Chemical and Antioxidant Properties of Solvent and Enzyme-Assisted Extracts of Fucus vesiculosus and Porphyra dioica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield (%)
2.2. Total Antioxidant Capacity
2.3. Soluble Protein
2.4. Reducing Sugars Content
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Algal Supply
3.3. Aqueous and Ethanolic Extract Preparation
3.4. Enzyme-Assisted Extraction
3.5. Extraction Yield
3.6. Extract Characterization
3.6.1. Total Phenolic Content
3.6.2. Total Antioxidant Capacity
DPPH Free Radical Scavenging Activity
ABTS Free Radical Scavenging Activity
Oxygen Radical Absorbance Capacity
3.6.3. Soluble Protein—Bradford Method
3.6.4. Reducing Sugars Measurements
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol. 2018, 9, 777. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.A.; Pintado, M.E. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Nova, P.; Pimenta-Martins, A.; Laranjeira Silva, J.; Silva, A.M.; Gomes, A.M.; Freitas, A.C. Health benefits and bioavailability of marine resources components that contribute to health—What’s new? Crit. Rev. Food Sci. Nutr. 2020, 60, 3680–3692. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.C.; Pereira, L.; Rodrigues, D.; Carvalho, A.P.; Panteleitchouk, T.; Gomes, A.M.; Duarte, A.C. Marine Functional Foods. In Springer Handbook of Marine Biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 969–994. ISBN 978-3-642-53971-8. [Google Scholar]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; El-Wahed, A.A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Freitas, A.C.; Queirós, R.; Rocha-Santos, T.A.P.; Saraiva, J.A.; Gomes, A.M.P.; Duarte, A.C. Bioactive Polysaccharides Extracts from Sargassum muticum by High Hydrostatic Pressure. J. Food Process Preserv. 2017, 41, e12977. [Google Scholar] [CrossRef]
- Nova, P.; Gomes, A.M.; Costa-Pinto, A.R. It comes from the sea: Macroalgae-derived bioactive compounds with anti-cancer potential. Crit. Rev. Biotechnol. 2023, 44, 462–476. [Google Scholar] [CrossRef] [PubMed]
- López-Hortas, L.; Domínguez, H.; Torres, M.D. Valorisation of edible brown seaweeds by the recovery of bioactive compounds from aqueous phase using MHG to develop innovative hydrogels. Process Biochem. 2019, 78, 100–107. [Google Scholar] [CrossRef]
- Matos, G.S.; Pereira, S.G.; Genisheva, Z.A.; Gomes, A.M.; Teixeira, J.A.; Rocha, C.M.R. Advances in extraction methods to recover added-value compounds from seaweeds: Sustainability and functionality. Foods 2021, 10, 516. [Google Scholar] [CrossRef]
- Nova, P.; Martins, A.P.; Teixeira, C.; Abreu, H.; Silva, J.G.; Silva, A.M.; Freitas, A.C.; Gomes, A.M. Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J. Appl. Phycol. 2020, 32, 1789–1802. [Google Scholar] [CrossRef]
- Nova, P.; Pimenta-Martins, A.; Maricato, É.; Nunes, C.; Abreu, H.; Coimbra, M.A.; Freitas, A.C.; Gomes, A.M. Chemical Composition and Antioxidant Potential of Five Algae Cultivated in Fully Controlled Closed Systems. Molecules 2023, 28, 4588. [Google Scholar] [CrossRef]
- Castejón, N.; Parailloux, M.; Izdebska, A.; Lobinski, R.; Fernandes, S.C.M. Valorization of the red algae gelidium sesquipedale by extracting a broad spectrum of minor compounds using green approaches. Mar. Drugs 2021, 19, 574. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Lai, T.K.; Tye, Y.Y.; Rizal, S.; Chong, E.W.N.; Yap, S.W.; Hamzah, A.A.; Nurul Fazita, M.R.; Paridah, M.T. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polym. Lett. 2018, 12, 296–317. [Google Scholar] [CrossRef]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Mar. Drugs 2022, 20, 677. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, A.; Goosen, N. Chapter Eleven—Green and integrated processing approaches for the recovery of high-value compounds from brown seaweeds. In Seaweeds Around the World: State of Art and Perspectives; Bourgougnon, N., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 95, pp. 369–413. ISBN 0065-2296. [Google Scholar]
- Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P.B. Alternative and efficient extraction methods for marine-derived compounds. Mar. Drugs 2015, 13, 3182–3230. [Google Scholar] [CrossRef] [PubMed]
- Didion, P.Y.; Gijsbert Tjalsma, T.; Su, Z.; Malankowska, M.; Pinelo, M. What is next? the greener future of solid liquid extraction of biobased compounds: Novel techniques and solvents overpower traditional ones. Sep. Purif. Technol. 2023, 320, 124147. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Getachew, A.T.; Holdt, S.L.; Meyer, A.S.; Jacobsen, C. Effect of Extraction Temperature on Pressurized Liquid Extraction of Bioactive Compounds from Fucus vesiculosus. Mar. Drugs 2022, 20, 263. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar] [CrossRef]
- Tacias-Pascacio, V.G.; Morellon-Sterling, R.; Siar, E.H.; Tavano, O.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Use of Alcalase in the production of bioactive peptides: A review. Int. J. Biol. Macromol. 2020, 165, 2143–2196. [Google Scholar] [CrossRef]
- Félix, R.; Carmona, A.M.; Félix, C.; Novais, S.C.; Lemos, M.F.L. Industry-friendly hydroethanolic extraction protocols for grateloupia turuturu UV-shielding and antioxidant compounds. Appl. Sci. 2020, 10, 5304. [Google Scholar] [CrossRef]
- Freitas, C.; Araújo, R.; Bertocci, I. Patterns of benthic assemblages invaded and non-invaded by Grateloupia turuturu across rocky intertidal habitats. J. Sea Res. 2016, 115, 26–32. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant Compounds and Their Antioxidant Mechanism; Shalaby, E., Ed.; IntechOpen: Rijeka, Croatia, 2019; p. Ch. 2. ISBN 978-1-78923-920-1. [Google Scholar]
- Ruiz-Medina, M.A.; Sansón, M.; González-Rodríguez, Á.M. Changes in antioxidant activity of fresh marine macroalgae from the Canary Islands during air-drying process. Algal Res. 2022, 66, 102798. [Google Scholar] [CrossRef]
- Ramdani, M.; Elasri, O.; Saidi, N.; Elkhiati, N.; Taybi, F.A.; Mostareh, M.; Zaraali, O.; Haloui, B.; Ramdani, M. Evaluation of antioxidant activity and total phenol content of Gracilaria bursa-pastoris harvested in Nador lagoon for an enhanced economic valorization. Chem. Biol. Technol. Agric. 2017, 4, 28. [Google Scholar] [CrossRef]
- Mekinić, I.G.; Skroza, D.; Šimat, V.; Hamed, I.; Čagalj, M.; Perković, Z.P. Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules 2019, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Habeebullah, S.F.K.; Alagarsamy, S.; Arnous, A.; Jacobsen, C. Enzymatic extraction of antioxidant ingredients from Danish seaweeds and characterization of active principles. Algal Res. 2021, 56, 102292. [Google Scholar] [CrossRef]
- De Quirós, A.R.B.; López-Hernández, J. An overview on effects of processing on the nutritional content and bioactive compounds in seaweeds. Foods 2021, 10, 2168. [Google Scholar] [CrossRef] [PubMed]
- Nunes, D.; André, R.; Ressaissi, A.; Duarte, B.; Melo, R.; Serralheiro, M.L. Influence of gender and age of brown seaweed (Fucus vesiculosus) on biochemical activities of its aqueous extracts. Foods 2022, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.; Caleja, C.; Pereira, E.; Pereira, C.; Ćirić, A.; Soković, M.; Soria-Lopez, A.; Fraga-Corral, M.; Simal-Gandara, J.; Ferreira, I.C.F.R.; et al. Red seaweeds as a source of nutrients and bioactive compounds: Optimization of the extraction. Chemosensors 2021, 9, 132. [Google Scholar] [CrossRef]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the Central West Coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef]
- Wattanapitayakul, S.K.; Kunchana, K.; Jarisarapurin, W.; Chularojmontri, L. Screening of potential tropical fruits in protecting endothelial dysfunction in vitro. Food Nutr. Res. 2021, 65, 7807. [Google Scholar] [CrossRef]
- Machu, L.; Misurcova, L.; Ambrozova, J.V.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic content and antioxidant capacity in algal food products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef] [PubMed]
- Agregán, R.; Munekata, P.; Franco, D.; Carballo, J.; Barba, F.; Lorenzo, J. Antioxidant Potential of Extracts Obtained from Macro- (Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and Micro-Algae (Chlorella vulgaris and Spirulina platensis) Assisted by Ultrasound. Medicines 2018, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.; Paíga, P.; Marques, M.; Neto, T.; Carvalho, A.P.; Paiva, A.; Simões, P.; Costa, L.; Bernardo, A.; Fernández, N.; et al. Multi-step subcritical water extracts of Fucus vesiculosus L. and Codium tomentosum stackhouse: Composition, health-benefits and safety. Processes 2021, 9, 893. [Google Scholar] [CrossRef]
- Ferreira, M.; Fernandes, H.; Peres, H.; Belo, I. Potential of Red, Green and Brown Seaweeds as Substrates for and to Produce Enzymes. Foods 2022, 11, 3864. [Google Scholar] [CrossRef] [PubMed]
- Haq, S.H.; Al-Ruwaished, G.; Al-Mutlaq, M.A.; Naji, S.A.; Al-Mogren, M.; Al-Rashed, S.; Ain, Q.T.; Al-Amro, A.A.; Al-Mussallam, A. Antioxidant, Anticancer Activity and Phytochemical Analysis of Green Algae, Chaetomorpha Collected from the Arabian Gulf. Sci. Rep. 2019, 9, 18906. [Google Scholar] [CrossRef] [PubMed]
- Suresh, V.; Senthilkumar, N.; Thangam, R.; Rajkumar, M.; Anbazhagan, C.; Rengasamy, R.; Gunasekaran, P.; Kannan, S.; Palani, P. Separation, purification and preliminary characterization of sulfated polysaccharides from Sargassum plagiophyllum and its in vitro anticancer and antioxidant activity. Process Biochem. 2013, 48, 364–373. [Google Scholar] [CrossRef]
- Gião, M.S.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agric. 2007, 87, 2638–2647. [Google Scholar] [CrossRef] [PubMed]
- Coscueta, E.R.; Reis, C.A.; Pintado, M. Phenylethyl isothiocyanate extracted from watercress by-products with aqueous micellar systems: Development and optimisation. Antioxidants 2020, 9, 698. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Biological protein precipitation: A green process for the extraction of cucumisin from melon (Cucumis melo L. inodorus) by-products. Food Hydrocoll. 2021, 116, 106650. [Google Scholar] [CrossRef]
- Gonçalves, C.; Rodriguez-Jasso, R.M.; Gomes, N.; Teixeira, J.A.; Belo, I. Adaptation of dinitrosalicylic acid method to microtiter plates. Anal. Methods 2010, 2, 2046–2048. [Google Scholar] [CrossRef]
- Lorentz Miller, G. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
Enzymatic assisted Extracts | F. vesiculosus | g BSA Equivalents/100 g Dry Seaweed Extract | P. dioica | g BSA Equivalents/100 g Dry Seaweed Extract |
FVa | 6.31 ± 0.31 a | PDa | 2.79 ± 0.03 a | |
FVc | 3.87 ± 0.10 b | PDc | 3.34 ± 0.18 b | |
FVv | 3.69 ± 0.18 b | PDv | 2.39 ± 0.14 c | |
FVva | 5.28 ± 0.29 c | PDva | 3.80 ± 0.05 d | |
FVcv | 4.79 ± 0.23 d | PDcv | 3.94 ± 0.30 d | |
FVca | 5.44 ± 0.03 c | PDca | 3.42 ± 0.12 b | |
Solvent Extracts | Ethanolic | 0.94 e | Ethanolic | 0.90 e |
Aqueous | 2.90 f | Aqueous | 1.60 f | |
Hydro-ethanolic | 0.79 e | Hydro-ethanolic | 0.73 e |
Enzymatic assisted Extracts | F. vesiculosus | g/100 g Dry Seaweed Extract | P. dioica | g/100 g Dry Seaweed Extract |
FVa | 7.3 ± 0.3 a | PDa | 5.2 ± 0.3 a | |
FVc | 12.2 ± 0.3 b | PDc | 7.6 ± 0.6 b | |
FVv | 5.3 ± 0.3 c | PDv | 7.4 ± 0.2 b | |
FVva | 6.7 ± 0.1 d | PDva | 5.2 ± 0.2 a | |
FVcv | 12.1 ± 0.4 b | PDcv | 8.3 ± 0.3 c | |
FVca | 8.1 ± 0.3 e | PDca | 5.6 ± 0.3 a | |
Solvent Extracts | Ethanolic | 0.75 ± 0.03 f | Ethanolic | 0.57 ± 0.03 d |
Aqueous | 1.98 ± 0.4 g | Aqueous | 1.20 ± 0.2 e | |
Hydro-ethanolic | 0.87 ± 0.06 f | Hydro-ethanolic | 0.65 ± 0.02 d |
Enzymes | Time (hours) | pH |
---|---|---|
Alcalase | 24 | 8.0 |
Cellulase | 24 | 5.0 |
Viscozyme | 24 | 5.0 |
Cellulase + viscozyme | 24 | 5.0 |
Cellulase + alcalase | 12 + 12 | 5.0/8.0 |
Viscozyme + alcalase | 12 + 12 | 5.0/8.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nova, P.; Cunha, S.A.; Costa-Pinto, A.R.; Gomes, A.M. Chemical and Antioxidant Properties of Solvent and Enzyme-Assisted Extracts of Fucus vesiculosus and Porphyra dioica. Mar. Drugs 2024, 22, 319. https://doi.org/10.3390/md22070319
Nova P, Cunha SA, Costa-Pinto AR, Gomes AM. Chemical and Antioxidant Properties of Solvent and Enzyme-Assisted Extracts of Fucus vesiculosus and Porphyra dioica. Marine Drugs. 2024; 22(7):319. https://doi.org/10.3390/md22070319
Chicago/Turabian StyleNova, Paulo, Sara A. Cunha, Ana R. Costa-Pinto, and Ana Maria Gomes. 2024. "Chemical and Antioxidant Properties of Solvent and Enzyme-Assisted Extracts of Fucus vesiculosus and Porphyra dioica" Marine Drugs 22, no. 7: 319. https://doi.org/10.3390/md22070319
APA StyleNova, P., Cunha, S. A., Costa-Pinto, A. R., & Gomes, A. M. (2024). Chemical and Antioxidant Properties of Solvent and Enzyme-Assisted Extracts of Fucus vesiculosus and Porphyra dioica. Marine Drugs, 22(7), 319. https://doi.org/10.3390/md22070319