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Abstract: Kainoid synthases are key enzymes in the biosynthesis of kainoids. Kainoids, as rep-
resented by DA and KA, are a class of naturally occurring non-protein amino acids with strong
neurotransmitter activity in the mammalian central nervous system. Marine algae kainoid synthases
include PnDabC from diatoms, which synthesizes domoic acid (DA), and DsKabC and GfKabC
from red algae, which synthesize kainic acid (KA). Elucidation of the catalytic mechanism of kain-
oid synthases is of great significance for the rational design of better biocatalysts to promote the
industrial production of kainoids for use in new drugs. Through modeling, molecular docking, and
molecular dynamics simulations, we investigated the conformational dynamics of kainoid synthases.
We found that the kainoid synthase complexes showed different stability in the simulation, and
the binding and catalytic processes showed significant conformational transformations of kainoid
synthase. The residues involved in specific interactions with the substrate contributed to the binding
energy throughout the simulation process. Binding energy, the relaxed active pocket, electrostatic
potential energy of the active pocket, the number and rotation of aromatic residues interacting with
substrates during catalysis, and the number and frequency of hydrogen bonds between the individual
functional groups revealed the structure–activity relationships and affected the degree of promiscuity
of kainoid synthases. Our research enriches the understanding of the conformational dynamics of
kainoid synthases and has potential guiding significance for their rational design.

Keywords: kainoid synthases; structure–activity relationships; molecular dynamics simulation;
promiscuity

1. Introduction

The kainoids (1) are 2,3,4-trisubstituted pyrrolidine derivatives that contain a glutamic
acid moiety and various substituents at the four-position of the pyrrolidine ring (Figure 1).
Domoic acid (DA) (3) [1] and kainic acid (KA) (2) [2], the representatives of the kainoids,
were first isolated from Japanese marine algae Chondria armata and Digenea simplex. Both
types of seaweed are used as insect repellents in traditional Chinese and Japanese medicine.
Later, it was found that DA can also be synthesized in some diatoms, such as Pseudonitzschia
and Nitzschia [3], while KA can be synthesized in some red algae, like Grateloupia filicina.
DA and KA act as excitatory amino acid receptor agonists, and KA is widely used as
a tool in neuropharmacology to stimulate nerve cells and mimic disease states, such as
epilepsy [4], Alzheimer’s disease, and Huntington’s chorea [5]. As members of a novel
class of marine meroterpenoids, the basic medical research application and biosynthetic
pathway of DA and KA have attracted considerable attention in recent years [6–8].

DA and KA are currently synthesized by chemical or biological techniques. KA can be
successfully synthesized by constructing 2,3,4-tri-substituted pyrrolidine scaffolds through
SMI2-promoted stereocomplementary ring closure reactions [9]. The key structure of
the C1′-C2′ Z-configuration of DA is completed using the unsaturated lactam structure.

Mar. Drugs 2024, 22, 326. https://doi.org/10.3390/md22070326 https://www.mdpi.com/journal/marinedrugs

https://doi.org/10.3390/md22070326
https://doi.org/10.3390/md22070326
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0009-0004-2249-9989
https://doi.org/10.3390/md22070326
https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com/article/10.3390/md22070326?type=check_update&version=2


Mar. Drugs 2024, 22, 326 2 of 17

Three continuous stereocenters on the pyrrolidine ring are effectively established through
a sequential rearrangement reaction, and side chain fragments are introduced by modi-
fying the Julia–Kocienski reaction [10]. Compared with chemical synthesis, biosynthesis
frequently shows higher regional and stereoselectivity. In the DA biosynthetic pathway,
isopentenyltransferase (IPT) uses geranyl pyrophosphate (GPP) and L-Glu as substrates
to synthesize L-NGG. Then, 7′-carboxy-L-NGG (cNGG) is synthesized by the cytochrome
P450 enzyme. Finally, isodomoic acid is synthesized by kainoid synthases PnDabC and then
converted into domoic acid [6,7]. In the KA biosynthetic pathway, IPT uses dimethylallyl
pyrophosphate (DMAPP) and L-Glu as substrates to synthesize prekainic acid (PKA). Then,
KA is synthesized by kainoid synthases DsKabC and GfKabC. Kainoid synthases have
been found to have catalytic promiscuity [8], among which, GfKabC has been found to
have higher catalytic promiscuity. Understanding the relationship between the structure,
dynamics, and function of kainoid synthases is essential for the rational design and effective
control of DA and KA biosynthesis.
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Figure 1. Structures of kainoids 1–4.

In this study, we used structural prediction, molecular docking, and molecular dynam-
ics simulations (MDS) to investigate the conformational dynamics of kainoid synthases.
Firstly, AlphaFold2 was used to predict the tertiary structures of three kainoid synthases:
PnDabC, DsKabC, and GfKabC. Molecular docking was then performed using AutoDock.
Secondly, the MDS over 500 ns showed that there were binding and catalytic processes
in the entire simulation. The conformational transformations of key residues of kainoid
synthases played important roles in the binding and catalytic processes. Finally, we found
that the relaxation degree of the active pocket, the number and rotation of aromatic residues
interacting with substrates during catalysis, the number of potential π-cation bonds, and
the differences in binding energy may contribute to the promiscuity of kainoid synthases.

2. Results and Discussion
2.1. AlphaFold2 Predicts the Kainoid Synthases Structure

AlphaFold2 was used to predict the tertiary structures of kainoid synthases (Figure 2).
The pLDDT values of the three kainoid synthases were 89.44, 88.03, and 87.75, respectively.
The Ramachandran plots explain the relationship between ϕ and ψ of the two dihedral an-
gles of the residue in a protein. In an amino acid, ϕ refers to the dihedral angle between Cα
and N, and ψ refers to the dihedral angle between Cα and carboxyl C. The Ramachandran
plot is divided into four regions: most favored, additional allowed, generously allowed,
and disallowed, with darker regions indicating greater suitability. For a high-quality model
structure, 90% of the ϕ and ψ values should be in the darkest area. The Ramachandran
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favored (%) values of PnDabC, DsKabC, and GfKabC were 96.23%, 94.75%, and 94.75%,
respectively. SWISS-MODEL was used to evaluate the structures predicted by AlphaFold2,
and it was found that the structures of PnDabC, DsKabC, and GfKabC all conformed
to stereochemical conformation, and these structures could be used for further analysis
(Figure 3). We used AutoDock to perform molecular docking. After that, a 500 ns molecular
dynamics simulation was performed.
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2.2. Overall Stability of the Kainoid Synthase–Substrates Complex

Root mean square deviation (RMSD) represents the sum of atomic deviations between
all conformations and target conformations at a certain time. It is an important basis
for measuring system stability. In the substrate-bound systems, the RMSD values of
PnDabC and DsKabC converged at around 0.40 nm and 0.53 nm, respectively, indicating
that the complex structures were gradually stabilizing (Figure 4). For the first 350 ns, the
RMSD value of the GfkabC-PKA complex rose rapidly and converged to 0.45 nm, and
finally experienced a large fluctuation during 350–500 ns. The RMSD of GfKabC was not
synchronized with the complex after 350 ns, indicating that the RMSD fluctuation of the
complex came from the conformational change of PKA binding to GfKabC. The trajectory
of PKA binding to GfkabC in the complex was analyzed (Figure 5). At the time points 0,
350, 400, and 500 ns, the distance between PKA and the Fe atom increased from the initial
8.8 nm to the final 32.8 nm. This indicates that PKA gradually separated from the initial
binding site after 350 ns.
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In order to analyze the state of the substrate on the surface of the kainoid synthase
and obtain the initial docking site of the substrate, we analyzed the distance between the
center of mass (Fe2+) of the initial docking site and the center of the substrate, as well as
the distance between the substrate and the center of mass of the kainoid synthase. These
distances reflect the binding state of the substrate to the kainoid synthase. The distance
between cNGG and PnDabC, and the distance between cNGG and Fe2+, gradually stabi-
lized, indicating that the binding between cNGG and PnDabC was gradually stabilizing
(Figure 6). Although the distance between PKA and Fe2+ fluctuated within the first 100 ns,
the fluctuation value did not exceed 1 nm. The distance between the PKA and DsKabC
center and Fe2+ gradually stabilized, indicating that the combination of PKA and DsKabC
was gradually stabilizing. However, the distance between PKA and GfKabC, and the
distance between PKA and Fe2+, remained stable within the first 350 ns, indicating that
the binding of PKA and GfKabC was relatively stable during this period. After 350 ns,
these distance values gradually showed relatively drastic fluctuations, indicating that the
binding between PKA and GfKabC was no longer stable.
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The radius of gyration (Rg) can be used to characterize the tightness of the complex
structure. According to the analysis, the Rg of the PnDabC-cNGG complex rose slowly and
then remained stable, indicating that the overall structure of the complex was gradually
stabilizing. The Rg fluctuation amplitude of the DsKabC-PKA complex decreased and
stabilized gradually. For the GfKabC-PKA complex, the Rg gradually decreased over
the first 350 ns, then suddenly increased and experienced sharp fluctuations after 350 ns,
indicating that the overall structure of the GfKabC-PKA complex remained stable in the
0–350 ns range (Figure 7). In the range of 350–500 ns, the overall Rg increased and fluctuated
as PKA departed from the initial binding site of GfKabC. Superposition of the substrate with
kainoid synthases revealed that cNGG in PnDabC and PKA in DsKabC had a high degree
of overlap, meaning the substrate was distributed at the initial binding site, indicating the
binding of cNGG with PnDabC and PKA with DsKabC was stable. In GfKabC, PKA was
distributed in other locations on the surface of GfKabC, indicating that there were both
stable and unstable periods in the combination of PKA and GfKabC (Figure 8).
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2.3. Structural Flexibility of Kainoid Synthases

In order to explore the structural flexibility of kainoid synthases, root-mean-square
fluctuations (RMSF) of the substrate-free state were calculated. In the substrate-free state,
the flexible regions of PnDabC included the 122G-145V loop, 218P-231R loop, 258V-266V
loop, and 330I-341C loop. For DsKabC-PKA, the flexible regions included the 32W-44A loop,
86A-130D loop, 204Y-218R loop, and 282H-344Y loop. For GfKabC-PKA, the flexible regions
included the 95T-123D loops, 129F-148H loops, 180A-213L loops, and 313T-325Y loops
(Figure 9). The conformational flexibility of the loops around the active center provided
the necessary microenvironment for catalysis. The embedding area of the substrate in
kainoid synthases reflected the size of the binding interface between the substrate and
kainoid synthases, and the binding state of the substrate and kainoid synthases could be
determined by analyzing the embedding area. The buried solvent accessibility surface
area (Buried SASA) reflected the size of the binding interface between the substrates and
kainoid synthases. According to the analysis, the cNGG in PnDabC and the PKA in
DsKabC remained stable, indicating that the contact area between cNGG and PnDabC and
between PKA and DsKabC remained stable; that is, the combinations remained stable. For
GfKabC-PKA, the buried SASA was relatively stable during 0–350 ns but fluctuated sharply
during 350–500 ns and decreased to 0, indicating that PKA was stable when combined with
GfKabC in the first 350 ns. After 350 ns, the contact area decreased, and the combination
was no longer stable (Figure 10).
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2.4. Key Structural Moieties of the Substrate Recognized by Kainoid Synthases

In order to determine the key structural part of the substrates recognized by kainoid
synthases, we counted the number and frequency of hydrogen bonds between the indi-
vidual functional groups of kainoid synthases and substrates in 500 ns (Figure 11). For
PnDabC, we found three carboxyl groups of cNGG, namely cNGG-1COOH, cNGG-2COOH,
and cNGG-3COOH, were always the key sites for recognition, the cNGG-3COOH from
the geranyl pyrophosphate formed the most hydrogen bonds with the PnDabC. In total,
29 hydrogen bonds were formed between PnDabC and cNGG; among them, 12 hydrogen
bonds were accepted by the cNGG-3COOH from geranyl pyrophosphate, for which the
donors were 119Q, 150R, 209K and 363K, respectively. The two carboxyl groups, cNGG-
1COOH and cNGG-2COOH, from L-Glu accepted 22 hydrogen bonds donated by 146K,
215R, 371Y, 132R, 238T, 239S, and 235H, respectively. Among them, cNGG-1COOH ac-
cepted seven hydrogen bonds donated by 146K, 215R, and 371Y, while cNGG-2COOH
accepted 10 hydrogen bonds donated by 132R, 238T, 239S, and 235H. According to the
frequency of hydrogen bond formation, it can be divided into two periods; in the first
200ns, cNGG mainly accepted hydrogen bonds donated by 371Y, 235H, 238T, 239S, 150R,
and 209K, indicating that it may be the binding stage of cNGG and PnDabC. The higher
the occupancy, the more critical residues needed to bind. In the latter 300 ns, cNGG mainly
formed hydrogen bonds with 119Q, 150R, 132R, 146K, 215R, 239S, and 363K, among which,
the occupancy of cNGG-3COOH and 363K reached 59.3%, revealing that 363K is the key
residue in the catalytic process of PnDabC. Compared with PnDabC, DsKabC formed fewer
hydrogen bonds with PKA. PKA has two carboxyl groups, and only PKA-1COOH accepted
hydrogen bonds donated by 134K and 202R.

Furthermore, the nitrogen atom of PKA donated hydrogen bonds to 304E. After 140 ns,
the PKA-1COOH accepted stable hydrogen bonds donated by NH1 and NH2 of 202R,
and the average occupancy rates were 43.5% and 68%, respectively. The OE1 of 304E also
accepted two stable hydrogen bonds donated by nitrogen atoms of PKA. Compared with
PnDabC and DsKabC, the hydrogen bond between GfKabC and PKA only existed in the
first 400 ns, and only PKA-1COOH in two carboxyl groups accepted hydrogen bonds
donated by 3 arginine. Furthermore, nitrogen atoms of PKA donated hydrogen bonds to
299E and 302D, respectively. In the first 200 ns, 122R and 196R donated hydrogen bonds
to PKA-1COOH, respectively. The highest hydrogen bonds occupancy was 42.8%, which
was lower than PnDabC and DsKabC. After 200 ns, the hydrogen bonds between PKA and
GfKabC were volatile, and there were no hydrogen bonds after 400 ns. The hydrogen bond
occupancy and hydrogen bond receptors of DsKabC and GfKabC showed that γ-carboxyl
group of PKA was the key recognized group. For PnDabC, the three carboxyl groups of
cNGG were all key recognized groups.
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2.5. Key Residues Responsible for Interacting with the Substrates

At present, it has been widely recognized that key residues play an important role in
the biosynthesis of terpenoids, such as aromatic residues stabilizing carbocation interme-
diates through π-cation interactions [11,12]. In order to determine the key residues that
kainoid synthases bind to on the substrates, we calculated the interaction energy between
the substrate and each active site residue in 500 ns simulation, and analyzed the conforma-
tional changes of the key residues. We found that electrostatic interactions played a decisive
role between kainoid synthases and substrates (Figure 12). In PnDabC, the Coulomb forces
of 132R, 146K, 150R, 209K, 215R, 238T, and 363K and the Lennard-Jones potentials of 211F
and 317F dominated binding to cNGG. In previous studies, GfKabC showed much more
catalytic promiscuity, though the reason for this was not clear [8,10]. Interestingly, we chose
a 50 ns window in the catalytic process to analyze the conformational transformations of
key residues, and found that after binding with cNGG, the benzene rings of 118F, 148F,
211F, 317F, and 359W rotated towards cNGG-1COOH, and the rotation of the side chains of
aromatic residues would not lead to any highly feasible substrate conformational change
(Figure 13). This may be the reason for less catalytic promiscuity of PnDabC, and these con-
formational transformations improved the interaction with cNGG. In DsKabC, the benzene
rings of 136F, 198F, and 302F rotated towards PKA-1COOH, while in GfKabC, 107F, 124F,
and 297F also rotated towards PKA-1COOH. In the DsKabC-PKA complex, the aromatic
amino acids were closer to PKA-1COOH than in the GfKabC-PKA complex during the
catalytic process. These findings suggest that residue-level conformational transitions of
kainoid synthases also play a role in substrate binding and subsequent catalysis. From the
analysis of the simulated endpoint kainoid synthase-substrate conformations, we found
that three aromatic amino acids formed van der Waals forces with PKA in DsKabC, while
the aromatic amino acids in GfKabC formed van der Waals forces and the hydrophobic
interactions of π-cation and π-alkyl (Figure 14). According to the contribution analysis of
residues, we found that the van der Waals forces of these residues were much stronger than
the hydrophobic interactions (Table S1), so PKA in DsKabC was more stable during the
catalytic process and DsKabC lacked catalytic promiscuity compared with GfKabC.
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We selected the conformational changes during the 250 ns to 300 ns period of the
kainoid synthases catalytic process for further study (Figure 15). We found that, between
250 ns and 300 ns, PnDabC contained eithor more aromatic residues or more basic amino
acids in its substrate-binding catalytic pocket compared to DsKabC and GfKabC. Aromatic
residues can form π-cation interactions to stabilize substrates and intermediates, which may
result in weaker catalytic promiscuity. In DsKabC, during the same period, the catalytic
pocket contained eithor more aromatic residues or more basic amino acids than in GfKabC,
making DsKabC more capable of forming π-cation interactions to stabilize substrates and
intermediates. Conversely, the catalytic pocket of GfKabC contained the fewest aromatic
residues and basic amino acids, lacking sufficient π-cation interactions to stabilize sub-
strates and intermediates, making it less able to prevent alternative catalytic pathways and,
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thus, displaying stronger catalytic promiscuity. Additionally, at the midpoint of the simula-
tion, GfKabC exhibited a more relaxed active pocket compared to PnDabC and DsKabC
(Figure 16); here, we used the tool KVFinder for cavity detection and characterization of
any type of biomolecular structure, with the results showing that GfKabC had a larger
cavity volume than PnDabC and DsKabC (Table 1). The electrostatic potential energy of
its active pocket was the lowest. This indicates that the active pocket was more flexible,
facilitating intermediates to react towards other catalytic pathways.
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Table 1. The volume cutoff (Å3) of the activity pocket in the middle point of the simulation.

Index Area (Å2) Vol. (Å3) Avg Dep.(Å) Max Dep.(Å) Avg Hyd.

PnDabC-cNGG 680.81 376.92 1.67 4.41 −0.02
DsKabC-PKA 667.45 408.46 1.61 5.5 0.17
GfKabC-PKA 730.44 438.26 1.47 4.41 0.15
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2.6. Binding Energy Analysis of Kainoid Synthases

In the case of solvation energy, RMSD, Rg, distance, Buried SASA, and interaction
energy were comprehensively considered to select the complex trajectory in a stable state.
The MM-PBSA (Molecular Mechanics–Poisson Boltzmann Surface Area) method was used
to calculate the binding-energy-related terms, as shown in the Table 2. From the enthalpy
point of view alone, since the water box is a polar environment, the protein cavity is
usually a non-polar environment, so the substrate is easy to bind to water, but not easy
to bind to enzymes. On account of the fact that substrates cNGG and PKA are easy to
dissolve in water, we considered the ∆Epol. In the PnDabC-cNGG complex, the electrostatic
interaction ∆Eele was higher than the van der Waals force interaction energy ∆Evdw, the
former being 3.1 times the latter. Both ∆Eele and ∆Evdw were much higher than the
hydrophobic interaction ∆Enonpol. Therefore, in the composition of the PnDabC-cNGG
binding energy, the electrostatic interaction played a major role and the van der Waals force
interaction played a minor role, while the hydrophobic interaction played a complementary
role. The ∆EMMPBSA of PnDabC-cNGG was 74.724 ± 6.145 kJ/mol, which was greater
than zero. This is because small molecules carry more charges and have larger electrostatic
interactions, which makes the polar solvation energy larger, resulting in the final calculated
binding energy being greater than zero.

Table 2. Binding energy and its composition in stable state (unit: kJ/mol).

Complex PnDabC-cNGG DsKabC-PKA GfKabC-PKA

∆Evdw −133.164 ± 6.729 −71.61 ± 1.427 −60.76 ± 5.734
∆Eele −411.14 ± 25.248 −230.503 ± 3.59 −186.169 ± 19.89
∆Epol 641.384 ± 24.122 351.107 ± 4.775 244.753 ± 21.658

∆Enonpol −22.355 ± 0.216 −14.529 ± 0.031 −13.796 ± 0.807
∆EMMPBSA 74.724 ± 6.145 34.465 ± 2.689 −15.972 ± 4.005

−T∆S 82.94 ± 6.966 32.564 ± 2.885 53.314 ± 6.549
∆Gbind * 157.664 ± 4.835 67.029 ± 4.931 37.342 ± 2.572

* ∆Gbind = ∆Evdw + ∆Eele + ∆Epol + ∆Enonpol − T∆S.

The electrostatic interaction ∆Eele in the DsKabC-PKA complex was higher than the
van der Waals force interaction energy. The former was 3.2 times the latter, and both were
much higher than the hydrophobic interaction ∆Enonpol. Therefore, in the composition of
DsKabC-PKA binding energy, the electrostatic interaction played a major role, the van der
Waals force interaction played a secondary role, and the hydrophobic interaction played a
supplementary role. The ∆EMMPBSA of DsKabC-PKA was 34.465 ± 2.689 kJ/mol, which
was greater than zero due to polar solvation energy as well.

For the GfKabC-PKA complex, the electrostatic interaction ∆Eele in the complex
was higher than the van der Waals force interaction energy ∆Evdw, being three times
∆Evdw. Both were much higher than the hydrophobic interaction ∆Enonpol. Therefore,
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in the composition of GfKabC-PKA binding energy, the electrostatic interaction played
a major role, the van der Waals force interaction played a secondary role, and the hy-
drophobic interaction played a supplementary role. The ∆EMMPBSA of GfKabC-PKA was
−15.972 ± 4.005 kJ/mol. ∆Epol of GfKabC-PKA was the smallest, which indicates that
more easily dissolved in the simulation process of GfKabC-PKA and the water molecule
had the greatest influence on the complex system.

Enzyme promiscuity is a modern term that is not fully understood at present. Catalytic
promiscuity refers to the ability of enzymes to catalyze different chemical reaction processes,
through different transition states, to produce different intermediates or products. Catalytic
promiscuity has attracted more attention in the field of protein engineering, as it can be
used to enhance natural catalytic activity or obtain new catalytic functions. In the process
of biosynthesis of natural products, enzyme-catalyzed promiscuity is not uncommon and
is closely related to the chemical diversity of natural products. In the biosynthesis of
terpenoids, the substrates can be transformed into various products through the cycliza-
tion, rearrangement, and quenching cascade reactions involving carbocations. Therefore,
the key to studying the catalytic mechanism of terpene natural product biosynthase is to
explore the root cause of catalytic promiscuity or catalytic specificity in different terpene
natural product biosynthetic processes. In theoretical studies of terpenoid biosynthesis,
the importance of π-interactions between aromatic residues (such as PHE/TYR/TRP) and
carbocation ions has been mentioned many times [13–19]. The two main roles of aromatic
residues in the catalysis of kainoid synthases are to restrict the orientation of substrates
through steric hindrance brought about by large side chains, and to stabilize carbocation
intermediates and transition states through π-cation interactions [20]. According to the
analysis, PnDabC is catalytically specific compared to DsKabC and GfKabC, whereas GfK-
abC has been shown to be catalytically promiscuous in previous studies [8]. By analyzing
the interaction between carbocation intermediates and key residues in active pockets, and
the key chemical regulatory factors of terpenoid natural product biosynthase during the
reaction process, the sources of chemical diversity of terpenoid compounds were revealed,
enabling a better understanding and use of the catalytic promiscuity and specificity of
terpenoid natural product biosynthase.

Kainoid synthases belong to Fe2+ and alpha-ketoglutarate-dependent dioxygenases,
which are extremely versatile biocatalysts in nature. They play a key role in the biosynthesis
of meroterpenoids and have been less studied, including structural characteristics, catalytic
mechanisms, engineering development, and the discovery of new enzyme properties.
At present, there are very few studies on meroterpenoids synthase, and those that do
exist have mainly focused on the meroterpenoids synthase of terpenoids and polyketones.
The current research on kainoid synthases only focuses on the catalytic mechanism or
expression and purification, without analyzing the conformational dynamics and catalytic
promiscuity [21,22]. The structure–activity relationship of meroterpenoids synthases from
marine algae has not been fully researched. The analysis of the mechanism of kainoid
synthases is expected to further elucidate the biosynthesis process of kainoids.

3. Materials and Methods
3.1. Protein Preparation and Evaluation

The amino acid sequences of PnDabC, DsKabC, and GfKabC were downloaded from
NCBI (https://www.ncbi.nlm.nih.gov/, accessed 30 November 2023). The protein struc-
tures of PnDabC, DsKabC, and GfKabC were from Alphafold2 (https://alphafold.com/,
accessed 22 November 2023) [23,24]. Evaluation of PnDabC, DsKabC, GfKabC protein
models by SWISS-MODEL [25]. Ramachandran plots made by SWISS-MODEL, too.

3.2. Molecular Dynamics Simulations

All molecular dynamics simulations were performed using the GROMACS 2018.8
program. The GAFF force field was used for small molecules, the AMBER14SB force
field and TIP3P water model were used for proteins, and files of proteins and small

https://www.ncbi.nlm.nih.gov/
https://alphafold.com/
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molecular ligands were combined to construct a simulation system of the complex. The
molecular dynamics simulation (MD) was carried out under constant temperature and
pressure and periodic boundary conditions. In the MD simulation process, all the hydrogen
bonds involved were constrained by the LINCS algorithm, and the integration step was
2 fs. The electrostatic interaction was calculated using the Particle-Mesh Ewald (PME)
method, and the cutoff value was set to 1.2 nm. The non-bond interaction cutoff was set
to 10 Å and updated every 10 steps. The V-rescale temperature coupling method was
used to control the simulated temperature at 298 K, and the Berendsen method was used
to control the pressure at 1 bar. At 298 K, NVT and NPT equilibrations of 100 ps each
were simulated, and MD simulations of 100 ns were performed for the complex system,
preserving conformations every 10 ps. After the simulation was completed, the simulated
trajectories were analyzed, and the MMPBSA binding free energy of the complex was
analyzed using the g_mmpbsa program. Table S1 lists the residues contribution of these
kainoid synthases. It is worth noting that the KA-lactone content of GfKabC products is
higher than that of KA, while PnDabC and DsKabC are opposite. Their structural and
functional features make them good objects for studying the structure–activity relationship
of kainoid synthases. The complete simulation videos of the three kainoid synthases are
provided in the Supplementary Information.

3.3. Data Analysis

GROMACS internal tools were used to analyze the biophysical properties of kainoid
synthases. When the acceptor–donor distance is less than 0.35 nm and the acceptor–
donor angle is less than 30◦, it is defined as a gmx_hbond [26]. RMSD (gmx_rms)
and RMSF (gmx_rmsf) superimpose the Cα atoms of each snapshot structure onto the
initial structure by least squares fitting. After eliminating the overall translational and
rotational motion, RMSD (gmx_rms), RMSF (gmx_rmsf), distance (gmx_distance), Rg
(gmx_gyrate), and SASA (gmx_sasa) were measured to check the stability and flexibility
of the structure [27–29]. The interaction energy (gmx_energy) between amino acid
residues and the substrate was calculated based on the CHARMM 36 force field [30].
Structure visualization was performed using Pymol [31]. The substrate was docked
to the enzyme binding site using the Autodock program. The Notepad++ v8.2.1 was
used to make a docking file and the PLIP (Protein–Ligand Interaction Profiler) was
used to analyze the non-covalent interactions of protein–ligand complexes at the atomic
level [32].

4. Conclusions

In summary, through modeling, molecular docking, and molecular dynamics simu-
lations, we discovered that kainoid synthases exhibit different conformational changes
during the catalytic process. GfKabC has a lower binding energy and, compared to PnD-
abC and DsKabC during the simulation process, it has a more relaxed active pocket and
lower electrostatic potential energy of its active pocket. The higher number of aromatic
residues and basic amino acids in the catalytic pockets of PnDabC and DsKabC leads to
the formation of more π-cation interactions that stabilize the intermediates. The rotation
of the side chains of aromatic residues is less in GfKabC-PKA; thus, it would not prevent
feasible substrate conformational change. Compared with PnDabC and DsKabC, GfKabC
cannot stabilize substrates and intermediates, making it less able to prevent alternative
catalytic pathways and, thus, displaying stronger catalytic promiscuity. These findings
provide theoretical support for understanding the structure–activity relationship and the
mechanism of kainoid synthases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md22070326/s1, Full simulation process of PnDabC-cNGG (ex-
tracting one frame every 5 ns). Full simulation process of DsKabC-PKA (extracting one frame every
5 ns). Full simulation process of GfKabC-PKA (extracting one frame every 5 ns). Table S1. Residues
contribution of kainoid synthases.
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