Anti-Biofilm Extracts and Molecules from the Marine Environment
Abstract
:1. Introduction
2. Anti-Biofilm Compounds and Quorum-Sensing Inhibitors
2.1. Extracts and Culture Supernatants
2.2. Active Compounds
3. Discussion
Compound Family. | Compound Number | Compound Name | LogP | Druglikeness Score |
---|---|---|---|---|
Peptides and proteins | 1 | cis-cyclo(Leucyl-Tyrosyl) | 1.1773 | 4.294 |
2 | Paracentrin 1 | / | / | |
3 | Nesfactin | 4.0566 | −31.67 | |
4 | Cyclo(L-Trp-L-Ser) | 1.8772 | 4.4232 | |
Phenolic compounds | 5 | 2,4-di-tert-butylphenol | 4.4777 | −5.276 |
6 | Methyl benzoate | 1.5726 | −3.9278 | |
7 | Methyl phenylacetate | 1.5707 | −6.9825 | |
Alkaloids | 8 | Psammaplin A | 4.2446 | 1.5181 |
9 | Bisaprasin | 8.4888 | 1.5181 | |
10 | Ageloxime D | 3.0262 | −5.0562 | |
11 | Maipomycin A | |||
12 | Isonaamine D | 2.4565 | 2.5205 | |
13 | Isonaamidine A | 1.6476 | 4.386 | |
14 | 2,2-bis(6-bromo-1H-indol-3-yl)ethanamine | 4.1514 | −1.8628 | |
15 | 2,2-bis(6-fluoro-1H-indol-3-yl)ethanamine | 2.9026 | −1.4128 | |
16 | Makaluvamine A | −0.3414 | 3.1635 | |
17 | Makaluvamine F | 2.2402 | 2.5254 | |
18 | Makaluvamine G | 1.0552 | 3.189 | |
19 | Meridianin D | 2.3034 | −2.0575 | |
20 | Collismycin C | 1.3629 | −1.2477 | |
Terpenoids | 21 | α-bisabolol | 4.4711 | −1.4665 |
22 | Dolabellanes | 5.4304 | −3.5032 | |
23 | 4.0308 | −1.2618 | ||
24 | 5.0526 | −1.8279 | ||
25 | Dictyol C | 4.0017 | −1.8996 | |
26 | Dictyol L | 1.1555 | −2.9689 | |
27 | Knightal | 7.087 | −20.275 | |
28 | 11(R)-hydroxy-12(20)-en-knightal | 5.0026 | −20.636 | |
29 | 11(R)-hydroxy-12(20)-en-knightol acetate | 5.4872 | −16.924 | |
30 | Phorbaketal B | 5.0073 | −0.61496 | |
31 | Phorbaketal C | 5.0073 | −0.61496 | |
32 | Ophiobolin K | 5.5062 | 0.094351 | |
33 | 6-epi-ophiobolin K | 5.5062 | 0.094351 | |
34 | 6-epi-ophiobolin G | 6.3296 | −3.2017 | |
35 | Siphonocholin | 7.4008 | −8.1908 | |
36 | Halistanol sulfate A | 1.5225 | −5.4372 | |
37 | 5-episinuleptolide | 1.6808 | −17.833 | |
38 | 5-octylfuran-2(5H)-one | 3.2099 | −21.892 | |
Fatty acids and derivatives | 39 | (9Z)-9-octadecenal | 6.8564 | −26.022 |
40 | Arachic acid | 7.8801 | −25.216 | |
41 | Erucic acid | 8.5367 | −28.971 | |
42 | (13Z)-13-octadecenale | 6.8564 | −17.802 | |
43 | Tetracosanoic acid | 9.6977 | −25.216 | |
44 | 4-Phenylbutanoic acid | 2.0516 | −6.2653 | |
45 | Stearidonic acid (18:4 n-3) | 5.9625 | −19.501 | |
46 | Eicosapentaenoic acid (20:5 n-3) | 6.6191 | −14.291 | |
47 | Docosapentaenoic acid (22:5 n-3) | 7.5279 | −20.741 | |
48 | Docosahexaenoic acid (22:6 n-3) | 7.2757 | −10.83 | |
49 | Mevalonolactone | −0.2323 | −0.032673 | |
50 | Myristic acid | 5.1537 | −25.216 | |
51 | Oleic acid | 6.7191 | −28.971 | |
52 | Lyngbyoic acid | 3.9235 | −18.267 | |
53 | Benderadienne | 6.2758 | −26.52 | |
54 | Pentadecanal | 5.7454 | −22.307 | |
Polysaccharides | 55 | Fucoidan | −2.6337 | −0.043172 |
56 | MO245 | NA | NA | |
57 | Monomeric units of α-d-galactopyranosyl-(1→2)-glycerol-phosphate | NA | NA | |
Polyketides | 58 | Hygrocin C | 2.9757 | 2.234 |
59 | Secalonic acid D | 1.2992 | −1.54 | |
60 | Tetracenomycin D | 3.1889 | −1.1275 | |
61 | Resistomycin | 3.7044 | −3.2806 | |
62 | Resistoflavin | 2.2781 | −1.5295 |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef]
- Stewart, P.S. Mechanisms of Antibiotic Resistance in Bacterial Biofilms. Int. J. Med. Microbiol. 2002, 292, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Funari, R.; Shen, A.Q. Detection and Characterization of Bacterial Biofilms and Biofilm-Based Sensors. ACS Sens. 2022, 7, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Anderl, J.N.; Franklin, M.J.; Stewart, P.S. Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin. Antimicrob. Agents Chemother. 2000, 44, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.R.; D’Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside Antibiotics Induce Bacterial Biofilm Formation. Nature 2005, 436, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, D.E.; Lee, J.H.; Ha, U.H.; Kim, S.P. The Effects of Antibiotics on the Biofilm Formation and Antibiotic Resistance Gene Transfer. Desalin Water Treat. 2015, 54, 3582–3588. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and Antibiotic Resistance in Water Environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot Spots of Horizontal Gene Transfer (HGT) in Aquatic Environments, with a Focus on a New HGT Mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef]
- Irie, Y.; Parsek, M.R. Quorum Sensing and Microbial Biofilms. Curr. Top. Microbiol. Immunol. 2008, 322, 67–84. [Google Scholar] [CrossRef]
- Paluch, E.; Rewak-Soroczyńska, J.; Jędrusik, I.; Mazurkiewicz, E.; Jermakow, K. Prevention of Biofilm Formation by Quorum Quenching. Appl. Microbiol. Biotechnol. 2020, 104, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug Development from Marine Natural Products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Bakkiyaraj, D.; Karutha Pandian, S.T. In Vitro and in Vivo Antibiofilm Activity of a Coral Associated Actinomycete against Drug Resistant Staphylococcus aureus Biofilms. Biofouling 2010, 26, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Leetanasaksakul, K.; Thamchaipenet, A. Potential Anti-Biofilm Producing Marine Actinomycetes Isolated from Sea Sediments in Thailand. Agric. Nat. Resour. 2018, 52, 228–233. [Google Scholar] [CrossRef]
- Parasuraman, P.; Devadatha, B.; Sarma, V.V.; Ranganathan, S.; Ampasala, D.R.; Siddhardha, B. Anti-Quorum Sensing and Antibiofilm Activities of Blastobotrys parvus PPR3 against Pseudomonas aeruginosa PAO1. Microb. Pathog. 2020, 138, 103811. [Google Scholar] [CrossRef] [PubMed]
- Rima, M.; Trognon, J.; Latapie, L.; Chbani, A.; Roques, C.; El Garah, F. Seaweed Extracts: A Promising Source of Antibiofilm Agents with Distinct Mechanisms of Action against Pseudomonas aeruginosa. Mar. Drugs 2022, 20, 92. [Google Scholar] [CrossRef]
- Rima, M.; Chbani, A.; Roques, C.; El Garah, F. Seaweed Extracts as an Effective Gateway in the Search for Novel Antibiofilm Agents against Staphylococcus aureus. Mar. Drugs 2022, 11, 2285. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Muthar, N.I.; Zakaria, M.H.; Rukayadi, Y.; Natrah, I. Anti-Biofilm and Anti-Quorum Sensing Activities of the Red Seaweed, Gracilaria changii and Its Associated Bacteria. J. Appl. Phycol. 2023, 35, 2555–2566. [Google Scholar] [CrossRef]
- Zammuto, V.; Rizzo, M.G.; Spanò, A.; Genovese, G.; Morabito, M.; Spagnuolo, D.; Capparucci, F.; Gervasi, C.; Smeriglio, A.; Trombetta, D.; et al. In Vitro Evaluation of Antibiofilm Activity of Crude Extracts from Macroalgae against Pathogens Relevant in Aquaculture. Aquaculture 2022, 549, 737729. [Google Scholar] [CrossRef]
- Wang, H.; Halary, S.; Duval, C.; Bernard, C.; Troussellier, M.; Beniddir, M.A.; Brunel, J.M.; Castaldi, A.; Caudal, F.; Golléty, C.; et al. Diversity, Metabolome Profiling and Bioactivities of Benthic Filamentous Cyanobacteria Isolated from Coastal Mangroves of Mayotte. Front. Mar. Sci. 2023, 10, 1201594. [Google Scholar] [CrossRef]
- Behzadnia, A.; Moosavi-Nasab, M.; Oliyaei, N. Anti-Biofilm Activity of Marine Algae-Derived Bioactive Compounds. Front. Microbiol. 2024, 15, 1270174. [Google Scholar] [CrossRef] [PubMed]
- Hamayeli, H.; Hassanshahian, M.; Askari Hesni, M. The Antibacterial and Antibiofilm Activity of Sea Anemone (Stichodactyla haddoni) against Antibiotic-Resistant Bacteria and Characterization of Bioactive Metabolites. Int. Aquat. Res. 2019, 11, 85–97. [Google Scholar] [CrossRef]
- Hamayeli, H.; Hassanshahian, M.; Askari Hesni, M. Identification of Bioactive Compounds and Evaluation of the Antimicrobial and Anti-Biofilm Effect of Psammocinia sp. and Hyattella sp. Sponges from the Persian Gulf. Thalassas 2021, 37, 357–366. [Google Scholar] [CrossRef]
- Júnior, A.C.V.; de Castro Nogueira Diniz Pontes, M.; Barbosa, J.P.; Höfling, J.F.; Araújo, R.M.; Boniek, D.; de Resende Stoianoff, M.A.; Andrade, V.S. Antibiofilm and Anti-Candidal Activities of the Extract of the Marine Sponge Agelas dispar. Mycopathologia 2021, 186, 819–832. [Google Scholar] [CrossRef]
- Caudal, F.; Rodrigues, S.; Dufour, A.; Artigaud, S.; Le Blay, G.; Petek, S.; Bazire, A. Extracts from Wallis Sponges Inhibit Vibrio harveyi Biofilm Formation. Microorganisms 2023, 11, 1762. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Othman, E.M.; Kampik, D.; Stopper, H.; Hentschel, U.; Ziebuhr, W.; Oelschlaeger, T.A.; Abdelmohsen, U.R. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation. Front. Microbiol. 2017, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Skaf, J.; Holzgrabe, U.; Bharti, R.; Förstner, K.U.; Ziebuhr, W.; Humeida, U.H.; Abdelmohsen, U.R.; Oelschlaeger, T.A. A New Bioactive Compound From the Marine Sponge-Derived Streptomyces sp. SBT348 Inhibits Staphylococcal Growth and Biofilm Formation. Front. Microbiol. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Papa, R.; Parrilli, E.; Sannino, F.; Barbato, G.; Tutino, M.L.; Artini, M.; Selan, L. Anti-Biofilm Activity of the Antarctic Marine Bacterium Pseudoalteromonas haloplanktis TAC125. Res. Microbiol. 2013, 164, 450–456. [Google Scholar] [CrossRef]
- Parrilli, E.; Papa, R.; Carillo, S.; Tilotta, M.; Casillo, A.; Sannino, F.; Cellini, A.; Artini, M.; Selan, L.; Corsaro, M.; et al. Anti-Biofilm Activity of Pseudoalteromonas haloplanktis Tac125 against Staphylococcus epidermidis Biofilm: Evidence of a Signal Molecule Involvement? Int. J. Immunopathol. Pharmacol. 2015, 28, 104–113. [Google Scholar] [CrossRef]
- Casillo, A.; Papa, R.; Ricciardelli, A.; Sannino, F.; Ziaco, M.; Tilotta, M.; Selan, L.; Marino, G.; Corsaro, M.M.; Tutino, M.L.; et al. Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Front. Cell. Infect. Microbiol. 2017, 7, 46. [Google Scholar] [CrossRef]
- Ricciardelli, A.; Casillo, A.; Papa, R.; Monti, D.M.; Imbimbo, P.; Vrenna, G.; Artini, M.; Selan, L.; Corsaro, M.M.; Tutino, M.L.; et al. Pentadecanal Inspired Molecules as New Anti-Biofilm Agents against Staphylococcus epidermidis. Biofouling 2018, 34, 1110–1120. [Google Scholar] [CrossRef]
- Artini, M.; Papa, R.; Vrenna, G.; Trecca, M.; Paris, I.; D’Angelo, C.; Tutino, M.L.; Parrilli, E.; Selan, L. Antarctic Marine Bacteria as a Source of Anti-Biofilm Molecules to Combat ESKAPE Pathogens. Antibiotics 2023, 12, 1556. [Google Scholar] [CrossRef] [PubMed]
- Doghri, I.; Brian-Jaisson, F.; Graber, M.; Bazire, A.; Dufour, A.; Bellon-Fontaine, M.-N.; Herry, J.-M.; Ferro, A.C.; Sopena, V.; Lanneluc, I.; et al. Antibiofilm Activity in the Culture Supernatant of a Marine Pseudomonas sp. Bacterium. Microbiology 2020, 166, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.K.; Astafyeva, Y.; Han, Y.; Macdonald, J.F.H.; Indenbirken, D.; Nakel, J.; Virdi, S.; Westhoff, G.; Streit, W.R.; Krohn, I. Novel Marine Metalloprotease-New Approaches for Inhibition of Biofilm Formation of Stenotrophomonas maltophilia. Appl. Microbiol. Biotechnol. 2023, 107, 7119–7134. [Google Scholar] [CrossRef] [PubMed]
- Artini, M.; Papa, R.; Vrenna, G.; Lauro, C.; Ricciardelli, A.; Casillo, A.; Corsaro, M.M.; Tutino, M.L.; Parrilli, E.; Selan, L. Cold-Adapted Bacterial Extracts as a Source of Anti-Infective and Antimicrobial Compounds against Staphylococcus aureus. Future Microbiol. 2019, 14, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Dheilly, A.; Soum-Soutéra, E.; Klein, G.L.; Bazire, A.; Compère, C.; Haras, D.; Dufour, A. Antibiofilm Activity of the Marine Bacterium Pseudoalteromonas sp. Strain 3J6. Appl. Envrion. Microbiol. 2010, 76, 3452–3461. [Google Scholar] [CrossRef] [PubMed]
- Jouault, A.; Gobet, A.; Simon, M.; Portier, E.; Perennou, M.; Corre, E.; Gaillard, F.; Vallenet, D.; Michel, G.; Fleury, Y.; et al. Alterocin, an Antibiofilm Protein Secreted by Pseudoalteromonas sp. Strain 3J6. Appl. Environ. Microbiol. 2020, 86, e00893-20. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Paillard, C.; Dufour, A.; Bazire, A. Antibiofilm Activity of the Marine Bacterium Pseudoalteromonas sp. 3J6 against Vibrio tapetis, the Causative Agent of Brown Ring Disease. Probiotics Antimicro. Prot. 2015, 7, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Doghri, I.; Portier, E.; Desriac, F.; Zhao, J.M.; Bazire, A.; Dufour, A.; Rochette, V.; Sablé, S.; Lanneluc, I. Anti-Biofilm Activity of a Low Weight Proteinaceous Molecule from the Marine Bacterium Pseudoalteromonas sp. IIIA004 against Marine Bacteria and Human Pathogen Biofilms. Microorganisms 2020, 8, 1295. [Google Scholar] [CrossRef]
- Scopel, M.; Abraham, W.-R.; Henriques, A.T.; Macedo, A.J. Dipeptide Cis-Cyclo(Leucyl-Tyrosyl) Produced by Sponge Associated Penicillium sp. F37 Inhibits Biofilm Formation of the Pathogenic Staphylococcus epidermidis. Bioorg Med. Chem. Lett. 2013, 23, 624–626. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, F.; Chen, H.-Y.; Peng, H.; Hao, H.; Wang, K.-J. A Novel Antimicrobial Peptide Scyreprocin From Mud Crab Scylla paramamosain Showing Potent Antifungal and Anti-Biofilm Activity. Front. Microbiol. 2020, 11, 1589. [Google Scholar] [CrossRef]
- Schillaci, D.; Vitale, M.; Cusimano, M.G.; Arizza, V. Fragments of β-Thymosin from the Sea Urchin Paracentrotus lividus as Potential Antimicrobial Peptides against Staphylococcal Biofilms. Ann. N. Y. Acad. Sci. 2012, 1270, 79–85. [Google Scholar] [CrossRef]
- Schillaci, D.; Cusimano, M.G.; Spinello, A.; Barone, G.; Russo, D.; Vitale, M.; Parrinello, D.; Arizza, V. Paracentrin 1, a Synthetic Antimicrobial Peptide from the Sea-Urchin Paracentrotus lividus, Interferes with Staphylococcal and Pseudomonas aeruginosa Biofilm Formation. AMB Express 2014, 4, 78. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, D.; Cusimano, M.G.; Russo, D.; Arizza, V. Antimicrobial Peptides from Echinoderms as Antibiofilm Agents: A Natural Strategy to Combat Bacterial Infections. Ital. J. Zool. 2014, 81, 312–321. [Google Scholar] [CrossRef]
- D’Angelo, C.; Casillo, A.; Melchiorre, C.; Lauro, C.; Corsaro, M.M.; Carpentieri, A.; Tutino, M.L.; Parrilli, E. CATASAN Is a New Anti-Biofilm Agent Produced by the Marine Antarctic Bacterium Psychrobacter sp. TAE2020. Mar. Drugs 2022, 20, 747. [Google Scholar] [CrossRef]
- Kiran, G.S.; Sajayan, A.; Priyadharshini, G.; Balakrishnan, A.; Prathiviraj, R.; Sabu, A.; Selvin, J. A Novel Anti-Infective Molecule Nesfactin Identified from Sponge Associated Bacteria Nesterenkonia sp. MSA31 against Multidrug Resistant Pseudomonas aeruginosa. Microb. Pathog. 2021, 157, 104923. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Q.; Li, L.; Pan, L.; Zhu, H. Anti-Quorum-Sensing Activity of Tryptophan-Containing Cyclic Dipeptides. Mar. Drugs 2022, 20, 85. [Google Scholar] [CrossRef]
- Padmavathi, A.R.; Abinaya, B.; Pandian, S.K. Phenol, 2,4-Bis(1,1-Dimethylethyl) of Marine Bacterial Origin Inhibits Quorum Sensing Mediated Biofilm Formation in the Uropathogen Serratia marcescens. Biofouling 2014, 30, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Vijay, K.; Kiran, G.S.; Divya, S.; Thangavel, K.; Thangavelu, S.; Dhandapani, R.; Selvin, J. Fatty Acid Methyl Esters From the Coral-Associated Bacterium Pseudomonas aeruginosa Inhibit Virulence and Biofilm Phenotypes in Multidrug Resistant Staphylococcus aureus: An in Vitro Approach. Front. Microbiol. 2021, 12, 631853. [Google Scholar] [CrossRef] [PubMed]
- Oluwabusola, E.T.; Katermeran, N.P.; Poh, W.H.; Goh, T.M.B.; Tan, L.T.; Diyaolu, O.; Tabudravu, J.; Ebel, R.; Rice, S.A.; Jaspars, M. Inhibition of the Quorum Sensing System, Elastase Production and Biofilm Formation in Pseudomonas aeruginosa by Psammaplin A and Bisaprasin. Molecules 2022, 27, 1721. [Google Scholar] [CrossRef]
- Hertiani, T.; Edrada-Ebel, R.; Ortlepp, S.; van Soest, R.W.M.; de Voogd, N.J.; Wray, V.; Hentschel, U.; Kozytska, S.; Müller, W.E.G.; Proksch, P. From Anti-Fouling to Biofilm Inhibition: New Cytotoxic Secondary Metabolites from Two Indonesian Agelas Sponges. Bioorg. Med. Chem. 2010, 18, 1297–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liang, X.; Zhang, S.; Song, Z.; Wang, C.; Xu, Y. Maipomycin A, a Novel Natural Compound with Promising Anti-Biofilm Activity against Gram-Negative Pathogenic Bacteria. Front. Microbiol. 2021, 11, 598024. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.; Tintillier, F.; Lucasson, A.; Moriou, C.; Bonno, E.; Petek, S.; Magré, K.; Al Mourabit, A.; Saulnier, D.; Debitus, C. Quorum Sensing Inhibitors from Leucetta chagosensis Dendy, 1863. Lett. Appl. Microbiol. 2015, 61, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Campana, R.; Favi, G.; Baffone, W.; Lucarini, S. Marine Alkaloid 2,2-Bis(6-Bromo-3-Indolyl) Ethylamine and Its Synthetic Derivatives Inhibit Microbial Biofilms Formation and Disaggregate Developed Biofilms. Microorganisms 2019, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Campana, R.; Mangiaterra, G.; Tiboni, M.; Frangipani, E.; Biavasco, F.; Lucarini, S.; Citterio, B. A Fluorinated Analogue of Marine Bisindole Alkaloid 2,2-Bis(6-Bromo-1H-Indol-3-Yl)Ethanamine as Potential Anti-Biofilm Agent and Antibiotic Adjuvant Against Staphylococcus aureus. Pharmaceuticals 2020, 13, 210. [Google Scholar] [CrossRef] [PubMed]
- Nijampatnam, B.; Nadkarni, D.; Wu, H.; Velu, S. Antibacterial and Antibiofilm Activities of Makaluvamine Analogs. Microorganisms 2014, 2, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Huggins, W.M.; Barker, W.T.; Baker, J.T.; Hahn, N.A.; Melander, R.J.; Melander, C. Meridianin D Analogues Display Antibiofilm Activity against MRSA and Increase Colistin Efficacy in Gram-Negative Bacteria. ACS Med. Chem. Lett. 2018, 9, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Brackett, S.M.; Cox, K.E.; Barlock, S.L.; Huggins, W.M.; Ackart, D.F.; Bassaraba, R.J.; Melander, R.J.; Melander, C. Meridianin D Analogues Possess Antibiofilm Activity against Mycobacterium smegmatis. RSC Med. Chem. 2020, 11, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, E.; Choi, H.; Lee, J. Collismycin C from the Micronesian Marine Bacterium Streptomyces sp. MC025 Inhibits Staphylococcus aureus Biofilm Formation. Mar. Drugs 2017, 15, 387. [Google Scholar] [CrossRef] [PubMed]
- Sethupathy, S.; Shanmuganathan, B.; Kasi, P.D.; Karutha Pandian, S. Alpha-Bisabolol from Brown Macroalga Padina gymnospora Mitigates Biofilm Formation and Quorum Sensing Controlled Virulence Factor Production in Serratia marcescens. J. Appl. Phycol. 2016, 28, 1987–1996. [Google Scholar] [CrossRef]
- Viano, Y.; Bonhomme, D.; Camps, M.; Briand, J.-F.; Ortalo-Magné, A.; Blache, Y.; Piovetti, L.; Culioli, G. Diterpenoids from the Mediterranean Brown Alga Dictyota sp. Evaluated as Antifouling Substances against a Marine Bacterial Biofilm. J. Nat. Prod. 2009, 72, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Rubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F.A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. [Google Scholar] [CrossRef]
- Tello, E.; Castellanos, L.; Arevalo-Ferro, C.; Duque, C. Cembranoid Diterpenes from the Caribbean Sea Whip Eunicea knighti. J. Nat. Prod. 2009, 72, 1595–1602. [Google Scholar] [CrossRef]
- Tello, E.; Castellanos, L.; Arévalo-Ferro, C.; Duque, C. Disruption in Quorum-Sensing Systems and Bacterial Biofilm Inhibition by Cembranoid Diterpenes Isolated from the Octocoral Eunicea knighti. J. Nat. Prod. 2012, 75, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-G.; Lee, J.-H.; Lee, S.; Lee, Y.-K.; Hwang, B.S.; Lee, J. Antibiofilm Activity of Phorbaketals from the Marine Sponge Phorbas sp. against Staphylococcus aureus. Mar. Drugs 2021, 19, 301. [Google Scholar] [CrossRef]
- Arai, M.; Niikawa, H.; Kobayashi, M. Marine-Derived Fungal Sesterterpenes, Ophiobolins, Inhibit Biofilm Formation of Mycobacterium Species. J. Nat. Med. 2013, 67, 271–275. [Google Scholar] [CrossRef]
- Alam, P.; Alqahtani, A.S.; Mabood Husain, F.; Rehman, M.T.; Alajmi, M.F.; Noman, O.M.; El Gamal, A.A.; Al-Massarani, S.M.; Shavez Khan, M. Siphonocholin Isolated from Red Sea Sponge Siphonochalina siphonella Attenuates Quorum Sensing Controlled Virulence and Biofilm Formation. Saudi Pharm. J. 2020, 28, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Lima, B.D.A.; de Lira, S.P.; Kossuga, M.H.; Gonçalves, R.B.; Berlinck, R.G.S.; Kamiya, R.U. Halistanol Sulfate A and Rodriguesines A and B Are Antimicrobial and Antibiofilm Agents against the Cariogenic Bacterium Streptococcus mutans. Rev. Bras. Farmacogn. 2014, 24, 651–659. [Google Scholar] [CrossRef]
- Tseng, S.-P.; Hung, W.-C.; Huang, C.-Y.; Lin, Y.-S.; Chan, M.-Y.; Lu, P.-L.; Lin, L.; Sheu, J.-H. 5-Episinuleptolide Decreases the Expression of the Extracellular Matrix in Early Biofilm Formation of Multi-Drug Resistant Acinetobacter baumannii. Mar. Drugs 2016, 14, 143. [Google Scholar] [CrossRef]
- Yin, Q.; Liang, J.; Zhang, W.; Zhang, L.; Hu, Z.-L.; Zhang, Y.; Xu, Y. Butenolide, a Marine-Derived Broad-Spectrum Antibiofilm Agent against Both Gram-Positive and Gram-Negative Pathogenic Bacteria. Mar. Biotechnol. 2019, 21, 88–98. [Google Scholar] [CrossRef]
- Kamarudheen, N.; Rao, K.V.B. Fatty Acyl Compounds from Marine Streptomyces griseoincarnatus Strain HK12 against Two Major Bio-Film Forming Nosocomial Pathogens; an in Vitro and in Silico Approach. Microb. Pathog. 2019, 127, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Nithya, C.; Begum, M.F.; Pandian, S.K. Marine Bacterial Isolates Inhibit Biofilm Formation and Disrupt Mature Biofilms of Pseudomonas aeruginosa PAO1. Appl. Microbiol. Biotechnol. 2010, 88, 341–358. [Google Scholar] [CrossRef]
- Nithya, C.; Devi, M.G.; Karutha Pandian, S. A Novel Compound from the Marine Bacterium Bacillus pumilus S6-15 Inhibits Biofilm Formation in Gram-Positive and Gram-Negative Species. Biofouling 2011, 27, 519–528. [Google Scholar] [CrossRef]
- Thibane, V.S.; Kock, J.L.F.; Ells, R.; van Wyk, P.W.J.; Pohl, C.H. Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis. Mar. Drugs 2010, 8, 2597–2604. [Google Scholar] [CrossRef]
- Scopel, M.; Abraham, W.-R.; Antunes, A.L.; Henriques, A.T.; Macedo, A.J.J. Mevalonolactone: An Inhibitor of Staphylococcus epidermidis Adherence and Biofilm Formation. Med. Chem. 2014, 10, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Barthes, N.; McCormack, G.; O’Gara, J.P.; Thomas, O.P.; Boyd, A. Sponge-Derived Fatty Acids Inhibit Biofilm Formation of MRSA and MSSA by down-Regulating Biofilm-Related Genes Specific to Each Pathogen. J. Appl. Microbiol. 2023, 134, lxad152. [Google Scholar] [CrossRef] [PubMed]
- Salleh, N.F.; Wang, J.; Kundukad, B.; Oluwabusola, E.T.; Goh, D.X.Y.; Phyo, M.Y.; Tong, J.J.L.; Kjelleberg, S.; Tan, L.T. Cyclopropane-Containing Specialized Metabolites from the Marine Cyanobacterium Cf. Lyngbya sp. Molecules 2023, 28, 3965. [Google Scholar] [CrossRef]
- Jiang, P.; Li, J.; Han, F.; Duan, G.; Lu, X.; Gu, Y.; Yu, W. Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101. PLoS ONE 2011, 6, e18514. [Google Scholar] [CrossRef]
- Jun, J.-Y.; Jung, M.-J.; Jeong, I.-H.; Yamazaki, K.; Kawai, Y.; Kim, B.-M. Antimicrobial and Antibiofilm Activities of Sulfated Polysaccharides from Marine Algae against Dental Plaque Bacteria. Mar. Drugs 2018, 16, 301. [Google Scholar] [CrossRef]
- Champion, M.; Portier, E.; Vallée-Réhel, K.; Linossier, I.; Balnois, E.; Vignaud, G.; Moppert, X.; Hellio, C.; Faÿ, F. Anti-Biofilm Activity of a Hyaluronan-like Exopolysaccharide from the Marine Vibrio MO245 against Pathogenic Bacteria. Mar. Drugs 2022, 20, 728. [Google Scholar] [CrossRef]
- Sayem, S.A.; Manzo, E.; Ciavatta, L.; Tramice, A.; Cordone, A.; Zanfardino, A.; Felice, M.D.; Varcamonti, M. Anti-Biofilm Activity of an Exopolysaccharide from a Sponge-Associated Strain of Bacillus licheniformis. Microb. Cell Fact. 2011, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Nong, X.-H.; Amin, M.; Qi, S.-H. Hygrocin C from Marine-Derived Streptomyces Sp. SCSGAA 0027 Inhibits Biofilm Formation in Bacillus amyloliquefaciens SCSGAB0082 Isolated from South China Sea Gorgonian. Appl. Microbiol. Biotechnol. 2018, 102, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Nong, X.-H.; Zhang, X.-Y.; Xu, X.-Y.; Amin, M.; Qi, S.-H. Screening of Anti-Biofilm Compounds from Marine-Derived Fungi and the Effects of Secalonic Acid D on Staphylococcus aureus Biofilm. J. Microbiol. Biotechnol. 2017, 27, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.R.; Ali, S.A.; Ebrahim, H.Y.; Hebishy, A.; Essawy, E.A.; Abdelfattah, M.S. Isolation and Structure Elucidation of Aromatic Polyketides from Marine Actinomycete with Antibiofilm Activity against Staphylococcus aureus and Escherichia coli. Egypt. J. Chem. 2023, 66, 303–311. [Google Scholar] [CrossRef]
- Proksch, P. Defensive Roles for Secondary Metabolites from Marine Sponges and Sponge-Feeding Nudibranchs. Toxicon 1994, 32, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Barrows, L.R.; Radisky, D.C.; Copp, B.R.; Swaffar, D.S.; Kramer, R.A.; Warters, R.L.; Ireland, C.M. Makaluvamines, Marine Natural Products, Are Active Anti-Cancer Agents and DNA Topo II Inhibitors. Anticancer. Drug Des. 1993, 8, 333–347. [Google Scholar]
- Radisky, D.C.; Radisky, E.S.; Barrows, L.R.; Copp, B.R.; Kramer, R.A.; Ireland, C.M. Novel Cytotoxic Topoisomerase II Inhibiting Pyrroloiminoquinones from Fijian Sponges of the Genus Zyzzya. J. Am. Chem. Soc. 1993, 115, 1632–1638. [Google Scholar] [CrossRef]
Compound Family | Compound Number | Compound Name | Producing Organisms | Target Organisms | Mechanisms of Action | Reference |
---|---|---|---|---|---|---|
Peptides and proteins | Unknown structure | Cyclic lipopeptide | Pseudomonas sp. TAD1S | S. aureus | Surfactant | [35] |
Unknown structure | Alterocin | Pseudoalteromonas sp. 3J6 | P. aeruginosa; E. coli; S. enterica; Vibrio sp. D01; Paracoccus sp. 4M6 | Impact on bacterial adhesion | [36,37,38] | |
Unknown structure | P004 | Pseudoalteromonas sp. IIIA004 | Roseovarius sp. VA014 | [39] | ||
1 | cis-cyclo(Leucyl-Tyrosyl) | Sponge associated Penicllium sp. | S. epidermidis | [40] | ||
Unknown structure | Scyreprocin | Scylla paramamosain | Candida albicans and C. neoformans | [41] | ||
2 | Paracentrin 1 | Paracentrotus lividus | S. epidermidis DSM 3269; S. aureus ATCC 29213; P. aeruginosa | [42,43,44] | ||
Unknown structure | Catasan | Psychrobacter sp. TAE2020 | S. epidermidis RP62A | Reduces biofilm biomass and modifies its structure | [45] | |
3 | Nesfactin | Nesterenkonia sp. MAS31 isolated from Fasciospongia cavernosa | P. aeruginosa | Quenches QS via LasR | [46] | |
4 | Cyclo(L-Trp-L-Ser) | Rheinheimera aquimaris | Chromobacterium violaceum and P. aeruginosa PAO1 | Decreases production of violacein, exhibits pyocyanin production, swimming motility, adhesion, and biofilm formation | [47] | |
Phenolic compounds | 5 | 2,4-di-tert-butylphenol | Vibrio alginolyticus G16 | S. marcescens | Impacts production of virulence factor via QS | [48] |
6 | Methyl benzoate | Pseudomonas aeruginosa CBMGL12 isolated from coral Favites sp. | S. aureus MTCC96 | Diminishes virulence and biofilm phenotypes, seems to target the QS | [49] | |
7 | Methyl phenylacetate | |||||
Alkaloids | 8 | Psammaplin A | Aplysinella rhax | P. aeruginosa | Inhibits production of elastase and QS | [50] |
9 | Bisaprasin | |||||
10 | Ageloxime D | Agelas nakamurai | S. epidermidis | [51] | ||
11 | Maipomycin A | Kibdelosporangium phytohabitans XY-R10 | Actinobacter baumannii and P. aeruginosa | Iron chelator | [52] | |
12 | Isonaamine D | Leucetta chagosensis | V. harveyi | Inhibitor activity on all three QS pathways | [53] | |
13 | Isonaamidine A | |||||
14 | 2,2-bis(6-bromo-1H-indol-3-yl)ethanamine | Didemnum candidum, and Orina spp. | S. aureus CH 10850 and S. aureus ATCC 29213 | [54,55] | ||
15 | 2,2-bis(6-fluoro-1H-indol-3-yl)ethanamine | |||||
16 | Makaluvamine A | Zyzzya fuliginosa | Streptococcus mutans | [56] | ||
17 | Makaluvamine F | |||||
18 | Mavaluvamine G | Histodermella sp. | ||||
19 | Meridianin D | Aplidium meridianum | S. aureus | [57,58] | ||
20 | Collismycin C | Streptomyces sp. MC025 | S. aureus | [59] | ||
Terpenoids | 21 | α-bisabolol | Padina gymnospora | Serratia marcescens | Inhibits prodigiosin and protease production, and acts on bacterial motility and hemolysin production | [60] |
22 | Dolabellanes | Dictyota sp. | Pseudoalteromonas sp. | [61] | ||
23 | ||||||
24 | ||||||
25 | Dictyol C | |||||
26 | Dictyol L | Dictyota pinnatifida | P. aeruginosa | [62] | ||
27 | Knightal | Eunicea knighti | Chromobacterium violaceum, S. aureus, V. harveyi and P. aeruginosa | Anti-QS activity | [63,64] | |
28 | 11(R)-hydroxy-12(20)-en-knightal | |||||
29 | 11(R)-hydroxy-12(20)-en-knightol acetate | |||||
30 | Phorbaketal B | Phorbas sp. | S. aureus | Inhibition in expression of the biofilm-related hemolysin gene hla and the nuc1 nuclease gene | [65] | |
31 | Phorbaketal C | |||||
32 | Ophiobolin K | Emericella variecolor | Mycobacterium smegmatis | [66] | ||
33 | 6-epi-ophiobolin K | |||||
34 | 6-epi-ophiobolin G | |||||
35 | Siphonocholin | Siphonochalina siphonella | C. violaceum and P. aeruginosa | Altered production of elastase, total protease, pyocyanin, chitinase and exopolysaccharides | [67] | |
36 | Halistanol sulfate A | Petromica ciocalyptoides | S. mutans | [68] | ||
37 | 5-episinuleptolide | Sinularia leptoclados | A. baumannii ATCC 19606, BAA747, 29115, 68704, D4 | Diminish production of the extracellular polysaccharide poly-β-(1,6)-N-acetylglucosamine (PNAG) | [69] | |
38 | 5-octylfuran-2(5H)-one | Streptomyces sp. | E. coli K12, P. aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus | Matrix destruction and interference with AI-2 mediated QS system | [70] | |
Fatty acids and derivatives | 39 | (9Z)-9-octadecenal | Streptomyces griseoincarnatus HK 12 | S. aureus and P. aeruginosa | (13Z)-13-octadecenal is thought to target the quorum sensing system by binding 3-oxo-C12 HSL in P. aeruginosa | [71] |
40 | Arachic acid | |||||
41 | Erucic acid | |||||
42 | (13Z)-13-octadecenale | |||||
43 | Tetracosanoic acid | |||||
44 | 4-Phenylbutanoic acid | Bacillus pumilus S6-15 | P. aeruginosa, B. indicus MTCC5559 and B. pumilus MTCC5560 | [72,73] | ||
45 | Stearidonic acid (18:4 n-3) | Various marine origins | Candida albicans and C. dubliniensis | Oxidative stress | [74] | |
46 | Eicosapentaenoic acid (20:5 n-3) | |||||
47 | Docosapentaenoic acid (22:5 n-3) | |||||
48 | Docosahexaenoic acid (22:6 n-3) | |||||
49 | Mevalonolactone | Sordariales associated to Mycale magnirhaphidifera | S. epidermidis | [75] | ||
50 | Myristic acid | Mycale contarenii | S. aureus methicillin susceptible and resistant, L. monocytogenes | Repress transcription of fnbA and fnbB genes, fibronectin-binding protein, and icaADBC operon (polysaccharide intercellular adhesin) | [76] | |
51 | Oleic acid | |||||
52 | Lyngbyoic acid | Lyngbya sp. | P. aeruginosa PaO1 | Inhibits biofilm formation (biovolume) and QS pathways | [77] | |
53 | Benderadienne | |||||
54 | Pentadecanal | P. haloplanktis TAC125 | S. epidermidis | Impair biofilm formation | [31] | |
Polysaccharides | Unknown structure | A101 | Vibrio sp. QY101 | Wide range of Gram positive and negative | [78] | |
55 | Fucoidan | Fucus vesiculosus | S. mutans and S. sobrinus | Only active on biofilm formation | [79] | |
56 | MO245 | Vibrio alginolyticus sp. | P. aeruginosa PaO1 and V. harveyi DSM19623 | Leads to abiotic and bacterial surface modification | [80] | |
57 | Monomeric units of α-D-galactopyranosyl-(1→2)-glycerol-phosphate (1800 kDa) | B. licheniformis associated with Spongia officinalis | E. coli PHL628, P. fluorescences | Reduces cell surface hydrophobicity | [81] | |
Polyketides | 58 | Hygrocin C | Streptomyces sp. SCSGAA 0027 | S. aureus and B. amyloliquefaciens SCSGAB0082 | Reduces matrix formation, decreases surface hydrophobicity, impacts on bacterial flagellar system | [82] |
59 | Secalonic acid D | Penicillium sp. SCSGAF0023 (CCTCC M 2012507) | S. aureus | Targets genes associated to biofilm formation: agr, isaA, icaA, and icaD | [83] | |
60 | Tetracenomycin D | Streptomyces sp. EG1 | S. aureus and E. coli | Target biofilm forming protein (ClfB in S. aureus and CSgG in E. coli) | [84] | |
61 | Resistomycin | |||||
62 | Resistoflavin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caudal, F.; Roullier, C.; Rodrigues, S.; Dufour, A.; Artigaud, S.; Le Blay, G.; Bazire, A.; Petek, S. Anti-Biofilm Extracts and Molecules from the Marine Environment. Mar. Drugs 2024, 22, 313. https://doi.org/10.3390/md22070313
Caudal F, Roullier C, Rodrigues S, Dufour A, Artigaud S, Le Blay G, Bazire A, Petek S. Anti-Biofilm Extracts and Molecules from the Marine Environment. Marine Drugs. 2024; 22(7):313. https://doi.org/10.3390/md22070313
Chicago/Turabian StyleCaudal, Flore, Catherine Roullier, Sophie Rodrigues, Alain Dufour, Sébastien Artigaud, Gwenaelle Le Blay, Alexis Bazire, and Sylvain Petek. 2024. "Anti-Biofilm Extracts and Molecules from the Marine Environment" Marine Drugs 22, no. 7: 313. https://doi.org/10.3390/md22070313
APA StyleCaudal, F., Roullier, C., Rodrigues, S., Dufour, A., Artigaud, S., Le Blay, G., Bazire, A., & Petek, S. (2024). Anti-Biofilm Extracts and Molecules from the Marine Environment. Marine Drugs, 22(7), 313. https://doi.org/10.3390/md22070313