Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin
Abstract
:1. Introduction
2. Pigments Present in Micro- and Macroscopic Algae
2.1. Astaxanthin and Fucoxanthin
2.2. Methods of Growing and Extracting Algae Pigments
3. Use of Pigments as Nutraceuticals and Their Therapeutic Potential
3.1. Therapeutic Potential of Algae-Derived Pigments in Neurodegenerative Diseases
3.2. Use of Algae-Derived Pigments in Nutraceuticals
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, F.; Teixeira-Santos, A.C.; Caramelli, P.; Leist, A.K. Prevalence of dementia in latin america and caribbean countries: Systematic review and meta-analyses exploring age, sex, rurality, and education as possible determinants. Ageing Res. Rev. 2022, 81, 101703. [Google Scholar] [CrossRef] [PubMed]
- Korczyn, A.D.; Grinberg, L.T. Is Alzheimer disease a disease? Nat. Rev. Neurol. 2024, 20, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Wimo, A.; Seeher, K.; Cataldi, R.; Cyhlarova, E.; Dielemann, J.L.; Frisell, O.; Guerchet, M.; Jönsson, L.; Malaha, A.K.; Nichols, E.; et al. The worldwide costs of dementia in 2019. Alzheimer’s Dement. 2023, 19, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Khairinisa, M.A.; Latarissa, I.R.; Athaya, N.S.; Charlie, V.; Musyaffa, H.A.; Prasedya, E.S.; Puspitasari, I.M. Potential application of marine algae and their ioactive metabolites in brain disease treatment: Pharmacognosy and pharmacology insights for therapeutic advances. Brain Sci. 2023, 13, 1686. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.F.; Afraz, M.T.; Yılmaz, B.B.; Adil, M.; Arshad, N.; Goksen, G.; Ali, M.; Zeng, X.-A. Recent progress in natural seaweed pigments: Green extraction, health-promoting activities, techno-functional properties and role in intelligent food packaging. J. Agric. Food Res. 2024, 15, 100991. [Google Scholar] [CrossRef]
- Patel, A.K.; Albarico, F.P.J.B.; Perumal, P.K.; Vadrale, A.P.; Nian, C.T.; Chau, H.T.B.; Anwar, C.; ud din Wani, H.M.; Pal, A.; Saini, R.; et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 2022, 351, 126910. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Hu, J.; Yang, B.; Lin, X.-P.; Zhou, X.-F.; Yang, X.-W.; Liu, Y. Chapter 5—Chemical composition of seaweeds. In Seaweed sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 79–124. [Google Scholar]
- Paymulina, A.V.; Potoroko, I.Y.; Naumenko, N.V.; Motovilov, O.K. Sonochemical microstructuring of sodium alginate to increase its effectiveness in bakery. Food Process. Tech. Technol. 2023, 53, 13–24. [Google Scholar] [CrossRef]
- Barzkar, N.; Sukhikh, S.; Babich, O. Study of marine microorganism metabolites: New resources for bioactive natural products. Front. Microbiol. 2024, 14, 1285902. [Google Scholar] [CrossRef] [PubMed]
- Barzkar, N.; Sukhikh, S.; Babich, O.; Venmathi Maran, B.A.; Tamadoni Jahromi, S. Marine collagen: Purification, properties and application. Front. Mar. Sci. 2023, 10, 1245077. [Google Scholar] [CrossRef]
- Guiry, M.D. How many species of algae are there? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Maroneze, M.M.; Deprá, M.C.; Sartori, R.B.; Dias, R.R.; Zepka, L.Q. Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Curr. Opin. Food Sci. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Panesar, R.; Kaur, S.; Panesar, P.S. Production of microbial pigments utilizing agro-industrial waste: A review. Curr. Opin. Food Sci. 2015, 1, 70–76. [Google Scholar] [CrossRef]
- Alloyarova, Y.V.; Kolotova, D.S.; Derkach, S.R. Nutritional and therapeutic potential of functional components of brown seaweed: A review. Foods Raw Mater. 2024, 12, 398–419. [Google Scholar] [CrossRef]
- Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Mondal, S.; Seo, H.; Dae Lee, K.; Oh, J. Marine natural pigments as potential sources for therapeutic applications. Crit. Rev. Biotechnol. 2018, 38, 745–761. [Google Scholar] [CrossRef] [PubMed]
- Aryee, A.N.A.; Agyei, D.; Akanbi, T.O. Recovery and utilization of seaweed pigments in food processing. Curr. Opin. Food Sci. 2018, 19, 113–119. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Silva, A.M.S.; Carvalho, F.; Fernandes, E. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem. Toxicol. 2018, 120, 681–699. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, K. Function of marine carotenoids. In Food Factors for Health Promotion; Yoshikawa, T., Ed.; S. Karger AG: Basel, Switzerland, 2009; Volume 61. [Google Scholar]
- da Silva, J.C.; Lombardi, A.T. Chlorophylls in microalgae: Occurrence, distribution, and biosynthesis. In Pigments from Microalgae Handbook; Jacob-Lopes, E., Queiroz, M.I., Zepka, L.Q., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–18. [Google Scholar]
- Dagnino-Leone, J.; Figueroa, C.P.; Castañeda, M.L.; Youlton, A.D.; Vallejos-Almirall, A.; Agurto-Muñoz, A.; Pavón Pérez, J.; Agurto-Muñoz, C. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Comput. Struct. Biotechnol. J. 2022, 20, 1506–1527. [Google Scholar] [CrossRef]
- Díaz-Domínguez, G.; Marsán-suárez, V.; del-Valle-Pérez, L. Principales propiedades inmunomoduladoras y antinflamatorias de la ficobiliproteína c-ficocianina. Rev. Cuba. Hematol. Inmunol. Y Hemoter. 2016, 32, 447–454. [Google Scholar]
- Premarathna, A.D.; Tuvikene, R.; Fernando, P.H.P.; Adhikari, R.; Perera, M.C.N.; Ranahewa, T.H.; Howlader, M.M.; Wangchuk, P.; Jayasooriya, A.P.; Rajapakse, R.P.V.J. Comparative analysis of proximate compositions, mineral and functional chemical groups of 15 different seaweed species. Sci. Rep. 2022, 12, 19610. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Gonçalves, A.M.M. Marine macroalgae polyphenols as potential neuroprotective antioxidants in neurodegenerative diseases. Mar. Drugs 2023, 21, 261. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, U.T.; Balia Yusof, Z.N. Insight into potential anticancer activity of algal flavonoids: Current status and challenges. Molecules 2021, 26, 6844. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.M.R.; Liang, Y.; Cheng, J.J.; Daroch, M. Astaxanthin-producing green microalga haematococcus pluvialis: From single cell to high value commercial products. Front. Plant Sci. 2016, 7, 531. [Google Scholar] [CrossRef] [PubMed]
- Ambati, R.R.; Phang, S.-M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kim, B.; Lee, J.-Y. Astaxanthin structure, metabolism, and health benefits. J. Hum. Nutr. Food Sci. 2013, 1, 1003. [Google Scholar]
- Pashkow, F.J.; Watumull, D.G.; Campbell, C.L. Astaxanthin: A novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am. J. Cardiol. 2008, 101, S58–S68. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 2020, 100, 1–18. [Google Scholar] [CrossRef]
- Pajot, A.; Hao Huynh, G.; Picot, L.; Marchal, L.; Nicolau, E. Fucoxanthin from algae to human, an extraordinary bioresource: Insights and advances in up and downstream processes. Mar. Drugs 2022, 20, 222. [Google Scholar] [CrossRef] [PubMed]
- Mikami, K.; Hosokawa, M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int. J. Mol. Sci. 2013, 14, 13763–13781. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, H.; Ding, Y.; Liu, S.; Ding, Y.; Lu, B.; Xiao, J.; Zhou, X. Dietary protective potential of fucoxanthin as an active food component on neurological disorders. J. Agric. Food Chem. 2023, 71, 3599–3619. [Google Scholar] [CrossRef] [PubMed]
- Wayama, M.; Ota, S.; Matsuura, H.; Nango, N.; Hirata, A.; Kawano, S. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga haematococcus pluvialis. PLoS ONE 2013, 8, e53618. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yang, S.; Zhao, W.; Kong, Q.; Zhu, C.; Fu, X.; Zhang, F.; Liu, Z.; Zhan, Y.; Mou, H.; et al. Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application. Crit. Rev. Food Sci. Nutr. 2023, 63, 7996–8012. [Google Scholar] [CrossRef]
- Khaw, Y.S.; Yusoff, F.M.; Tan, H.T.; Noor Mazli, N.A.; Nazarudin, M.F.; Shaharuddin, N.A.; Omar, A.R. The critical studies of fucoxanthin research trends from 1928 to June 2021: A bibliometric review. Mar. Drugs 2021, 19, 606. [Google Scholar] [CrossRef] [PubMed]
- Khadilkar, J.; Karande, V.; Prakash, G.; Pandit, R. Simultaneous extraction and purification of natural astaxanthin from haematococcus pluvialis using adsorptive chromatography. Bioresour. Technol. Rep. 2023, 24, 101691. [Google Scholar] [CrossRef]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus green extraction techniques—A comparative perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel approaches in the valorization of agricultural wastes and their applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef] [PubMed]
- Pappou, S.; Dardavila, M.M.; Savvidou, M.G.; Louli, V.; Magoulas, K.; Voutsas, E. Extraction of bioactive compounds from ulva lactuca. Appl. Sci. 2022, 12, 2117. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef]
- Posten, C. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci. 2009, 9, 165–177. [Google Scholar] [CrossRef]
- Medipally, S.R.; Yusoff, F.M.; Banerjee, S.; Shariff, M. Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed. Res. Int. 2015, 2015, 519513. [Google Scholar] [CrossRef] [PubMed]
- Ishika, T.; Moheimani, N.R.; Bahri, P.A.; Laird, D.W.; Blair, S.; Parlevliet, D. Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity. Algal Res. 2017, 28, 66–73. [Google Scholar] [CrossRef]
- Torzillo, G.; Faraloni, C.; Silva, A.M.; Kopecký, J.; Pilný, J.; Masojídek, J. Photoacclimation of phaeodactylum tricornutum (bacillariophyceae) cultures grown outdoors in photobioreactors and open ponds. Eur. J. Phycol. 2012, 47, 169–181. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chen, C.-Y.; Varjani, S.; Chang, J.-S. Producing fucoxanthin from algae—Recent advances in cultivation strategies and downstream processing. Bioresour. Technol. 2022, 344, 126170. [Google Scholar] [CrossRef] [PubMed]
- Kavadikeri, S.; Manokaran, S.; Reddy, A.H.M. Extraction and characterization of microalgal oil and fucoxanthin from diatom. J. Pharm. Sci. Res. 2020, 12, 1481–1485. [Google Scholar]
- Aslanbay Guler, B.; Deniz, I.; Demirel, Z.; Oncel, S.S.; Imamoglu, E. Transition from start-up to scale-up for fucoxanthin production in flat plate photobioreactor. J. Appl. Phycol. 2019, 31, 1525–1533. [Google Scholar] [CrossRef]
- Gao, F.; Sá, M.; Teles, I.; Wijffels, R.H.; Barbosa, M.J. Production and monitoring of biomass and fucoxanthin with brown microalgae under outdoor conditions. Biotechnol. Bioeng. 2021, 118, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Cano Europa, E.; Blas Valdivia, V.; Rodríguez Sánchez, R.; Torres Manzo, P.; Franco Colín, M.; Hernández García, A.; Ortiz Butrón, R. Uso terapéutico de algunos microorganismos, microalgas, algas y hongos. Rev. Mex. Cienc. Farm. 2012, 43, 22–30. [Google Scholar]
- Papapostolou, H.; Kachrimanidou, V.; Alexandri, M.; Plessas, S.; Papadaki, A.; Kopsahelis, N. Natural carotenoids: Recent advances on separation from microbial biomass and methods of analysis. Antioxidants 2023, 12, 1030. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Balasubramanian, M.P.; Nishigaki, I. Cancer preventive efficacy of marine carotenoid fucoxanthin: Cell cycle arrest and apoptosis. Nutrients 2013, 5, 4978–4989. [Google Scholar] [CrossRef]
- Younas, U.; Tehseen, S.; Khan, F.; Niaz, K. Brown algae (fucoxanthin) against cancer. In Nutraceuticals and Cancer Signaling: Clinical Aspects and Mode of Action; Jafari, S.M., Nabavi, S.M., Silva, A.S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 99–127. [Google Scholar]
- Tsukui, T.; Baba, N.; Hosokawa, M.; Sashima, T.; Miyashita, K. Enhancement of hepatic docosahexaenoic acid and arachidonic acid contents in c57bl/6j mice by dietary fucoxanthin. Fish. Sci. 2009, 75, 261–263. [Google Scholar] [CrossRef]
- Foo, S.C.; Yusoff, F.M.; Ismail, M.; Basri, M.; Yau, S.K.; Khong, N.M.H.; Chan, K.W.; Ebrahimi, M. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J. Biotechnol. 2017, 241, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Mumu, M.; Das, A.; Emran, T.B.; Mitra, S.; Islam, F.; Roy, A.; Karim, M.M.; Das, R.; Park, M.N.; Chandran, D.; et al. Fucoxanthin: A promising phytochemical on diverse pharmacological targets. Front. Pharmacol. 2022, 13, 929442. [Google Scholar] [CrossRef] [PubMed]
- Samhat, K.; Kazbar, A.; Takache, H.; Ismail, A.; Pruvost, J. Influence of light absorption rate on the astaxanthin production by the microalga haematococcus pluvialis during nitrogen starvation. Bioresour. Bioprocess. 2023, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Benavente-Valdés, J.R.; Aguilar, C.; Contreras-Esquivel, J.C.; Méndez-Zavala, A.; Montañez, J. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol. Rep. 2016, 10, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Tavares, J.O.; Cotas, J.; Valado, A.; Pereira, L. Algae food products as a healthcare solution. Mar. Drugs 2023, 21, 578. [Google Scholar] [CrossRef] [PubMed]
- Lakey-Beitia, J.; Kumar, D.J.; Hegde, M.L.; Rao, K.S. Carotenoids as novel therapeutic molecules against neurodegenerative disorders: Chemistry and molecular docking analysis. Int. J. Mol. Sci. 2019, 20, 5553. [Google Scholar] [CrossRef] [PubMed]
- Alam, Q.; Zubair Alam, M.; Mushtaq, G.A.; Damanhouri, G.; Rasool, M.; Amjad Kamal, M.; Haque, A. Inflammatory process in alzheimer’s and parkinson’s diseases: Central role of cytokines. Curr. Pharm. Des. 2016, 22, 541–548. [Google Scholar] [CrossRef]
- Pereira, L.; Valado, A. The seaweed diet in prevention and treatment of the neurodegenerative diseases. Mar. Drugs 2021, 19, 128. [Google Scholar] [CrossRef]
- Fakhri, S.; Piri, S.; Farzaei, M.H.; Sobarzo-Sánchez, E. Chapter 34—Recent updates on the neuroprotective role of carotenoids: Astaxanthin and beyond. In Global Perspectives on Astaxanthin; Ravishankar, G.A., Ranga Rao, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 719–740. [Google Scholar]
- Kumar, S.; Kumar, R.; Diksha; Kumari, A.; Panwar, A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. J. Basic Microbiol. 2022, 62, 1064–1082. [Google Scholar] [CrossRef]
- Galasso, C.; Orefice, I.; Pellone, P.; Cirino, P.; Miele, R.; Ianora, A.; Brunet, C.; Sansone, C. On the neuroprotective role of astaxanthin: New perspectives? Mar. Drugs 2018, 16, 247. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Yosifova Aneva, I.; Farzaei, M.H.; Sobarzo-Sánchez, E. The neuroprotective effects of astaxanthin: Therapeutic targets and clinical perspective. Molecules 2019, 24, 2640. [Google Scholar] [CrossRef] [PubMed]
- Oliyaei, N.; Moosavi-Nasab, M.; Tanideh, N.; Iraji, A. Multiple roles of fucoxanthin and astaxanthin against alzheimer’s disease: Their pharmacological potential and therapeutic insights. Brain Res. Bull. 2023, 193, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.A.; Riccioni, G.; Orazio, N. Marine carotenoids against oxidative stress: Effects on human health. Mar. Drugs 2015, 13, 6226–6246. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Zhu, C. Biological and neurological activities of astaxanthin (review). Mol. Med. Rep. 2022, 26, 300. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.; Valentão, P.; Andrade, P.B. Astaxanthin and fucoxanthin. In Encyclopedia of Marine Biotechnology; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1391–1426. [Google Scholar]
- Speranza, L.; Pesce, M.; Patruno, A.; Franceschelli, S.; Lutiis, M.A.d.; Grilli, A.; Felaco, M. Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in u937: Shp-1 as a novel biological target. Mar. Drugs 2012, 10, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Böhm, F.; Edge, R.; Truscott, T.G. Interactions of dietary carotenoids with singlet oxygen (1o2) and free radicals: Potential effects for human health. Acta Biochim. Pol. 2012, 59, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-L.; He, L.-J.; He, T.-B.; Han, W.; Wang, Q. Effect of astaxanthin on oxidative stress of red blood cells and peroxidation damage of membrane. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2015, 23, 552–556. [Google Scholar] [CrossRef]
- Yuan, J.-P.; Peng, J.; Yin, K.; Wang, J.-H. Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol. Nutr. Food Res. 2011, 55, 150–165. [Google Scholar] [CrossRef]
- D’Orazio, N.; Gammone, M.A.; Gemello, E.; De Girolamo, M.; Cusenza, S.; Riccioni, G. Marine bioactives: Pharmacological properties and potential applications against inflammatory diseases. Mar. Drugs 2012, 10, 812–833. [Google Scholar] [CrossRef]
- Al-Amin, M.M.; Rahman, M.M.; Khan, F.R.; Zaman, F.; Mahmud Reza, H. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav. Brain Res. 2015, 286, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Sajdel-Sulkowska, E.M.; Xu, M.; Koibuchi, N. Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum 2009, 8, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Kim, C.-S.; Lee, Y.J. Astaxanthin protects against mptp/mpp+-induced mitochondrial dysfunction and ros production in vivo and in vitro. Food Chem. Toxicol. 2011, 49, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Lobos, P.; Bruna, B.; Cordova, A.; Barattini, P.; Galáz, J.L.; Adasme, T.; Hidalgo, C.; Muñoz, P.; Paula-Lima, A. Astaxanthin protects primary hippocampal neurons against noxious effects of aβ-oligomers. Neural Plast. 2016, 2016, 3456783. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhao, Y.; Li, S. Astaxanthin attenuates glutamate-induced apoptosis via inhibition of calcium influx and endoplasmic reticulum stress. Eur. J. Pharmacol. 2017, 806, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Li, X.; Lu, Q.; Zhu, Q.; Jiang, H.; Wang, T.; Huang, G.; Xu, A. Application and mechanisms of triptolide in the treatment of inflammatory diseases—A review. Front. Pharmacol. 2019, 10, 1469. [Google Scholar] [CrossRef] [PubMed]
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Grimmig, B.; Daly, L.; Hudson, C.; Nash, K.R.; Bickford, P.C. Astaxanthin attenuates neurotoxicity in a mouse model of parkinson’s disease. Funct. Foods Health Dis. 2017, 7, 562–576. [Google Scholar] [CrossRef]
- Grimmig, B.; Kim, S.-H.; Nash, K.; Bickford, P.C.; Douglas Shytle, R. Neuroprotective mechanisms of astaxanthin: A potential therapeutic role in preserving cognitive function in age and neurodegeneration. GeroScience 2017, 39, 19–32. [Google Scholar] [CrossRef]
- Ferdous, K.A.; Burnett, G.; Scott, M.; Amjad, E.; Bannerman, S.; Park, H.-A. Neuroprotective function of fucoxanthin in oxidative stress-mediated mitochondrial dysfunction. Curr. Dev. Nutr. 2022, 6, 787. [Google Scholar] [CrossRef]
- Sun, G.; Xin, T.; Zhang, R.; Liu, C.; Pang, Q. Fucoxanthin attenuates behavior deficits and neuroinflammatory response in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinson’s disease in mice. Pharmacogn. Mag. 2020, 16, 51–56. [Google Scholar] [CrossRef]
- Hannan, M.A.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Sohag, A.A.; Rahman, M.A.; Uddin, M.J.; Alam, M.; Moon, I.S. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs 2020, 18, 347. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yu, J.; Zhao, J.; Zhang, K.; Zheng, J.; Wang, J.; Huang, C.; Zhang, J.; Yan, X.; Gerwick, W.H.; et al. Fucoxanthin, a marine carotenoid, attenuates β-amyloid oligomer-induced neurotoxicity possibly via regulating the pi3k/akt and the erk pathways in sh-sy5y cells. Oxidative Med. Cell. Longev. 2017, 2017, 6792543. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lin, J.-J.; Yu, R.; He, S.; Wang, Q.-W.; Cui, W.; Zhang, J.-R. Fucoxanthin prevents h2o2-induced neuronal apoptosis via concurrently activating the pi3-k/akt cascade and inhibiting the erk pathway. Food Nutr. Res. 2017, 61, 1304678. [Google Scholar] [CrossRef]
- Ikeda, K.; Kitamura, A.; Machida, H.; Watanabe, M.; Negishi, H.; Hiraoka, J.; Nakano, T. Effect of undaria pinnatifida (wakame) on the development of cerebrovascular diseases in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2003, 30, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Mohibbullah, M.; Haque, M.N.; Khan, M.N.A.; Park, I.-S.; Moon, I.S.; Hong, Y.-K. Neuroprotective effects of fucoxanthin and its derivative fucoxanthinol from the phaeophyte undaria pinnatifida attenuate oxidative stress in hippocampal neurons. J. Appl. Phycol. 2018, 30, 3243–3252. [Google Scholar] [CrossRef]
- Hu, L.; Chen, W.; Tian, F.; Yuan, C.; Wang, H.; Yue, H. Neuroprotective role of fucoxanthin against cerebral ischemic/reperfusion injury through activation of nrf2/ho-1 signaling. Biomed. Pharmacother. 2018, 106, 1484–1489. [Google Scholar] [CrossRef]
- Yang, M.; Jin, L.; Wu, Z.; Xie, Y.; Zhang, P.; Wang, Q.; Yan, S.; Chen, B.; Liang, H.; Naman, C.B.; et al. Plga-peg nanoparticles facilitate in vivo anti-alzheimer’s effects of fucoxanthin, a marine carotenoid derived from edible brown algae. J. Agric. Food Chem. 2021, 69, 9764–9777. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Huang, L.; Yu, J.; Xiang, S.; Wang, J.; Zhang, J.; Yan, X.; Cui, W.; He, S.; Wang, Q. Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro. Mar. Drugs 2016, 14, 67. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Fan, Y.; Gao, Y.; Li, X.; Hu, Z.; Ding, K.; Wang, Y.; Wang, X. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the nrf2-are and nrf2-autophagy pathways. Sci. Rep. 2017, 7, 46763. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Clinicaltrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 7 July 2024).
- Manochkumar, J.; Doss, C.G.P.; El-Seedi, H.R.; Efferth, T.; Ramamoorthy, S. The neuroprotective potential of carotenoids in vitro and in vivo. Phytomedicine 2021, 91, 153676. [Google Scholar] [CrossRef] [PubMed]
- Filippov, M.A.; Tatarnikova, O.G.; Pozdnyakova, N.V.; Vorobyov, V.V. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: A role of mitochondria targeted catalase and xanthophylls. Neural Regen. Res. 2021, 16, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Yarmohammadi, A.; Yarmohammadi, M.; Farzaei, M.H.; Echeverria, J. Marine natural products: Promising candidates in the modulation of gut-brain axis towards neuroprotection. Mar. Drugs 2021, 19, 165. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Xu, W.; Liu, E.; Su, W.; Polyakov, N.E. Improving the treatment effect of carotenoids on alzheimer’s disease through various nano-delivery systems. Int. J. Mol. Sci. 2023, 24, 7652. [Google Scholar] [CrossRef]
- Genç, Y.; Bardakci, H.; Yücel, Ç.; Karatoprak, G.Ş.; Küpeli Akkol, E.; Hakan Barak, T.; Sobarzo-Sánchez, E. Oxidative stress and marine carotenoids: Application by using nanoformulations. Mar. Drugs 2020, 18, 423. [Google Scholar] [CrossRef]
- Maximize Market Research. Fucoxanthin Market: Global Industry Analysis and Forecast (2024–2030). Available online: https://www.maximizemarketresearch.com/market-report/global-fucoxanthin-market/98879 (accessed on 28 May 2024).
- Maximize Market Research. Astaxanthin Market: Global Industry Analysis and Forecast (2023–2029). Available online: https://www.maximizemarketresearch.com/market-report/astaxanthin-market/187849/ (accessed on 31 May 2024).
- Maximize Market Research. Phycocyanin Market: Global Industry Analysis and Forecast (2024–2030). Available online: https://www.maximizemarketresearch.com/market-report/global-phycocyanin-market/45492/ (accessed on 15 May 2024).
- Mohibbullah, M.; Haque, M.N.; Sohag, A.A.; Hossain, M.T.; Zahan, M.S.; Uddin, M.J.; Hannan, M.A.; Moon, I.S.; Choi, J.-S. A systematic review on marine algae-derived fucoxanthin: An update of pharmacological insights. Mar. Drugs 2022, 20, 279. [Google Scholar] [CrossRef]
Pigments | Structure | Chemical Class |
---|---|---|
Fucoxanthin | Carotenoids/xanthophylls | |
Astaxanthin | Carotenoids/xanthophylls | |
Lutein | Carotenoids | |
Canthaxanthin | Carotenoids | |
Zeaxanthin | Carotenoids | |
β-Cryptoxanthin | Carotenoids | |
Chlorophyll A/B | Chlorophyll | |
Phycoerythrin | Phycobiliproteins | |
Phycocyanin | Phycobiliproteins |
Pigment | Species | Content (mg g−1 DW) | References |
---|---|---|---|
Astaxanthin | Haematococcus pluvialis | 27–50 | [28,35] |
Neochloris wimmeri | 6.000 | [28] | |
Chlorococcum | 2.000 | ||
Chlorella zofingiensis | 0.010 | ||
Fucoxanthin | Phaeodactylum tricornutum | 15.71 | [36] |
Odontella aurita | 14–15 | ||
Chaetoceros calcitrans | 5.130 | ||
Isochrysis galbana T-ISO | 3.180 | ||
Nitzchia laevis | 2.370 | ||
Isochrysis galbana | 2.190 | ||
Chaetoceros calcitrans | 2.330 | ||
Odontella sinensis | 1.180 | ||
Undaria pinnatifida | 0.876–1.277 | ||
Skeletonema costatum | 0.360 | ||
Eisenia bicyclis | 0.109 | ||
Kjellmaniella crassifolia | 0.152 | ||
Sargassum horneri | 0.020 | ||
Saccharina japonica | 0.030 | ||
Sargassum fusiforme | 0.010 | ||
Cystoseira hakodatensis | 0.0041 | ||
Phaeodactylum tricornutum | 0.07 |
Pigment | Title | Conditions | Year | Locations |
---|---|---|---|---|
Astaxanthin | Astaxanthin formulation bioavailability | Bioavailability | 2015 | USF Health: College of Medicine, United States |
Effect of astaxanthin on patients with Alzheimer’s disease | Formulations to evaluate the possible benefit on Alzheimer’s disease | 2018 | Kaohsiung Medical University Chung-Ho Memorial Hospital, Taiwan | |
Bioavailability of astaxanthin formulations | Healthy volunteers | 2018 | Bert W. Strassburger Lipid Center, Sheba Medical Center, Israel | |
Astaxanthin, exercise inflammation, and skin health | Inflammatory response Metabolic disturbance Immune suppression | 2022 | Appalachian State University Human Performance Lab, North Carolina Research Campus, United States | |
Astaxanthin reduces exercising heart rate | Metabolic flexibility | 2021 | University of North Alabama, Department of Kinesiology, United States | |
Astaxanthin supplementation in cyclists | Athletic performance | 2010 | Maastricht University, Netherlands | |
Safety and pharmacokinetics of phaffia rhodozyma astaxanthin | Absorption; chemicals | 2018 | Sourasky Medical Center, Israel | |
Impact of astaxanthin on cognition in recreationally active females | Mental fatigue | 2024 | University of North Alabama, United States | |
Effects of isoflavone combined with astaxanthin on skin aging | Aging Photo-aging | 2015 | Seoul National University Hospital, Republic of Korea | |
Astaxanthin for management of inflammation in knee osteoarthritis | Osteoarthritis, knee Joint inflammation | 2022 | Prisma Health, Columbia, United States | |
Astaxanthin effects on osteoarthritis-associated pain and inflammatory indicators | Osteoarthritis, knee | 2021 | Saint Luke’s Hospital of Kansas City, United States | |
Efficacy and safety of astaxanthin for volunteers with refraction errors | Refractive errors | 2021 | Not provided | |
Oral supplementation of astaxanthin on skin photo-aging, hydration, and elasticity | Photo-aging | 2023 | Integrative Skin Science and Research, Sacramento, United States | |
Effect of astaxanthin in moderate to severe knee osteoarthritis | Osteoarthritis, knee | 2022 | Bangabandhu Sheikh Mujib Medical University, Bangladesh | |
Clinical trial of anti-oxidant astaxanthin in insulin-resistant subjects | Metabolic syndrome X | 2016 | Altman Clinical and Translational Research Institute (ACTRI), United States | |
Physiological and molecular influences of astaxanthin supplementation on heat strain in humans | Body temperature regulation | 2014 | Sheba Medical Center, Israel | |
Clinical trial of astaxanthin formulation with exercise in elderly people with sarcopenia | Sarcopenia | 2015 | Fred Hutchinson Cancer Research Center Prevention Center, United States University of Washington Medical Center, United States | |
A study to evaluate the effect of astaxanthin in healthy participants | Healthy | 2022 | SGS Stephens, Inc, Richardson, United States | |
Effect of astaxanthin supplementation on plasma malondialdehyde levels and NIHSS of stroke patients | Cerebral stroke Malondialdehyde Oxidative stress | 2010 | Department of Nutrition University of Indonesia, Indonesia | |
Evaluating astaxanthin bioavailability and a new technology for improving it, using natural food materials only | Bioavailability | 2018 | Rambam Health Campus, Israel | |
Lipid-lowering effects of an astaxanthin supplement in volunteers with mild dyslipidaemia | Dyslipidemias | 2014 | Centre Nutrition Clinique Naturalpha, France | |
The effect of astaxanthin on oxidative stress indices in patients with polycystic ovary syndrome | PCOS | 2020 | Shariati Hospital, Islamic Republic of Iran | |
Study of the efficacy and safety of antioxidant astaxanthin as an adjuvant therapy for community-acquired pneumonia patients | Community-acquired pneumonia | 2024 | Elmatarya Teaching Hospital, Egypt | |
Effect of CEAG on inflammation and endothelial function | Inflammation Endothelial dysfunction | 2018 | Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, United States | |
The benefits of astaxanthin as an add-on therapy in the management of painful diabetic neuropathy patients | Painful diabetic neuropathy | 2020 | Bethesda Hospital Yogyakarta, Indonesia | |
Oral astaxanthin and semen quality, fertilization, and embryo development in assisted reproduction technique procedures | Infertility, male | 2014 | Division of Ob/Gyn, University Medical Centre Ljubljana, Slovenia | |
Astaxanthin (2 mg) + lycopene (1.8 mg) + d-alpha-tocopherol (10 iu) for the treatment of skin aging | Skin aging Wrinkles | 2018 | PDC Building, Philippines | |
Positive effects of Haematococcus astaxanthin on oxidative stress and lipid profiles in overweight and obese adults | Healthy Overweight Obesity | 2010 | Clinical Research Institute Seoul National University Hospital, Republic of Korea | |
Effect of omega-3 fatty acid supplementation on dry-AMD progression | Age-related macular degeneration | 2022 | Shanghai General Hospital, Shanghai Jiao Tong University, China | |
Use of ritmonutra in subjects affected by supraventricular ectopic beats without structural heart disease | Arrhythmia | 2013 | Policlinico San Pietro, Italy Policlinico San Donato, Italy | |
Combined effects of bioactive compounds in lipid profile | Hyperlipidemia Low-density- Lipoprotein-type Elevated triglycerides | 2012 | Hosp. Universitario San Joan, Spain | |
Nutritional supplement’s effects on cognition | Dietary supplement Cognition Healthy | 2023 | Clinical Research Australia, Australia | |
Fucoxanthin | Effect of fucoxanthin on metabolic syndrome, insulin sensitivity, and insulin secretion | Metabolic syndrome | 2019 | Instituto de Terapéutica Experimental y Clínica, Mexico |
Effect of brainphyt, a microalgae-based ingredient on cognitive function in healthy older subjects | Healthy aging Dietary supplement Cognitive impairment Neuroprotection Mood Stress Sleep | 2021 | Atlantia Clinical Food trial, Ireland | |
Microalgae extract phaeosol combined with exercise for healthy overweight women: efficacy on body weight management | Overweight and obesity Body-weight changes Healthy lifestyle Exercise Dietary supplement | 2021 | Exercise & Sport Nutrition Lab, United States | |
Oral dietary fucoxanthin-rich supplement for liver health | Non-alcoholic fatty liver | 2018 | ||
Efficacy of a microalgae extract, phaeosol, combined with a natural stimulant on the cognitive function and gaming performance of video-gamers | Cognitive function Video-gamers | 2021 | Exercise & Sport Nutrition Lab, United States |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guardado Yordi, E.; Pérez Martínez, A.; Radice, M.; Scalvenzi, L.; Abreu-Naranjo, R.; Uriarte, E.; Santana, L.; Matos, M.J. Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin. Mar. Drugs 2024, 22, 327. https://doi.org/10.3390/md22070327
Guardado Yordi E, Pérez Martínez A, Radice M, Scalvenzi L, Abreu-Naranjo R, Uriarte E, Santana L, Matos MJ. Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin. Marine Drugs. 2024; 22(7):327. https://doi.org/10.3390/md22070327
Chicago/Turabian StyleGuardado Yordi, Estela, Amaury Pérez Martínez, Matteo Radice, Laura Scalvenzi, Reinier Abreu-Naranjo, Eugenio Uriarte, Lourdes Santana, and Maria Joao Matos. 2024. "Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin" Marine Drugs 22, no. 7: 327. https://doi.org/10.3390/md22070327
APA StyleGuardado Yordi, E., Pérez Martínez, A., Radice, M., Scalvenzi, L., Abreu-Naranjo, R., Uriarte, E., Santana, L., & Matos, M. J. (2024). Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin. Marine Drugs, 22(7), 327. https://doi.org/10.3390/md22070327