang
and colleagues studied the a-conotoxin Lv1d, from the same species, observing that it
showed analgesic effects in both the murine hotplate test and the formalin test, suggesting
it was also effective for inflammatory pain [121,122]. Liu and colleagues communicated
that a helical conantokin peptide Con-T[M8Q] (104), purified from the genus Conus, was an
antagonist of the GluN2B subunit of the N-methyl-D-aspartate receptor (NMDAR), which
showed inhibition of physiological and psychological morphine dependence and attenu-
ated withdrawal symptoms, as examined by naloxone-induced jumping and conditioned
place preference tests in a murine model of morphine addiction [123].

Two compounds (105, 87) showed neuroprotective effects post-stroke. Wu and col-
leagues described that the terpenoid dictyol C (105), uncovered in the marine brown alga
Dictyota sp., demonstrated the neuroprotection of cerebral ischemia-reperfusion injury
(CIRI) when given to rats two hours prior to middle cerebral artery occlusion (MCAO).
Moreover, analysis in PC12 cells suggested that cytoprotection resulted from an increase
in nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE)
signaling pathway, as examined with H2O2-induced oxidative damage [124]. Kim and
colleagues determined that polyketide echinochrome A (87), discovered in sea urchins, mit-
igated cerebral ischemic injury in rat MCAO when given after reperfusion, as demonstrated
in improved performance in the forced swim test as well as in histological preparations
showing reduced brain infarct volume and reduced edema. Further analyses demonstrated
increased cell growth and survival factors brain-derived neurotrophic factor (BDNF), B-
cell leukemia/lymphoma 2 protein (Bcl-2), phospho-extracellular signal-regulated kinase
(pERK), and phospho-protein kinase B (pAKT) expression and decreased pro-apoptotic
factors caspase-3 and Bcl2-associated X (BAX) [125].

Twelve compounds (43, 54, 88, 106–114) showed promising effects for various neurode-
generative disorders. Paudel and colleagues evaluated the polyketide eckol (88), derived
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from the brown alga Ecklonia stolonifera, as an agonist of dopamine receptor 3 (D3) and
dopamine receptor 4 (D4), which reduced Gai/o-mediated G-protein coupled receptor
(GPCR) signaling, resulting in a reduction in adenylyl cyclase in Chinese hamster ovary
(CHO) cells stably transfected and expressing human dopamine receptors [126]. Silva
and colleagues identified the terpenoid eleganolone (106), found in the brown seaweed
Bifurcaria bifurcata, as an inhibitor of 6-hydroxydopamine (6-OHDA) toxicity in SH-SY5Y
cells by increasing catalase activity, which protects from ROS damage, decreasing ROS
levels, and reducing the depolarization of mitochondrial membrane potential. Additionally,
it decreased pro-apoptotic factor caspase 3 and increased the cytoplasmic localization of
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a key regulator of
apoptotic/inflammatory events [127]. Chalorak and colleagues reported that the terpenoid
frondoside A (107), isolated from the sea cucumber Cucumaria frondosa, inhibited dopamin-
ergic neuronal degeneration via an increase in the free-radical scavenging gene superoxide
dismutase (SOD-3), an increase in genes associated with the protein degradation pathway, a
reduction in a-synuclein accumulation, and a decrease in apoptotic genes in a Caenorhabditis
elegans model of PD [128]. Gan and colleagues showed that the terpenoid fucosterol (108),
purified from brown alga, reduced intracellular levels of Ab via a decrease in amyloid
precursor protein mRNA and increased the mRNA levels of anti-apoptotic factor neu-
roglobin (Ngb) [129]. Additionally, Hannan and colleagues studied fucosterol (108) with in
silico analysis to identify binding affinity to tropomyosin receptor kinase B (TrkB), which
is involved in neuronal growth and survival, and BACE1, the enzyme involved in the
production of Ab in the brain [130]. Chen and colleagues contributed observations that the
terpenoid fucoxanthin (43), extracted from a brown seaweed, reduced corneal denervation
in a rat UVB-induced photokeratitis model by increasing Nrf2 expression and reduced
intracellular ROS, as well as decreased symptoms of inflammatory pain (eye wipe behavior)
and decreased transient receptor potential cation channel subfamily V member 1 (TRVP1)
signaling, which contributes to hyperalgesia [131]. Moreover, Wu and colleagues showed
that fucoxanthin (43) binds to Kelch-like ECH-associated protein 1 (Keap1), a Nrf2 inhibitor
and sensor of oxidative stress at the same binding site as Nrf2, thus enhancing Nrf2/ARE
signaling in PC12 cells [132]. Kalina and colleagues described the APETx-like peptides
Hcr 1b-2, Hcr 1b-3, and Hcr 1b-4 (109–111), discovered in the sea anemone Heteractis crispa,
which inhibited rat acid-sensing ion channel (rASIC) 1a, which is highly expressed in the
central nervous system. Rat ASIC1a was expressed in Xenopus laevis oocytes, and Hcr 1b-3
and -4 (109–110) reversibly inhibited the channel in a dose-dependent manner, indicating
therapeutic potential for pathological conditions associated with prolonged acidosis in-
cluding PD, multiple sclerosis, epilepsy, and ischemic stroke [133]. Tangrodchanapong and
colleagues determined that the polyketide 2-butoxytetrahydrofuran (112), derived from
the sea cucumber Holothuria scabra, inhibited Ab-induced paralysis in C. elegans by the
suppression of Ab oligomer formation and deposition via the upregulation of autophagy
genes important for clearing misfolded and abnormally aggregated proteins and a decrease
in ROS levels that contribute to oxidative damage and protein degradation [134]. Fan and
colleagues explored a novel terpenoid/shikimate neo-debromoaplysiatoxins E (113) and
F (114), found in the marine cyanobacterium Lyngbya sp., that exhibited potent blocking
activity against potassium channel 1.5 (Kv1.5), an ion channel expressed in neurons and
smooth muscle cells that is important for cellular repolarization [135].

Three compounds (115–117) were reported to show neurotoxic effects. Jiao and
colleagues reported that exposure to the polyketide okadaic acid (115), a marine shellfish
toxin, resulted in neural tube defects in chicken (Gallus gallus) embryos via inhibition
of the Nrf2 signaling pathway and increased ROS levels, as well as increasing cellular
proliferation, decreasing neuronal differentiation, and decreasing pro-apoptotic factor
caspase-3 [136]. Benoit and colleagues showed that the polyketide pinnatoxins (PnTXs) A
(116) and G (117), isolated from the marine dinoflagellate Vulcanodinium rugosum, blocked
synaptic transmission at the neuromuscular junction by the competitive antagonism of
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muscle-type nAChR in mice, consistent with death via muscle paralysis and respiratory
depression in vivo [137].

Two compounds (118–119) were shown to modulate neurotransmitter signaling. Seong
and colleagues studied the polyketide phlorofucofuroeckol-A (PFF-A, 118), obtained from
the brown alga Ecklonia stolonifera, noting that it was a noncompetitive inhibitor of human
monoamine oxidase (MAO)-A and -B that prevented the breakdown of dopamine and
other neurotransmitters. Additionally, PFF-A (118) was a D3 and D4 receptor agonist that
stimulated Gai/o-mediated-GPCR signaling, resulting in inhibition of adenylyl cyclase,
as well as an antagonist to D1, serotonin 1a receptor (5HT1A), and neurokinin-1 (NK1),
indicating multifactorial effects on the dopaminergic and serotonergic systems, which may
be important for treating depression and/or PD [138]. Lee and colleagues characterized
the terpenoid sargachromanol (119) compound, purified from the brown alga Sargassum
siliquastrum, finding that it potently inhibited AChE via a mixed reversible inhibition,
suggesting that it binds to both an active site and a non-catalytic site of AChE, in turn
suggesting potential therapeutic development for the treatment of AD [139].

Two compounds (120–121) demonstrated important effects on reducing misfolded
proteins. Chen and colleagues contributed the alkaloid santacruzamate A (120), discovered
in a marine cyanobacterium, that increased KDEL, a receptor known for regulating the
endoplasmic reticulum retrieval system, which is important for regulating misfolded
proteins both in vitro in PC12 and SH-SY5Y cells and in vivo in mouse brain tissue. It
also increased mitochondrial space assembly protein 40 (Mia40), an augmenter of liver
regeneration (ALR), potentially suppressing mitochondrial fission and apoptosis pathways.
Notably, it improved behavioral results in a mouse model of AD, indicating that the
KDEL receptor played a role in improved memory impairment [140]. Jiang and colleagues
described the novel terpenoid cembranoid (121), derived from the soft coral Sinularia sp.,
which bound to the c-terminal of Ab monomers and inhibited Ab aggregation, indicating a
new source for novel therapeutics for AD [141].

Four compounds (54, 122–124) demonstrated neuroprotective effects. Paudel and
colleagues determined that the shikimate bromophenol (54), found in the red alga Sym-
phyocladia latiuscula, was a human dopamine D4 receptor agonist, which may provide
a novel therapeutic for treating cognitive deficits associated with schizophrenia. It also
demonstrated lesser human dopamine D3 receptor agonist activity, potentially as a novel
therapeutic for PD management [142,143]. Paudel and colleagues additionally evaluated
the bromophenol (54) as a mixed-type inhibitor of AChE, a competitive inhibitor of butyryl-
cholinesterase (BChE), as well as noncompetitive inhibition of BACE1 in vitro, indicating
therapeutic potential for AD management [144]. Liu and colleagues identified the sugar
glucuronomannan GM2 (122), isolated from the brown seaweed Saccharina japonica, which
improved cell viability by inhibiting lactate dehydrogenase (LDH) release, reduced ROS
levels in PC12 cells, improved the ratio of anti-apoptotic Bcl-2 and pro-apoptotic Bax, and
reduced caspases 3 and 9, attenuating apoptosis. Feng and colleagues investigated the
terpenoid stellettin B (123), purified from the marine sponge Jaspis stellifera, that increased
Nrf2/ARE signaling, decreased ROS-positive cells, and decreased caspase-3 signaling in
SH-SY5Y cells. Additionally, it reversed zebrafish locomotion deficits in a 6-OHDA-induced
model of PD, suggesting therapeutic potential [145]. Sheng and colleagues demonstrated
that the terpenoid 5a-androst-3b, 5a, 6b-triol (124), discovered in the soft coral Nepthea
brassica, demonstrated protection of retinal ganglion cells in a mouse model of retinal is-
chemic injury via negative regulation of Keap1, resulting in an upregulation of Nrf-2/ARE
signaling [146].

4. Marine Compounds with Miscellaneous Mechanisms of Action

As reported in the 2019–2021 peer-reviewed literature, Table 3 presents 51 marine
compounds (43, 54, 65, 88, 118, 125–170) with miscellaneous mechanisms of action shown
to affect multiple cellular and molecular targets, but with no currently assigned phar-
macological category, and that have been isolated from marine bacteria, cyanobacteria,
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seahorses, sharks, crinoids, octopuses, mussels, oysters, sponges, fungi, and algae, with
their corresponding structures shown in Figure 3: marine cyanobacterium Okeania sp.-
derived linear peptide amantamide (125) that selectively stimulated C-X-C chemokine
receptor type 7 and increased extracellular signal-regulated kinase 1 phosphorylation [148];
marine octopus Amphioctopus neglectus-derived macrocyclic lactone (126) with radical-
scavenging capacity and anti-hypertensive activity against angiotensin converting en-
zyme [149]; marine edible shellfish Arca subcrenata-derived peptides D2-G1S-1 and G2-G1S-
2 (127, 128) that demonstrated potent radical scavenging activities and extended worm
Caenorhabditis elegans lifespan, thus suggesting “applications in functional cosmetics ad-
ditives” [150]; marine fugal strain Aspergillus sp. F452-derived polyketide aspermytin A
(129) that inhibited Staphylococcus aureus-derived sortase A by a reversible mixed inhibitor
mechanism that affected “bacterial adherence to fibronectin-coated surfaces” [151]; ma-
rine sponge-derived terpenoid avarol (130) that reduced synthesis of cholesteryl ester by
potent inhibition of sterol O-acyltransferase and concomitant reduction in lipid droplet
accumulation in CHO-K1 cells [152]; marine brown alga Ecklonia cava-derived polyketide
pyrogallol-phloroglucinol-6,6-bieckol (131) that decreased murine hypertension resulting
from a high-fat diet by affecting aortic endothelial to mesenchymal transition as well as
LOX-1 and MMP-9 gene expression [153]; marine red algae-derived shikimate 3-bromo-
4,5-dihydroxybenzaldehyde (132) that enhanced antioxidant enzyme HO-1 expression
and increased Nrf2 expression, phosphorylation and nuclear translocation [154]; marine
oyster Crassostrea gigas-derived novel peptide (133) that promoted MC3T3-E1 osteoblast-
like cells proliferation by binding to the α5β1 integrin [155]; an additional marine oyster
Crassostrea gigas-derived peptide (134) that inhibited thrombin by a competitive inhibition
mechanism [156]; marine sponge Dysidea herbacea-derived polyketide diphenyl ether (135)
that inhibited bacterial α-D-galactosidase by irreversibly inactivating the active-site of
the enzyme [157]; marine brown alga Ecklonia cava-derived shikimate dieckol (65) that
reduced oxidative stress-exposed porcine oocytes by increasing the level of glutathione and
antioxidant enzymes [158] and suppressed ultraviolet radiation-induced skin damage in
human dermal fibroblasts by increasing collagen synthesis and reducing proinflammatory
cytokines and metalloproteinases [159]; marine brown alga Ishige okamurae-derived polyke-
tide diphlorethohydroxycarmalol (DPHC) (136) that dose-dependently reduced high-fat
diet-induced obesity in mice by reducing critical adipogenic-specific, lipogenic enzyme
expression, and exerted vasodilatory effects via calcium signaling [160–162]; marine brown
alga Ecklonia stolonifera-derived phlorotannin (137) with potential antioxidant and tyrosi-
nase inhibitory activity [163]; marine alga Ecklonia cava-derived polyketide eckol (88) that
reduced ROS generation in particulate matter 2.5-induced skin damage to keratinocytes by
inhibiting MAPK signaling [164]; marine fungus Streptomyces nitrosporeus YBH10-5-derived
polyketide farnesylquinone (138) observed to have fat-reducing effects by enhancing mito-
chondrial β-oxidation rate and modifying energy metabolism genes’ transcription [165];
marine brown alga Eisenia bicyclis polyketide fucofuroeckol-A (139) that suppressed melano-
genesis in murine B16 melanoma cells by down-regulation of tyrosinase-related protein-2
activity, suggesting it might be beneficial as a “melanin control drug for hyperpigmentation
disorders” [166]; marine brown alga Sargassum wightii-derived terpenoid fucoxanthin (43)
that inhibited angiotensin 1-converting enzyme by a non-competitive mechanism and
binding to the active site of the enzyme [167], and alleviated oxidative stress in glomerular
mesangial cells by stimulating Akt/Sirt1/FoxO3 α signaling [168]; marine fungal strain
Aspergillus sp. SF-5929-derived polyketide funalenone (140) that dose-dependently in-
hibited PTP1B enzyme by a non-competitive mechanism targeting “a site that is distinct
from the catalytic site of PTP1B” [169]; deep-sea-derived actinomycete Streptomyces lusi-
tanus SCSIOLR32 polyketide grincamycin B (142) that targeted isocitrate dehydrogenase
1 and might become a “potential target for hematological malignancies intervention in
the future” [170]; mangrove endophytic fungus Tilachlidium sp.-derived novel thiodike-
topiperazine alkaloid GQQ-792 (141), shown to be a non-ATP competitive inhibitor of
phosphoglycerate kinase 1 [171]; marine edible seahorse Hippocampus abdominalis-derived
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peptides HGSH and KGPSW (143,144) that protected against H2O2-induced oxidative
damage in human umbilical vein endothelial cells by activating the nuclear transcrip-
tion factor-erythroid 2-related factor signaling pathway, suggesting these peptides as a
“promising agent for oxidative stress-related cardiovascular diseases” [172]; marine brown
alga Sargassum horneri-derived monoterpene (−)-loliolide (145) that suppressed both lipid
accumulation in 3T3-L11 adipocytes and expression of adipogenic and lipogenic proteins,
thus possibly being a “lipid-lowering agent in the management of patients who suffer
from obesity” [173]; marine sponge Monanchora pulchra-derived alkaloid monanchomy-
calin B (146) observed to be a “slow-binding irreversible” inhibitor of α-galactosidase
from marine γ-proteobacterium Pseudoalteromonas sp. KMM 701, targeting two alkaloid
binding sites on the molecule [174]; marine sponge Clathria frondifera associated fungus
Monascus sp. NMK7-derived polyketide monacolin X (147) that suppressed angiogenesis
by downregulation of the VEGFR2 signaling pathway [175]; marine sponge Diacarnus
erythraeanus-derived norterpene peroxide (−)-muqubilin A (148), found to be a retinoic
acid receptor α positive allosteric modulator and retinoic acid signaling enhancer [176];
marine sponge Mycale aff. nullarosette-derived polyketide mycalolide A (149) that inhibited
cytokinesis by the disruption of F-actin and binucleation induction [177]; marine blue
mussel Mytilus edulis-derived dodecapeptide (150) that promoted growth of osteoblasts,
promoted bone loss reduction in ovariectomized mice and interacted with integrins 1L5G
and 3V14 [178]; tilapia Oreochromis niloticus-derived oligopeptide (151), shown to be protec-
tive of angiotensin II-induced hypertensive endothelial injury by affecting Nrf2 and NF-κB
signaling pathways [179]; marine fungus Penicillium sp. KFD28-derived indole-terpenoid
penerpene A (152) that potently inhibited protein tyrosine phosphatase B by binding to
the active site pocket [180]; mangrove endophytic fungus Penicillium janthinellum-derived
alkaloid penicisulfuranol A (153), discovered as a novel Hsp90 C-terminus inhibitor at
“cysteine residues near amino acid region responsible for dimerization of Hsp90” [181];
marine endophytic fungal strain Pestalotiopsis neglecta SCSIO41403 polyketide pestalotio-
quinoside C (154) that acted as a putative liver X receptor alpha agonist, as demonstrated
by the upregulation of downstream gene ABCA1 [182]; marine sponge-derived fungal
strain Aspergillus sp. 151304 cyclohexapeptide petrosamide C (155) that dose-dependently
inhibited pancreatic lipase by a non-competitive mechanism [183]; marine sponge Phakellia
fusca-derived cycloheptapeptide phakefustantin A (156) that inhibited the PI3K/Akt sig-
naling pathway by regulating the transcriptional function of retinoic X receptor-α [184];
marine brown alga Ecklonia cava-derived phlorotannin 2-phloroeckol (157) that inhibited
tyrosinase by a slow-binding competitive inhibition of the active site of the enzyme [185];
marine brown alga Ecklonia cava-derived functional polyphenol polyketide phlorofuco-
furoeckol A (118), shown to modulate human tracheal fibroblast collagen type 1 protein
expression by downregulation of MAPKs and SMAD 2/3 signaling pathways [186], and en-
hance bone marrow osteoblastogenesis [187]; marine fungus Penicillium polonicum-derived
diketopiperazine alkaloid polonimide analog (158) with inhibitory activity against agri-
cultural insect pest Ostrinia furnacalis GH18 chitinase Of Chi-h, supported by docking
studies with the enzyme [188]; marine red alga Polysiphonia morrowii shikimate 5-bromo-
3,4-dihydroxybenzaldehyde (132) that inhibited adipogenesis in 3T3-L1 adipocytes by the
regulation of adipogenic transcription factors as well as activation of the AMP-activated
protein kinase pathway [189]; marine fungus Penicillium sp. SF-5497-derived meroterpenoid
preaustinoid A6 (159), which inhibited protein tyrosine phosphatase B in a noncompetitive
manner [190]; marine red alga Pyropia yezoensis-derived peptide (160), assessed as protective
against synthetic glucocorticoid dexamethasone-induced myotube atrophy [191]; crinoid
Himerometra magnipinna-derived anthraquinone polyketide rhodoptilometrin (161) that sig-
nificantly increased wound healing and cell migration as well as increased FAK, fibronectin
and type 1 collagen protein and gene expression in human hGF-1 gingival fibroblasts [192];
marine alga Sargassum serratifolium-derived terpenoid sargahydroquinoic acid (162) that
stimulated beige-like adipocytes by lipid catabolic pathway activation [193]; shark-derived
marine bile terpenoid 5β-scymnol (163), demonstrated to be a novel agonist of the TGR5
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receptor by causing sustained intracellular Ca2+ release, thus “showing therapeutic po-
tential for treating atherosclerosis [194]; fungus Aspergillus quadrilineatus FJJ093-derived
epipolythiodioxopiperazine alkaloid secoemestrin C (164), determined to be an uncompeti-
tive inhibitor of isocitrate lyase (ICL) in the glyoxylate cycle of Candida albicans and also to
inhibit ICL mRNA expression [195]; marine ascidian Didemnum proliferum-derived alkaloid
shishijimicin A (165), noted to bind to double-stranded DNA’s minor groove with its β-
carboline moiety playing a role “in the binding through intercalation” [196]; marine green
alga Codium cylindricum Holmes-derived terpenoid siphonaxanthin (166) that induced
transcription factor Nrf2 protein expression and signaling in HepG2 cells [197]; marine alga
Symphyocladia latiuscula-derived bromophenol polyketide (54) that competitively inhibited
both melanin and tyrosinase in melanoma cells [198]; marine bacterium Saccharothrix sp.
10-10-derived polyketide tetracenomycin X (167) that induced cell cycle arrest by downreg-
ulating cyclin D1 as a result of proteasomal degradation [199]; cyanobacterium Schizothrix
sp.-derived cyclodepsipeptide tutuilamide A (168) that demonstrated as a potent and
reversible inhibitor of the pancreatic serine protease elastase [200]; marine brown edible
alga Undaria pinnatifida peptide KNFL (169) that inhibited angiotensin-1 converting en-
zyme via a non-competitive inhibition mechanism and binding to the ACE non-active site
via hydrogen bonds, suggesting it could become a “functional food ingredient(s) against
hypertension” [201]; and marine Dunaliella salina microalga-derived terpenoid zeaxan-
thin heneicosylate (170) that ameliorated age-associated rat cardiac dysfunction by the
stimulation of retinoid receptors [202].

Table 3. Marine pharmacology in 2019–2021: marine compounds with miscellaneous mechanisms of
action.

Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

amantamide
(125)/

cyanobacterium
Peptide g CXCR7

stimulation 2.5 µM
Erk1/2

phosphorylation
increase

CHN, PHL,
USA [148]

A.neglectus
macrocyclic

lactone
(126)/octopus

Polyketide e DPPH radical
scavenging 0.9 mM

ACE-1
non-competitive

inhibition
IND [149]

A. subcrenata
peptides (127,
128)/shellfish

Peptide g DPPH radical
scavenging 1 mM

Insulin/IGF-1
signaling

modulation
CHN [150]

aspermytin A
(129)/fungus Polyketide e

S. aureus-derived
SrtA

inhibition
0.146 mM Reversible mixed

inhibition S. KOR [151]

avarol
(130)/sponge Terpenoid f

Cholesteryl ester
synthesis
inhibition

5.7 µM SOAT inhibition JPN [152]

bieckol
(131)/alga Polyketide e

Murine
cholesterol, LDL
and triglyceride

decrease

2.5 mg/kg/day **

Aortic LOX-1 and
PKC-α

expression
decreased

S. KOR [153]

3-BDB (132)/alga Shikimate h
HO-1 antioxidant

enzyme
upregulation

10 µM *
Nrf2/HO-1

pathway
activation

S. KOR [154]

C. gigas peptide
(133)/oyster Peptide g Osteogenesis

induction 0.1 µM * Integrin α5β1
binding CHN [155]

C. gigas peptide
(134)/oyster Peptide g Thrombin

inhibition 3.6 mM * Competitive
inhibition CHN [156]

D. herbacea
diphenyl ether
(135)/sponge

Polyketide e
Bacterial

α-D-galactosidase
inhibition

4.26 µM
Irreversible
active-site

inactivation
RUS [157]
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Table 3. Cont.

Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

dieckol (65)/alga Shikimate h ROS inhibition 0.5 µM *
Enhanced NFE2L
and SOD1 gene

expression
S. KOR [158]

dieckol (65)/alga Shikimate h UVB-induced skin
damage reduction 25 µM *

Enhanced collagen
synthesis and

pro-inflammatory
cytokines
reduction

S. KOR [159]

DPHC (136)/alga Polyketide e

High-fat
diet-induced

adiposity
inhibition

25,
50 mg/kg/day **

Lipogenesis
enzymes
inhibition

S. KOR [160,161]

DHPC (136)/alga Polyketide e NO stimulation 20 µM *
AchR and
VEGFR2

expression
activation

S. KOR [162]

eckol (88)/alga Polyketide e ROS inhibition 30 µM * MAPK signaling
inhibition S. KOR [164]

E. stolonifera
phlorotannin

(137)/alga
Polyketide e Tyrosinase

inhibition 1.6 µM Competitive
inhibition S. KOR [163]

farnesylquinone
(138)/fungus Polyketide e Lipid-lowering

activity 0.5 mM
Mitochondrial
β-oxidation

enhancement
CHN, DEU [165]

fucofuroeckol-A
(139)/alga Polyketide e Melanogenesis

inhibition 25 µM *
Tyrosinase-related

protein-activity
inhibition

JPN [166]

fucoxanthin
(43)/alga Terpenoid f ACE inhibition 0.8 mM Non-competitive

inhibition IND [167]

fucoxanthin
(43)/alga Terpenoid f

Reduction in
GMC’s collagen IV

and fibronectin
2 µM *

Akt/Sirt1/FoxO3α
signaling
regulation

CHN [168]

funalenone
(140)/fungus Polyketide e PTP1B inhibition 6.1 µM Non-competitive

inhibition S. KOR [169]

GQQ-792
(141)/fungus Alkaloid g PGK1 inhibition 1.2 µM Non-competitive

inhibition CHN [171]

grincamycin B
(142)/fungus Polyketide e IDH1 inhibition 1.25 µM *

Increased CHOP
and GADD34 gene

expression
CHN, USA [170]

H. abdominalis
peptides (143,
144)/seahorse

Peptide g ROS inhibition in
HUVEC

0.23 and
0.17 mM *

Nrf2 signaling
activation S. KOR [172]

(−)-loliolide
(145)/alga Terpenoid g

Lipid
accumulation

suppresion
62 µM *

Decreased
adipogenic

protein expression
S. KOR [173]

monanchomycalin
B (146)/sponge Alkaloid g α-PsGal inhibition Not shown

Slow-biding
irreversible
inhibition

RUS [174]

monacolin X
(147)/fungus Polyketide e

HUVEC tube
formation
inhibition

30 µM * VEGFR2 signaling
modulation IND, SGP [175]

(−)-muqubilin A
(148)/sponge Terpenoid f RXRα and PPARα

agonist 10 µM *
Positive RARα

allosteric
modulation

CAN, ITA,
USA [176]

mycalolide A
(149)/sponge Polyketide e Cytokinesis

inhibition 11 µM
F actin inhibition
and binucleation

induction
JPN [177]
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Table 3. Cont.

Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

M. edulis
dodecapeptide
(150)/mussel

Peptide g Osteoblast growth
stimulation 67.2 µM

Binding to cellular
1L5G and 3V14

integrins
CHN [178]

O. niloticus
oligopeptide

(151)/fish
Peptide g NO and ROS

inhibition 10 µM * NF-κB pathway
suppression CHN [179]

penerpene A
(152))/fungus Terpenoid f PTP inhibition 1.7 µM Docking studies

completed CHN [180]

penicisulfuranol
A (153)/fungus Alkaloid g Hsp90 inhibition 0.5 µM

Binding to
Hsp90α

C-terminus
CHN [181]

pestalotioquinoside
C (154)/
fungus

Polyketide e ABCA1 mRNA
upregulation 50 µM LXRα receptor

binding CHN [182]

petrosamide C
(155)/fungus Peptide g Pancreatic lipase

inhibition 0.5 µM Competitive
inhibition CHN [183]

phakefustantin A
(156) sponge Peptide g Akt expression

inhibition 10 µM * RXR-α binding CHN [184]

2-phloroeckol
(157)/alga Polyketide e Tyrosinase

inhibition 7 µM
Slow-binding
competitive
inhibition

S. KOR [185]

phlorofucofuroeckol
A (118)/alga Polyketide e

Collagen type 1
expression
inhibition

25 µM *

MAPK and SMAD
2/3

pathway
downregulation

S. KOR [186]

phlorofucofuroeckol
A (118)/alga Polyketide e Osteoblastogenesis

stimulation 5 µM *
BMP and Wnt/β

catenin-
signaling
activation

S. KOR [187]

polonimide
analogue (158)/

fungus
Alkaloid g

Insect GH18
chitinase Of Chi-h

inhibition
<1 µM * Docking studies

completed CHN [188]

P. morrowii
bromophenol

(132)/alga
Shikimate h Adipogenesis

inhibition 25 µM *

PPAR-γ, C/EBPα,
leptin

inhibition and
AMPK

enhancement

S. KOR [189]

preaustinoid A6
(159)/fungus Terpenoid f PTP inhibition 17.6 µM Non-competitive

inhibition
S. KOR,
VNM [190]

P. yezoensis
peptide

(160)/alga
Peptide g

Dexamethasone-
induced atrophy

protection
0.31 µM IFG-1 signaling

activation S. KOR [191]

rhodoptilometrin
(161)/crinoid Polyketide e

Wound healing
and cell migration

stimulation
1 µM *

FAK, fibronectin
and type 1

collagen increased
TWN [192]

sargahydroquinoic
acid (162)/alga Terpenoid f Activation of lipid

catabolism 2.5 µM *
PPAR-γ and

AMPKα
activation

S. KOR [193]

scymnol
(163)/shark Terpenoid f

Activation of
TGR5

receptor
0.5 mM *

Sustained
intracellular
Ca2+ release

AUS [194]

secoemestrin C
(164)/fungus Alkaloid g ICL inhibition 4.77 µM

ICL mRNA
expression
inhibition

S. KOR [195]

shishijimicin A
(165)/ascidian Alkaloid g DNA cleavage 0.014 µM

Binding to
double-stranded

DNA minor
groove

GRC, SGP,
USA, [196]



Mar. Drugs 2024, 22, 309 36 of 58

Table 3. Cont.

Compound/
Organism a Chemistry Pharmacological

Activity IC50
b MMOA c Country/

Territory d References

siphonaxanthin
(166)/alga Terpenoid f

Cellular Nrf2
protein

expression
activation

1 µM * Nrf2 signaling
activation JPN [197]

S. latiuscula
bromophenol

(54)/alga
Polyketide e Tyrosinase

inhibition 2.9 µM Competitive
inhibition S. KOR [198]

tetracenomycin X
(167)/bacterium Polyketide e Cyclin D1

downregulation 2.5 µM *
Cyclin D1

proteosomal
degradation

CHN [199]

tutuilamide A
(168)/

cyanobacterium
Peptide g Elastase inhibition 0.001 µM Docking studies

completed
BRA, CHN,
DEU, USA [200]

U. pinnatifida
peptide

(169)/alga
Peptide g ACE inhibition 225 µM Mixed-type

inhibition CHN [201]

zeaxanthin
heneicosylate

(170)/alga
Terpenoid f

In vivo inhibition
of age-associated

cardiac
dysfunction

250 µg/kg ** RXR-α activation EGY [202]

a Organism: Kingdom Animalia: ascidian, seahorse, shark (Phylum Chordata), crinoid (Phylum Echinodermata),
octopus, mussel, oyster, (Phylum Mollusca), sponge (Phylum Porifera); Kingdom Fungi: fungus; Kingdom Plantae:
alga; Kingdom Monera: bacterium; cyanobacterium (Phylum Cyanobacteria); b IC50: concentration of a compound
required for 50% inhibition in vitro; *: estimated IC50; ** in vivo study; c MMOA: molecular mechanism of action;
d Country/Territory: AUS: Australia; BRA: Brazil; CAN: Canada; CHN: China; DEU: Germany; EGY: Egypt; GRC:
Greece; IND, India; ITA: Italy; JPN: Japan; PHL: Philippines; RUS: Russian Federation; SGP: Singapore; S. KOR:
South Korea; TWN: Taiwan; VNM: Vietnam; Chemistry: e polyketide; f terpene; g nitrogen-containing compound;
h shikimate; Abbreviations: ABCA1: a well-known LXR target gene; ACE: angiotensin 1-converting enzyme;
AchR: acetylcholine receptor; Akt: protein kinase B; α-PsGal: α-galactosidase from marine γ-proteobacterium Pseu-
doalteromonas sp. KMM 701; AMPK: AMP-activated protein kinase; 3-BDB: 3-bromo-4,5-dihydroxybenzaldehyde;
BMP: bone morphogenic protein; C/EBPα: CCAAT/enhancer-binding protein α; CHOP: C/EBP homologous
protein; CXCR7: C-X-C chemokine receptor type 7; DPHC: diphlorethohydroxycarmalol; DPPH: 1,1-diphenyl-2-
picryl-hydrazil; ERK: extracellular signal-regulated kinase; FAK: focal adhesion kinase; GADD34: an apoptosis-
and DNA damage-inducible gene; GMC: glomerular mesangial cells; HO-1: heme oxygenase-1; HUVEC: human
umbilical vein endothelial cells; ICL: isocitrate lyase; IDH1: isocitrate dehydrogenase 1; IGF-1: insulin-like growth
factor; IL5g: integrin IL5; LDL: low-density lipoproteins; LOX-1: lectin-type oxidized LDL receptor-1; LXRα: liver
X receptor α; MAPK: mitogen-activated protein kinase; NFE2L: nuclear factor erythroid 2-like 2; NF-κB: nuclear
factor kappa-light-chain-enhancer of activated B cells; NO: nitric oxide; Nrf2: nuclear factor-erythroid 2-related
factor 2; PGK1: phosphoglycerate kinase 1; PKC: protein kinase C; PPAR-γ: peroxisome proliferator-activated
receptor-γ; α-PsGal: α-D-galactosidase; PTP: protein tyrosine phosphatase; RAR: retinoic acid receptor; ROS:
reactive oxygen species; RXRα: retinoic X receptor-α; SMAD: an acronym from the fusion of Caenorhabditis elegans
Sma genes and the Drosophila Mad, mothers against decapentaplegic proteins; SOAT: sterol O-acyltransferase; SOD:
superoxide dismutase; SrtA: sortase A;TGR5: G protein-coupled bile acid receptor 1; UV: ultraviolet; VEGFR: vas-
cular endothelial growth factor receptor; Wnt/β-catenin signaling pathway: proteins in the wingless/integrated
signaling pathway are involved in embryonic development and adult tissue homeostasis.
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5. Reviews on Marine Pharmacology and Pharmaceuticals

In 2019–2021, a large number of reviews were published that covered general and/or
specific areas of marine preclinical pharmacology: (a) marine pharmacology and marine pharma-
ceuticals: marine natural products and their relevant biological activities published in 2019,
2020 and 2021 [203–205]; advances in marine natural products therapeutic potential [206];
polar marine terpenoids and their potential for drug discovery [207]; bioactive properties
of marine phenolics [208]; chemistry and biological activities of marine flavonoids [209];
marine-derived spirotetronates and potential pharmaceutical applications [210]; bioac-
tivities of marine-derived hydroperoxides [211]; marine-derived macrocyclic alkaloids
as a potential source of drugs [212]; pharmacology of thiazole-based marine-derived
peptides [213]; marine meroterpenoids’ and cembranoids’ biological activities [214,215];
marine-derived macrolides chemical and biological diversity [216]; the pharmacology
of cyanobacterial-derived natural products [217–222]; marine natural products from mi-
croalgae: an -omics overview [223,224]; pharmacological potential of macroalgae natural
products [225–232]; bioactive compounds from Bryozoa and Cnidaria [233–236]; genus
Didemnum secondary metabolites’ pharmacological properties [237]; marine fungi-derived
bioactive compounds [238–240]; the pharmacological significance of marine microbial natu-
ral compounds [241–245]; marine sponge-derived pharmacological activity [246,247]; the
pharmacological activity of mangrove-derived natural products [248–250]; bioactive marine
natural products from Indonesia (1970–2017) and the Red Sea [251,252]; marine-derived
bioactive compounds in China (2009–2018) [253]; marine bioactive natural products from
the Yucatan Peninsula [254]; marine natural products as a source of new drugs: a patent
review and productivity (2015–2018) [255,256]; natural product-based antibody drug con-
jugates: clinical status as of 9 November 2020 [257]; the global marine pharmaceutical
pipeline: approved marine-derived compounds and in Phase I, II and III of clinical develop-
ment https://www.marinepharmacology.org/ (accessed on 20 May 2024); (b) antimicrobial,
antifungal and antiviral marine pharmacology: marine bacteria-derived antimicrobial natural
products [258–261]; marine bacteria as source of quorum-sensing inhibitors [262–265]; ma-
rine natural products targeting multidrug-resistant bacteria [266–268]; ascidian-derived
marine antimicrobial natural products [269]; epinecidin-1 and other marine antimicrobial
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peptides [270,271]; marine fungi-derived antimicrobial natural products [272,273]; ma-
rine macrolides with antibacterial and/or antifungal activity [274]; antimicrobial lipids
from marine organisms [275]; marine tryptophan-derived antimicrobial alkaloids [276];
recent advances on marine-based antifungals [277]; marine natural products for RNA virus
infections including SARS-CoV-2 [278–280]; natural products targeting hepatitis C and
respiratory viruses [281,282]; marine algae-derived compounds as antivirals [283–285];
(c) antiprotozoal and antimalarial marine pharmacology: antiprotozoal activities of marine
polyether triterpenoids [286]; recent advances in novel antiprotozoal agents [287,288]; ma-
rine drugs as a new drug lead for trypanosomatids and malaria [289,290]; marine-sponge-
derived antimalarial metabolites [291]; antituberculosis marine natural products [292];
marine natural products and latent tuberculosis drug resistance [293]; (d) immuno- and anti-
inflammatory marine pharmacology: anti-inflammatory marine natural products [294]; marine-
derived compounds for rheumatoid arthritis treatment [295]; marine anti-inflammatory
alkaloids [296]; anti-inflammatory compounds from marine fungi [297]; anti-inflammatory
prostaglandins and peptides in marine organisms [298,299]; marine polypeptides as in-
hibitors of neutrophil elastase [300]; anti-inflammatory marine n-3 polyunsaturated fatty
acids [301–303]; anti-inflammatory pharmacology of fucoxanthin [304]; antioxidant prop-
erties of marine algae [305]; Sargassum seaweed as a source of anti-inflammatory natural
products [306]; microalgae with immunomodulatory activities [307]; immunomodula-
tion by marine invertebrate-derived natural products [308,309]; marine-derived vaccine
adjuvants [310]; (e) cardiovascular and antidiabetic marine pharmacology: marine-derived anti-
atherosclerotic and lipid-lowering compounds [311,312]; marine-derived anti-thrombotics
and patents [313,314]; marine-derived sulfated polysaccharides as antithrombotics [315];
microalgae-derived bioactive compounds for cardiovascular pharmacology and inflam-
mation [316]; anti-obesity and anti-diabetic effects of marine algae [317–320]; antidia-
betic properties of Indian mangroves [321]; anti-obesity and anti-diabetic benefits of the
carotenoids astaxanthin and fucoxanthin [322,323]; brown seaweeds for the management
of metabolic syndrome [324,325]; (f) nervous system marine pharmacology: the neuropro-
tective potential of marine natural products [326,327]; marine omega-3 phospholipids
and brain health [328]; the pharmacological diversity of conotoxins [329,330]; biolog-
ical activities and pharmacological applications of conopeptides [330]; marine toxins
and gastrointestinal visceral pain therapeutics [331]; marine algae anti-inflammatory and
neuroprotective pharmacology [332–334]; marine compounds for Alzheimer’s therapeu-
tics [335–339]; cyanobacterial bioactive compounds for Alzheimer’s disease [340]; marine
natural products for Parkinson’s disease [341]; neuroprotective pharmacology of astaxan-
thin [342–344]; cnidarian peptide neurotoxins as modulators in central nervous system
diseases [345]; marine toxins targeting mammalian voltage-gated potassium channels [346];
marine excitatory amino acids [347]; marine natural products with monoamine oxidase
inhibitory activity [348]; (g) miscellaneous molecular targets, methodologies and uses: marine
natural product databases [349,350]; metabolomic tools used in marine natural product
drug discovery [351]; a chemical genetics approach for biologically active marine natu-
ral product discovery [352]; marine-derived cellular signal transduction inhibitors [353];
seaweed-derived signal transduction pathway modulators [354]; astaxanthin modulation
of autophagy signal transduction pathways and ocular diseases [355,356]; marine natural
product protein kinase inhibitors [357]; marine natural products as ATP-competitive mTOR
kinase inhibitors [358]; drug potential of the marine-derived protein kinase C modulators
bryostatins [359,360]; natural products as eukaryotic protein secretion modulators [361];
marine natural products targeting eukaryotic cell membranes and cytoskeleton [362,363];
marine natural products as pregnane X receptor ligands [364]; ubiquitin–proteasome sys-
tem modulation by marine natural products [365]; intracellular calcium signal modulation
by marine natural products [366]; cyanobacterial natural products for skin protection and
cosmetic applications [367–369]; and seaweed bioactive compounds as nutraceuticals and
cosmeceuticals [370–372].
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6. Conclusions

This review, covering the peer-reviewed marine pharmacology literature published
in 2019–2021, is the 12th contribution to the marine preclinical pharmacology pipeline
review series that was initiated by AMSM in 1998 [1–11], with the purpose of present-
ing a consolidated and systematic overview of selected peer-reviewed preclinical marine
pharmacological literature published during 2019–2021. Global preclinical marine phar-
macology mechanism-of-action research involved chemists and pharmacologists from
41 countries, namely, Australia, Belgium, Brazil, Canada, Chile, China, Costa Rica, Cuba,
Czech Republic, Denmark, Egypt, Ecuador, France, Germany, Greece, Hungary, India,
Indonesia, Iran, Ireland, Italy, Japan, Jordan, Malaysia, Mexico, the Netherlands, Norway,
Panama, Portugal, Romania, Russian Federation, Saudi Arabia, Singapore, South Korea,
Spain, Switzerland, Thailand, Taiwan, the Philippines; United Kingdom, Vietnam, and
the United States. Thus, during 2019–2021, the marine preclinical pharmaceutical pipeline
continued to generate novel marine chemical leads for the active marine clinical pharma-
ceutical pipeline. As currently shown on the marine pharmaceutical pipeline website,
https://www.marinepharmacology.org/ (accessed on 20 May 2024), there are 15 marine-
derived pharmaceuticals approved by either the U.S. Food and Drug Administration,
Australia, Japan and/or China, and 33 compounds in either Phase I, II or III of clinical
pharmaceutical development.
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