Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. SP Reduces Tumor Histopathological Alterations
2.2. SP Reduces Oxidative Stress Breast Tissues of DMBA-Treated Rats
2.3. SP Decreases the Expression of PCNA and ER-α in the Breast Tissues of DMBA-Treated Rats
2.4. Effect of SP on TUNEL-Positive Cells in the Mammary Tissues of DMBA-Treated Rats
2.5. Total Antioxidant Capacity and Phenolic Content of SP
2.6. SP and DOX Effects on the Viability of BC Cells
2.7. SP Causes Cell Cycle Arrest at G2/M and Promotes Apoptosis
2.8. Characterization by LC-MS and MS2 of Spirulina
2.9. Identification of Active Metabolites and Correlated Biological Target Proteins
2.9.1. Identification of BC-Related Genes
2.9.2. PPI Network Building and Evaluation
2.9.3. GO and KEGG Pathway Analysis of Candidate Targets
2.9.4. Component–Target Pathway Network
2.9.5. Molecular Docking Analysis
2.10. Effect of SP on Phosphorylated and Total EGFR, AKT, and ERK1/2
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation and Purification of Extracts from SP
4.3. In Vivo Study
4.3.1. Animals
4.3.2. Dosage Information
4.3.3. Treatment Regime
4.3.4. Sample Preparation
4.3.5. Determination of Oxidative Stress Markers
4.3.6. Histopathological Examination
4.3.7. PCNA and ER Immunohistochemical Analyses
4.3.8. Apoptosis Analysis Obtained via TUNEL
4.4. Quantification of the Total Phenolic Content in SP
4.5. Quantification of the Total Antioxidant Capacity of SP
4.6. Analysis of Biologically Active Substances Using Reversed-Phase High-Performance Liquid Chromatography Coupled with Mass Spectrometry and Tandem MS/MS (RP-HPLC-ESI-MS and MS/MS)
4.7. Cell Lines and Culture
4.7.1. Measurement of the Toxicity of SP Using the MTT Test
4.7.2. Evaluation of Apoptosis
4.7.3. Analysis of the Cell Cycle
4.7.4. Quantification of ROS
4.7.5. Quantification of Apoptotic Protein Expressions Using the Enzyme-Linked Immunosorbent Assay (ELISA)
4.8. Assessment of System Pharmacology
4.8.1. Screening of Active Ingredients from SP and Gathering Their Targets
4.8.2. Gathering of BC Target Genes and Prediction of Active Ingredients for BC Treatment
4.8.3. Constructing Protein–Protein Interaction Network
4.8.4. Evaluation of the Potential Targets’ Biological Functions
4.8.5. The Component–Target Pathway Network
4.8.6. Molecular Docking
4.9. Western Blot Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett. 2023, 10, 451. [Google Scholar]
- Laskar, Y.B.; Lourembam, R.M.; Mazumder, P.B. Herbal Remedies for Breast Cancer Prevention and Treatment. In Medicinal Plants-Use in Prevention and Treatment of Diseases; IntechOpen: London, UK, 2020. [Google Scholar]
- Feng, M.; Feng, C.; Yu, Z.; Fu, Q.; Ma, Z.; Wang, F.; Wang, F.; Yu, L. Histopathological alterations during breast carcinogenesis in a rat model induced by 7, 12-Dimethylbenz (a) anthracene and estrogen-progestogen combinations. Int. J. Clin. Exp. Med. 2015, 8, 346. [Google Scholar]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Birt, D.F.; Hendrich, S.; Wang, W. Dietary agents in cancer prevention: Flavonoids and isoflavonoids. Pharmacol. Therap. 2001, 90, 157–177. [Google Scholar] [CrossRef]
- Jung Park, E.; Pezzuto, J.M. Botanicals in cancer chemoprevention. Cancer Metastasis Rev. 2002, 21, 231–255. [Google Scholar] [CrossRef]
- Mirza-Aghazadeh-Attari, M.; Ekrami, E.M.; Aghdas, S.A.M.; Mihanfar, A.; Hallaj, S.; Yousefi, B.; Safa, A.; Majidinia, M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci. 2020, 255, 117481. [Google Scholar] [CrossRef]
- Shrivastava, N.; Iqbal, B.; Ali, J.; Baboota, S. Chemopreventive and Therapeutic Potential of Natural Agents and Their Combinations for Breast Cancer. In Discovery and Development of Anti-Breast Cancer Agents from Natural Products; Elsevier: Amsterdam, The Netherlands, 2021; pp. 231–281. [Google Scholar]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.d.A.A.; Pedro, A.C.; Rubio, F.T.V.; Brancod, I.G.; Haminiuk, C.W.I. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem. Mol. Sci. 2022, 5, 100134. [Google Scholar] [CrossRef]
- Gouda, M.M.; Tadda, M.A. Microalgae potentials as bioactive phytochemicals for human’s health: Novel highlights on their production, applications, and emerging analytical technologies. In Algal Biotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 377–408. [Google Scholar]
- Ashaolu, T.J.; Samborska, K.; Lee, C.C.; Tomas, M.; Capanoglu, E.; Tarhan, Ö.; Taze, B.; Jafari, S.M. Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. Int. J. Biol. Macromol. 2021, 193, 2320–2331. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Miranda, S.M.; Belo, I.; Spigno, G.; Teixeira, J.A.; Rocha, C.M. Sequential multi-stage extraction of biocompounds from Spirulina platensis: Combined effect of ohmic heating and enzymatic treatment. Innov. Food Sci. Emerg. Technol. 2021, 71, 102707. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, X.; Huang, W.; Li, C.; Wang, X.; Huang, B. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours. J. Photochem. Photobiol. B 2018, 180, 89–97. [Google Scholar] [CrossRef]
- Mapoung, S.; Arjsri, P.; Thippraphan, P.; Semmarath, W.; Yodkeeree, S.; Chiewchanvit, S.; Piyamongkol, W.; Limtrakul, P. Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblasts. S. Afr J. Bot. 2020, 130, 198–207. [Google Scholar] [CrossRef]
- Eleiwa, N.Z.; Galal, A.A.; Abd El-Aziz, R.M.; Hussin, E.M. Antioxidant activity of Spirulina platensis alleviates doxorubicin-induced oxidative stress and reprotoxicity in male rats. Orient. Pharm. Exp. Med. 2018, 18, 87–95. [Google Scholar] [CrossRef]
- Khafaga, A.F.; El-Sayed, Y.S. Spirulina ameliorates methotrexate hepatotoxicity via antioxidant, immune stimulation, and proinflammatory cytokines and apoptotic proteins modulation. Life Sci. 2018, 196, 9–17. [Google Scholar] [CrossRef]
- El-Atrsh, A.; Tousson, E.; Elnahas, E.E.; Massoud, A.; Al-Zubaidi, M. Ameliorative Effects of Spirulina and Chamomile Aqueous Extract against Mice Bearing Ehrlich Solid Tumor Induced Apoptosis. Asian Oncol. Res. J. 2019, 2, 25–41. [Google Scholar]
- Coué, M.; Tesse, A.; Falewée, J.; Aguesse, A.; Croyal, M.; Fizanne, L.; Chaigneau, J.; Boursier, J.; Ouguerram, K. Spirulina liquid extract protects against fibrosis related to non-alcoholic steatohepatitis and increases ursodeoxycholic acid. Nutrients 2019, 11, 194. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.; Miron, A.; Klímová, B.; Wan, D.; Kuča, K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: An overview. Arch. Toxicol. 2016, 90, 1817–1840. [Google Scholar] [CrossRef]
- Wu, L.C.; Ho, J.A.; Shieh, M.C.; Lu, I.W. Antioxidant and antiproliferative activities of Spirulina and Cholorella water extracts. J. Agric. Food Chem. 2005, 53, 4207–4212. [Google Scholar] [CrossRef]
- Abu Zaid, A.A.; Hammad, D.M.; Sharaf, E.M. Antioxidant and anticancer activity of Spirulina platensis water extracts. Int. J. Pharmacol. 2015, 11, 846–851. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Gao, X.; Carter, C.L.; Liu, Z.-R. The recombinant β subunit of C-phycocyanin inhibits cell proliferation and induces apoptosis. Cancer Lett. 2007, 247, 150–158. [Google Scholar] [CrossRef]
- Thangam, R.; Suresh, V.; Princy, W.A.; Rajkumar, M.; Senthilkumar, N.; Gunasekaran, P.; Rengasamy, R.; Anbazhagan, C.; Kaveri, K.; Kannan, S. C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0/G1 cell cycle arrest. Food Chem. 2013, 140, 262–272. [Google Scholar] [CrossRef]
- Li, B.; Chu, X.; Gao, M.; Li, W. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin. Acta Biochim. Biophys. Sin. 2010, 42, 80–89. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Liu, G.; Liu, H.; Zhu, F.; Ji, H.; Li, B. C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells. Cancer Cell Int. 2018, 18, 12. [Google Scholar] [CrossRef]
- Fayyad, R.J.; Mohammed Ali, A.; Dwaish, A.S.; Khayoon, A. Anticancer Activity of Spirulina platensis Methanolic Extracts against l20b and MCF7 Human Cancer Cell Lines. Plant Arch. 2019, 19, 1419–1426. [Google Scholar]
- Elkhateeb, W.; El-Sayed, H.; Fayad, W.; Al Kolaibe, A.G.; Emam, M.; Daba, G. In vitro Anti-breast cancer and antifungal Bio-efficiency of some microalgal extracts. Egypt. J. Aquatic Biol. Fish. 2020, 24, 263–279. [Google Scholar] [CrossRef]
- Czerwonka, A.; Kaławaj, K.; Sławińska-Brych, A.; Lemieszek, M.K.; Bartnik, M.; Wojtanowski, K.K.; Zdzisińska, B.; Rzeski, W. Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomed. Pharmacother. 2018, 106, 292–302. [Google Scholar] [CrossRef]
- Liao, G.; Gao, B.; Gao, Y.; Yang, X.; Cheng, X.; Ou, Y. Phycocyanin inhibits tumorigenic potential of pancreatic cancer cells: Role of apoptosis and autophagy. Sci. Rep. 2016, 6, 34564. [Google Scholar] [CrossRef]
- Tantirapan, P.; Suwanwong, Y. Anti-proliferative effects of C-phycocyanin on a human leukemic cell line and induction of apoptosis via the PI3K/AKT pathway. J. Chem. Pharm. Res. 2014, 6, 1295–1301. [Google Scholar]
- Ismail, M.F.; Ali, D.A.; Fernando, A.; Abdraboh, M.E.; Gaur, R.L.; Ibrahim, W.M.; Raj, M.H.; Ouhtit, A. Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina. Int. J. Biol. Sci. 2009, 5, 377. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, Y.I.; Shehata, A.M.; Fares, N.H.; Mahmoud, A.A. Spirulina inhibits hepatocellular carcinoma through activating p53 and apoptosis and suppressing oxidative stress and angiogenesis. Life Sci. 2021, 265, 118827. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Chiang, Y.-F.; Huang, C.-Y.; Shieh, T.-M.; Kao, C.; Chang, F.-K.; Huang, T.-C.; Ali, M.; Chang, H.-Y.; Hong, Y.-H. Spirulina phycocyanin extract and its active components suppress epithelial-mesenchymal transition process in endometrial cancer via targeting TGF-beta1/SMAD4 signaling pathway. Biomed. Pharmacother. 2022, 152, 113219. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, Z.; Lin, Q.; Xia, X.; Lin, Y.; Yan, J.; Huang, M.; Huang, R. Anti-colon cancer effects of Spirulina polysaccharide and its mechanism based on 3D models. Int. J. Biol. Macromol. 2023, 228, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Ouhtit, A.; Ismail, M.F.; Othman, A.; Fernando, A.; Abdraboh, M.E.; El-Kott, A.F.; Azab, Y.A.; Abdeen, S.H.; Gaur, R.L.; Gupta, I. Chemoprevention of rat mammary carcinogenesis by spirulina. Am. J. Pathol. 2014, 184, 296–303. [Google Scholar] [CrossRef]
- Mekky, R.H.; Contreras, M.d.M.; El-Gindi, M.R.; Abdel-Monem, A.R.; Abdel-Sattar, E.; Segura-Carretero, A. Profiling of phenolic and other compounds from Egyptian cultivars of chickpea (Cicer arietinum L.) and antioxidant activity: A comparative study. RSC Adv. 2015, 5, 17751–17767. [Google Scholar] [CrossRef]
- Mekky, R.H.; Abdel-Sattar, E.; Segura-Carretero, A.; Contreras, M.d.M. A comparative study on the metabolites profiling of linseed cakes from Egyptian cultivars and antioxidant activity applying mass spectrometry-based analysis and chemometrics. Food Chem. 2022, 395, 133524. [Google Scholar] [CrossRef] [PubMed]
- Mekky, R.H.; Abdel-Sattar, E.; Segura-Carretero, A.; Contreras, M.d.M. Phenolic Compounds from Sesame Cake and Antioxidant Activity: A New Insight for Agri-Food Residues’ Significance for Sustainable Development. Foods 2019, 8, 432. [Google Scholar] [CrossRef] [PubMed]
- Mekky, R.H.; Abdel-Sattar, E.; Segura-Carretero, A.; Contreras, M.d.M. Metabolic Profiling of the Oil of Sesame of the Egyptian Cultivar ‘Giza 32′ Employing LC-MS and Tandem MS-Based Untargeted Method. Foods 2021, 10, 298. [Google Scholar] [CrossRef]
- Eklund, P.C.; Backman, M.J.; Kronberg, L.Å.; Smeds, A.I.; Sjöholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectrom. 2008, 43, 97–107. [Google Scholar] [CrossRef]
- Qiao, J.; Lu, G.; Wu, G.; Liu, H.; Wang, W.; Zhang, T.; Xie, G.; Qin, M. Influence of different pretreatments and drying methods on the chemical compositions and bioactivities of Smilacis Glabrae Rhizoma. Chin. Med. 2022, 17, 54. [Google Scholar] [CrossRef]
- Du, Y.; Sun, J.; Gong, Q.; Wang, Y.; Fu, P.; Zhu, W. New α-pyridones with quorum-sensing inhibitory activity from diversity-enhanced extracts of a Streptomyces sp. derived from marine algae. J. Agric. Food Chem. 2018, 66, 1807–1812. [Google Scholar] [CrossRef]
- Horie, S.; Tsutsumi, S.; Takada, Y.; Kimura, J. Antibacterial Quinone Metabolites from the Brown Alga, Sargassum sagamianum. Bull. Chem. Soc. Jpn. 2008, 81, 1125–1130. [Google Scholar] [CrossRef]
- Saeed, N.M.; Ramadan, L.A.; El-Sabbagh, W.A.; Said, M.A.; Abdel-Rahman, H.M.; Mekky, R.H. Exploring the anti-osteoporosis potential of Petroselinum crispum (Mill.) Fuss extract employing experimentally ovariectomized rat model and network pharmacology approach. Fitoterapia 2024, 175, 105971. [Google Scholar] [CrossRef] [PubMed]
- Tej, A.; Mekky, R.H.; Contreras, M.d.M.; Feriani, A.; Tir, M.; L’Taief, B.; Alshaharni, M.O.; Faidi, B.; Mnafgui, K.; Abbes, Z.; et al. Eucalyptus torquata seeds: Investigation of phytochemicals profile via LC-MS and its potential cardiopreventive capacity in rats. Food Biosci. 2024, 59, 103666. [Google Scholar] [CrossRef]
- Fayek, N.M.; Mekky, R.H.; Dias, C.N.; Kropf, M.; Heiss, A.G.; Wessjohann, L.A.; Farag, M.A. UPLC-MS Metabolome-Based Seed Classification of 16 Vicia Species: A Prospect for Phyto-Equivalency and Chemotaxonomy of Different Accessions. J. Agric. Food Chem. 2021, 69, 5252–5266. [Google Scholar] [CrossRef] [PubMed]
- Ötleş, S.; Pire, R. Fatty Acid Composition of Chlorella and Spirulina Microalgae Species. J. AOAC Int. 2019, 84, 1708–1714. [Google Scholar] [CrossRef]
- Terezinha Schneider, A.; Costa Deprá, M.; Rodrigues Dias, R.; Queiroz Zepka, L.; Jacob-Lopes, E. Chapter 5—Microalgae as superfood. In Algae Materials; Arunkumar, K., Arun, A., Raja, R., Palaniappan, R., Eds.; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar]
- Allaoua, Z.; Benkhaled, M.; Dibi, A.; Long, C.; Aberkane, M.C.; Bouzidi, S.; Kassah-Laouar, A.; Haba, H. Chemical composition, antioxidant and antibacterial properties of Pteranthus dichotomus from Algerian Sahara. Nat. Prod. Res. 2016, 30, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.L.; Mular, L.; Drenkard, E.J.; Shearer, T.L.; Engel, S.; Fredericq, S.; Fairchild, C.R.; Prudhomme, J.; Le Roch, K.; Hay, M.E.; et al. Ecological leads for natural product discovery: Novel sesquiterpene hydroquinones from the red macroalga Peyssonnelia sp. Tetrahedron 2010, 66, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R. Experimental basis for the prevention of breast cancer. Eur. J. Cancer 2000, 36, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Costa, I.; Solanas, M.; Escrich, E. Histopathologic characterization of mammary neoplastic lesions induced with 7, 12 dimethylbenz (α) anthracene in the rat: A comparative analysis with human breast tumors. Arch. Pathol. Lab. Med. 2002, 126, 915–927. [Google Scholar] [CrossRef]
- Al-Dhaheri, W.S.; Hassouna, I.; Al-Salam, S.; Karam, S.M. Characterization of breast cancer progression in the rat. Ann. N. Y. Acad. Sci. 2008, 1138, 121–131. [Google Scholar] [CrossRef]
- Devi, G.R.; Allensworth, J.L.; Evans, M.K.; Sauer, S.J. The role of oxidative stress in breast cancer. In Cancer; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–14. [Google Scholar]
- Hamza, A.A.; Khasawneh, M.A.; Elwy, H.M.; Hassanin, S.O.; Elhabal, S.F.; Fawzi, N.M. Salvadora persica attenuates DMBA-induced mammary cancer through downregulation oxidative stress, estrogen receptor expression and proliferation and augmenting apoptosis. Biomed. Pharmacother. 2022, 147, 112666. [Google Scholar] [CrossRef]
- Vera-Ramirez, L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Granados-Principal, S.; Lorente, J.A.; Quiles, J.L. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies. Crit. Rev. Oncol. Hematol. 2011, 80, 347–368. [Google Scholar] [CrossRef]
- Karnam, K.C.; Ellutla, M.; Bodduluru, L.N.; Kasala, E.R.; Uppulapu, S.K.; Kalyankumarraju, M.; Lahkar, M. Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats. Biomed. Pharmacother. 2017, 92, 207–214. [Google Scholar] [CrossRef]
- Kumar, V.; Sachan, R.; Rahman, M.; Rub, R.A.; Patel, D.K.; Sharma, K.; Gahtori, P.; Al-Abbasi, F.; Alhayyani, S.; Anwar, F. Chemopreventive effects of Melastoma malabathricum L. extract in mammary tumor model via inhibition of oxidative stress and inflammatory cytokines. Biomed. Pharmacother. 2021, 137, 111298. [Google Scholar] [CrossRef]
- Jurikova, M.; Danihel, Ľ.; Polák, Š.; Varga, I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem. 2016, 118, 544–552. [Google Scholar] [CrossRef]
- Maru, G.B.; Hudlikar, R.R.; Kumar, G.; Gandhi, K.; Mahimkar, M.B. Understanding the molecular mechanisms of cancer prevention by dietary phytochemicals: From experimental models to clinical trials. World J. Biol. Chem. 2016, 7, 88. [Google Scholar] [CrossRef]
- Ehemann, V.; Sykora, J.; Vera-Delgado, J.; Lange, A.; Otto, H.F. Flow cytometric detection of spontaneous apoptosis in human breast cancer using the TUNEL-technique. Cancer Lett. 2003, 194, 125–131. [Google Scholar] [CrossRef]
- Mandal, A.; Bishayee, A. Mechanism of breast cancer preventive action of pomegranate: Disruption of estrogen receptor and Wnt/β-catenin signaling pathways. Molecules 2015, 20, 22315–22328. [Google Scholar] [CrossRef]
- Fidianingsih, I.; Aryandono, T.; Widyarini, S.; Herwiyanti, S. Profile of Histopathological Type and Molecular Subtypes of Mammary Cancer of DMBA-induced Rat and its Relevancy to Human Breast Cancer. Open Access Maced. J. Med. Sci. 2022, 10, 71–78. [Google Scholar] [CrossRef]
- Najem, A.; Abed, I.; Fadhel, L. Assessment the activity of spirulina platensis alcoholic extract in MCF-7 breast cancer cells inhibition and P-53 gene induction. Public Health 2021, 24, 442–449. [Google Scholar] [CrossRef]
- Lalier, L.; Cartron, P.-F.; Juin, P.; Nedelkina, S.; Manon, S.; Bechinger, B.; Vallette, F.M. Bax activation and mitochondrial insertion during apoptosis. Apoptosis 2007, 12, 887–896. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, S.; Choon-Nam, O.; Shen, H.-M. Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem. Pharmacol. 2006, 72, 132–144. [Google Scholar] [CrossRef]
- Wu, C.-C.; Bratton, S.B. Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxid. Redox Signal 2013, 19, 546–558. [Google Scholar] [CrossRef]
- Musa, M.A.; Cooperwood, J.S.; Khan, M.O.F. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem. 2008, 15, 2664–2679. [Google Scholar] [CrossRef]
- Cunha, N.L.; Teixeira, G.M.; Martins, T.D.; Souza, A.R.; Oliveira, P.F.; Símaro, G.V.; Rezende, K.C.S.; dos Santos Gonçalves, N.; Souza, D.G.; Tavares, D.C. (−)-Hinokinin induces G2/M arrest and contributes to the antiproliferative effects of doxorubicin in breast cancer cells. Planta Med. 2016, 82, 530–538. [Google Scholar] [CrossRef]
- Imai, M.; Yokoe, H.; Tsubuki, M.; Takahashi, N. Growth inhibition of human breast and prostate cancer cells by cinnamic acid derivatives and their mechanism of action. Biol. Pharm. Bull. 2019, 42, 1134–1139. [Google Scholar] [CrossRef]
- Shi, F.; Li, Y.; Han, R.; Fu, A.; Wang, R.; Nusbaum, O.; Qin, Q.; Chen, X.; Hou, L.; Zhu, Y. Valerian and valeric acid inhibit growth of breast cancer cells possibly by mediating epigenetic modifications. Sci. Rep. 2021, 11, 2519. [Google Scholar] [CrossRef]
- Huang, W.; Guo, X.; Wang, C.; Alzhan, A.; Liu, Z.; Ma, X.; Shu, Q. α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase. J. Funct. Foods 2022, 92, 105041. [Google Scholar] [CrossRef]
- Sun, J.-Y.; Zhu, M.-Z.; Wang, S.-W.; Miao, S.; Xie, Y.-H.; Wang, J.-B. Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine. Phytomedicine 2007, 14, 353–359. [Google Scholar] [CrossRef]
- Sun, L.; Jin, X.; Xie, L.; Xu, G.; Cui, Y.; Chen, Z. Swainsonine represses glioma cell proliferation, migration and invasion by reduction of miR-92a expression. BMC Cancer 2019, 19, 247. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Kefali, E.; Piperigkou, Z.; Bassiony, H.; Karamanos, N.K. Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell. Signal. 2018, 51, 99–109. [Google Scholar] [CrossRef]
- Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26, 3291–3310. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; López, J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef]
- Guo, J.-R.; Li, W.; Wu, Y.; Wu, L.-Q.; Li, X.; Guo, Y.-F.; Zheng, X.-H.; Lian, X.-L.; Huang, H.-F.; Chen, Y.-Z. Hepatocyte growth factor promotes proliferation, invasion, and metastasis of myeloid leukemia cells through PI3K-AKT and MAPK/ERK signaling pathway. Am. J. Transl. Res. 2016, 8, 3630. [Google Scholar]
- Lucas, R.M.; Luo, L.; Stow, J.L. ERK1/2 in immune signalling. Biochem. Soc. Trans. 2022, 50, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Mazo, V.K.; Gmoshinskii, I.V.; Zilova, I.S. Microalgae Spirulina in human nutrition. Vopr. Pitan. 2004, 73, 45–53. [Google Scholar]
- Tewari, D.; Patni, P.; Bishayee, A.; Sah, A.N.; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol. 2022, 80, 1–17. [Google Scholar] [CrossRef]
- Yu, L.; Wei, J.; Liu, P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol. 2022, 85, 69–94. [Google Scholar] [CrossRef]
- Gil, E.M.C. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat. Rev. 2014, 40, 862–871. [Google Scholar]
- Liu, R.H.; Liu, J.; Chen, B. Apples prevent mammary tumors in rats. J. Agric. Food Chem. 2005, 53, 2341–2343. [Google Scholar] [CrossRef] [PubMed]
- Kuhad, A.; Tirkey, N.; Pilkhwal, S.; Chopra, K. Effect of Spirulina, a blue green algae, on gentamicin-induced oxidative stress and renal dysfunction in rats. Fundam. Clin. Pharmacol. 2006, 20, 121–128. [Google Scholar] [CrossRef]
- Karadeniz, A.; Yildirim, A.; Simsek, N.; Kalkan, Y.; Celebi, F. Spirulina platensis protects against gentamicin-induced nephrotoxicity in rats. Phytother. Res. 2008, 22, 1506–1510. [Google Scholar] [CrossRef] [PubMed]
- Sinanoglu, O.; Yener, A.N.; Ekici, S.; Midi, A.; Aksungar, F.B. The protective effects of spirulina in cyclophosphamide induced nephrotoxicity and urotoxicity in rats. Urology 2012, 80, 1392.e1391–1392.e1396. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cao, D. Studies of the pharmacology and toxicology of Spirulina maxima (SMNJU. 02). In Proceedings of the Algae and Their Biotechnological Potential: Proceedings of the 4th Asia-Pacific Conference on Algal Biotechnology, Hong Kong, China, 3–6 July 2000; pp. 233–250. [Google Scholar]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef]
- Yousefi, R.; Saidpour, A.; Mottaghi, A. The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review. Complement. Ther. Med. 2019, 42, 137–144. [Google Scholar] [CrossRef]
- Buettner, G.; Jurkiewicz, B. Chemistry and biochemistry of ascorbic acid. In Handbook of Antioxidants; Marcel Dekker: New York, NY, USA, 1996; pp. 91–115. [Google Scholar]
- Gerard-Monnier, D.; Erdelmeier, I.; Regnard, K.; Moze-Henry, N.; Yadan, J.C.; Chaudiere, J. Reaction of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals.Analytical applications to a colorimetric assay of lipid peroxidation. Chem. Res. Toxicol. 1998, 11, 1176–1183. [Google Scholar] [CrossRef]
- Reznick, A.Z.; Packer, L. Oxidative damage to proteins: Spectrophotometric method for carbonyl assay. Methods Enzymol. 1994, 233, 357–363. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of (antioxidant power): The FRAP assay. Anal. Biochem. 1996, 293, 70–76. [Google Scholar] [CrossRef]
- Nandi, A.; Chatterjee, I. Assay of superoxide dismutase activity in animal tissues. J. Biosci. 1988, 13, 305–315. [Google Scholar] [CrossRef]
- Aebi, H. Catalase. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Peterson, G.L. A simplification of the protein assay method of lowry et al. which is more generally applicable. Anal. Biochem. 1977, 83, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Russo, J.; Russo, I.H.; Rogers, A.E.; Van Zwieten, M.J.; Gusterson, B.A. Tumours of the mammary gland. In Pathology of Tumours in Laboratory Animals; Turusov, V.S., Mohr, U., Eds.; IARC Scientific Publication N99: Lyon, France, 1990; Volume 1, pp. 47–78. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Xu, X.-Y.; Nie, X.-C.; Ma, H.-Y.; Song, G.-Q.; Zhang, X.-T.; Jin, Y.-N.; Yu, Y.-Q. Flow cytometry method analysis of apoptosis: No significant difference between EDTA and EDTA-free trypsin treatment procedure. Technol. Cancer Res. Treat. 2015, 14, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Cheng, T.; He, S.; Thiessen, P.A.; Li, Q.; Gindulyte, A.; Bolton, E.E. PubChem Protein, Gene, Pathway, and Taxonomy data collections: Bridging biology and chemistry through Target-Centric Views of PubChem data. J. Mol. Biol. 2022, 434, 167514. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 2007, 36, D684–D688. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.U.Z.; Trivedi, V. Molecular modelling, docking and network analysis of phytochemicals from Haritaki churna: Role of protein cross-talks for their action. J. Biomol. Struct. Dyn. 2024, 42, 4297–4312. [Google Scholar]
- Pang, T.; Liu, C.; Yao, J.; Li, J.; Li, Z.; Lou, H.; Lei, S.; Zhang, J.; Dong, L.; Wang, Y. Mechanisms of the Bushen Huoxue formula in the treatment of osteoarthritis based on network pharmacology-molecular targets. Medicine 2022, 101, e29345. [Google Scholar]
- Abou-Taleb, H.A.; Sayed, A.M.; Refaat, H.; Alsenani, F.; Alaaeldin, E.; Mokhtar, F.A.; Abdelmohsen, U.R.; Shady, N.H. Network pharmacological analysis of the red sea sponge hyrtios erectus extract to reveal anticancer efficacy of corresponding loaded niosomes. Mar. Drugs 2022, 20, 628. [Google Scholar] [CrossRef] [PubMed]
- Fonseka, P.; Pathan, M.; Chitti, S.V.; Kang, T.; Mathivanan, S. FunRich enables enrichment analysis of OMICs datasets. J. Mol. Biol. 2021, 433, 166747. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yang, S.; Tai, W.C.S.; Zhang, L.; Zhou, Y.; Cho, W.C.S.; Chan, L.W.C.; Wong, S.C.C. Bioinformatics Identification of Regulatory Genes and Mechanism Related to Hypoxia-Induced PD-L1 Inhibitor Resistance in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 8720. [Google Scholar] [CrossRef] [PubMed]
- Said, M.A.; Albohy, A.; Abdelrahman, M.A.; Ibarhim, H.S. Remdesivir analog as SARS-CoV-2 polymerase inhibitor: Virtual screening of a database generated by scaffold replacement. RSC Adv. 2022, 12, 22448–22457. [Google Scholar] [CrossRef] [PubMed]
- Said, M.A.; Albohy, A.; Abdelrahman, M.A.; Ibrahim, H.S. Importance of glutamine 189 flexibility in SARS-CoV-2 main protease: Lesson learned from in silico virtual screening of ChEMBL database and molecular dynamics. Eur. J. Pharm. Sci. 2021, 160, 105744. [Google Scholar] [CrossRef]
Mammary Gland Pathology | Control | SP | DMBA | SP + DMBA |
---|---|---|---|---|
Epithelial dysplasia of ducts | 0 | 0 | 25.00 ± 0.26% * | 0 |
Fibroadenoma | 0 | 0 | 12.00 ± 0.31% * | 4.0 ± 0.50% * # |
Atypical lobular hyperplasia | 0 | 0 | 55.00 ± 0.26% * | 3.50 ± 0.76% * # |
Ductal carcinoma in situ | 0 | 0 | 8.00 ± 0.26% * | 0 |
Parameters | Control | SP | DMBA | SP + DMBA |
---|---|---|---|---|
MDA | 0.25 ± 0.01 | 0.26 ± 0.02 | 0.31 ± 0.02 * | 0.25 ± 0.03 # |
P. Carbonyl | 0.65± 0.07 | 0.75 ± 0.04 | 2.11 ± 0.09 * | 0.67 ± 0.053 # |
TAC | 46.82 ± 0.53 | 47.79 ± 1.09 | 38.57 ± 0.23 * | 46.12± 0.77 # |
CAT | 17.48 ±0.18 | 18.61 ±0.51 | 15.67 ±0.21 * | 17.55± 0.51 # |
SOD | 10.35 ± 0.16 | 10.18 ± 0.19 | 3.30 ± 0.43 * | 7.90 ± 0.76 # |
# | RT (min) | Experimental m/z a [M-H]− | Experimental m/z a [M+H]+ | Ionization Mode | Molecular Formula | Score | Error (mDa) | Main Fragments | DBE | Proposed Compound | Peak Area | % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.17 | 116.0725 | 118.0874 | N/P | C5H11NO2 | 95.75 | −0.76 | 99.0115, 87.0750, 73.0812, 59.0152, 55.0185 | 1 | Valine | 1.07 × 106 | 1.59 |
2 | 2.41 | 130.0875 | 132.1031 | N/P | C6H13NO2 | 87.52 | −0.09 | 112.9869 | 1 | Leucine/Isoleucine I | 1.70 × 105 | 0.25 |
3 | 2.64 | 103.0410 | N | C4H8O3 | 81.38 | −0.97 | 59.0146 | 1 | Hydroxybutanoic acid I | 2.36 × 105 | 0.35 | |
4 | 2.87 | 130.0882 | 132.1030 | N/P | C6H13NO2 | 94.91 | −0.91 | 112.9870 | 1 | Leucine/Isoleucine II | 5.86 × 105 | 0.88 |
5 | 2.99 | 103.0412 | N | C4H8O3 | 79.77 | −1.10 | 59.0146 | 1 | Hydroxybutanoic acid II | 1.53 × 105 | 0.23 | |
6 | 3.23 | 103.0412 | N | C4H8O3 | 81.48 | −0.93 | 59.0154 | 1 | Hydroxybutanoic acid III | 8.83 × 104 | 0.13 | |
7 | 3.46 | 164.0725 | 166.0873 | N/P | C9H11NO2 | 79.58 | −0.57 | 147.0459, 103.0565 | 5 | Phenylalanine | 6.59 × 105 | 0.99 |
8 | 4.87 | 203.0840 | 205.0980 | N/P | C11H12N2O2 | 75.57 | −1.13 | 159.0920, 142.0648, 116.0511 | 7 | Tryptophan | 4.79 × 104 | 0.07 |
9 | 5.34 | 117.0563 | N | C5H10O3 | 75.68 | 0.06 | 59.0121 | 1 | Hydroxyvaleric acid | 3.35 × 105 | 0.50 | |
10 | 7.26 | 219.0535 | N | C9H8N4O3 | 79.04 | −1.22 | 176.0481, 163.0311, 148.0512, | 8 | 6-Propionyllumazine | 1.87 × 105 | 0.28 | |
11 | 7.46 | 172.0990 | 174.1121 | N/P | C8H15NO3 | 81.90 | −0.06 | 130.0864, 128.1065, 102.0569 | 2 | Swainsonine | 2.48 × 105 | 0.37 |
12 | 8.17 | 172.0983 | 174.1118 | N/P | C8H15NO3 | 86.61 | −0.43 | 130.0876 | 2 | Acetyl leucine/Isoleucine I | 1.33 × 105 | 0.20 |
13 | 8.52 | 172.0992 | 174.1125 | N/P | C8H15NO3 | 90.64 | −1.24 | 130.0879 | 2 | Acetyl leucine/Isoleucine II | 1.55 × 105 | 0.23 |
14 | 8.99 | 353.1032 | 355.1114 | N/P | C20H18O6 | 99.13 | −0.08 | 334.6895, 187.0386, 165.0562 | 12 | Hinokinin | 4.33 × 105 | 0.65 |
15 | 9.11 | 165.0579 | 167.0710 | N/P | C9H10O3 | 93.32 | −1.14 | 121.0661, 93.0351 | 5 | p-Dihydrocoumaric acid | 8.67 × 106 | 12.96 |
16 | 10.5 | 101.0616 | 103.0762 | N/P | C5H10O2 | 94.98 | −0.81 | 59.0121 | 1 | Valeric/Isovaleric acid I | 2.84 × 106 | 4.25 |
17 | 11 | 101.0616 | N | C5H10O2 | 81.92 | −0.81 | 59.0121 | 1 | Valeric/Isovaleric acid II | 6.11 × 105 | 0.91 | |
18 | 11.69 | 200.1305 | N | C10H19NO3 | 79.00 | −1.29 | 130.09 | 2 | N-butyryl-Leucine/Isoleiucine I | 1.76 × 105 | 0.26 | |
19 | 12.04 | 200.1301 | N | C10H19NO3 | 95.68 | −0.93 | 130.09 | 2 | N-butyryl-Leucine/Isoleiucine II | 2.07 × 105 | 0.31 | |
20 | 12.28 | 200.1301 | N | C10H19NO3 | 82.58 | −0.98 | 116.0724, 102.0569 | 2 | N-valeryl-valine | 1.01 × 105 | 0.15 | |
21 | 13.6 | 115.0773 | 117.0919 | N/P | C6H12O2 | 94.85 | −0.88 | 59.02 | 1 | Butyl acetate | 3.34 × 106 | 5.00 |
22 | 13.7 | 197.0805 | N | C10H14O4 | 81.43 | 1.47 | 135.0103, 115.0770, 97.0737 | 4 | Germicidin M | 7.39 × 105 | 1.10 | |
23 | 14.3 | 149.0618 | 151.0762 | N/P | C9H10O2 | 94.48 | −0.96 | 105.0711, 77.0012 | 5 | Dihydrocinammic acid | 1.30 × 107 | 19.40 |
24 | 16.51 | 262.1456 | N | C15H21NO3 | 97.38 | −0.74 | 164.00 | 6 | N-caproylphenylalanine | 3.44 × 105 | 0.51 | |
25 | 22.39 | 366.2657 | N | C21H37NO4 | 86.55 | −1.13 | 88.0416 | 4 | N-Linoleoyl serine I | 1.50 × 105 | 0.22 | |
26 | 22.62 | 366.2663 | N | C21H37NO4 | 76.36 | −1.02 | 88.0415 | 4 | N-Linoleoyl serine II | 4.45 × 104 | 0.07 | |
27 | 22.86 | 293.2139 | N | C18H30O3 | 89.8 | −1.73 | 275.2024, 231.2131 | 4 | Hydroxylinolenic acid I | 2.24 × 105 | 0.33 | |
28 | 22.97 | 369.2087 | N | C23H30O4 | 92.42 | −1.53 | 352.8626, 227.0032, 198.7446 | 9 | Peyssonoic acid B | 1.19 × 105 | 0.18 | |
29 | 23.09 | 366.2663 | N | C21H37NO4 | 85.53 | −1.49 | 88.0416 | 4 | N-Linoleoyl serine III | 7.66 × 104 | 0.11 | |
30 | 23.33 | 269.2139 | N | C16H30O3 | 85.75 | −1.73 | 251.2019, 209.0007 | 2 | Oxopalmitic acid | 1.70 × 105 | 0.25 | |
31 | 23.45 | 293.2137 | N | C18H30O3 | 89.88 | −1.57 | 275.2046, | 4 | Hydroxylinolenic acid II | 1.91 × 105 | 0.28 | |
32 | 23.78 | 295.2291 | N | C18H32O3 | 93.98 | −1.3 | 277.2177, 217.0039 | 3 | Hydroxylinoleic acid I | 2.11 × 105 | 0.32 | |
33 | 23.92 | 293.2134 | 295.2259 | N/P | C18H30O3 | 87.97 | −1.47 | 275.2030, 231.2128 | 4 | Hydroxylinolenic acid III | 3.12 × 105 | 0.47 |
34 | 24.15 | 293.2137 | 295.2262 | N/P | C18H30O3 | 77.56 | −1.56 | 275.2027, 231.2066 | 4 | Hydroxylinolenic acid IV | 4.08 × 105 | 0.61 |
35 | 24.62 | 293.2134 | N | C18H30O3 | 80.96 | −1.21 | 275.2018, 231.2120 | 4 | Hydroxylinolenic acid V | 5.76 × 105 | 0.86 | |
36 | 24.62 | 295.2279 | N | C18H32O3 | 92.6 | −0.21 | 277.2214, 217.0071 | 3 | Hydroxylinoleic acid II | 6.76 × 104 | 0.10 | |
37 | 24.98 | 295.2291 | 297.2435 | N/P | C18H32O3 | 93.52 | −1.15 | 277.2170, 217.0068 | 3 | Hydroxylinoleic acid III | 5.24 × 105 | 0.78 |
38 | 25.09 | 293.2136 | 295.2255 | N/P | C18H30O3 | 79.27 | −1.42 | 275.2027, 231.2120 | 4 | Hydroxylinolenic acid VI | 2.13 × 105 | 0.32 |
39 | 25.33 | 295.2289 | N | C18H32O3 | 94.84 | −1.15 | 277.2169, 217.0011 | 3 | Hydroxylinoleic acid IV | 8.34 × 105 | 1.25 | |
40 | 25.80 | 295.2291 | 297.2435 | N/P | C18H32O3 | 80.66 | −1.24 | 277.2182, 217.0044 | 3 | Hydroxylinoleic acid V | 6.18 × 105 | 0.92 |
41 | 25.92 | 355.2295 | N | C23H32O3 | 90.61 | −1.79 | 193.2759, 179.1080, 163.1136 | 8 | Dihyroetretinate I | 5.03 × 105 | 0.75 | |
42 | 26.15 | 293.2137 | 295.2282 | N/P | C18H30O3 | 78.75 | −1.36 | 275.1995, 231.2088 | 4 | Hydroxylinolenic acid VII | 4.45 × 106 | 6.66 |
43 | 26.15 | 555.2865 | N | C25H48O11S | 90.82 | −1.88 | 499.0104, 436.8754, 418.8524, 401.0186, 225.0091 | 2 | 1-O-Palmitoyl−3-O-(6-sulfo−6-deoxy-alpha-D-glucopyranosyl)-L-glycerol | 1.05 × 106 | 1.58 | |
44 | 26.27 | 297.2448 | 299.2594 | N/P | C18H34O3 | 93.4 | −1.23 | 279.2339, 217.0036 | 2 | Hydroxyoleic acid I | 1.46 × 105 | 0.22 |
45 | 26.62 | 297.2448 | 299.2583 | N/P | C18H34O3 | 93.95 | −1.3 | 279.2358, 217.0038 | 2 | Hydroxyoleic acid II | 3.44 × 105 | 0.51 |
46 | 26.97 | 293.2130 | 295.2279 | N/P | C18H30O3 | 83.16 | −0.84 | 275.1982, 230.9760 | 4 | Hydroxylinolenic acid VIII | 3.11 × 105 | 0.47 |
47 | 27.09 | 297.2450 | 299.2594 | N/P | C18H34O3 | 93.38 | −1.31 | 279.2355, 217.0031 | 2 | Hydroxyoleic acid III | 5.23 × 105 | 0.78 |
48 | 28.03 | 295.2291 | 297.2442 | N/P | C18H32O3 | 79.69 | −1.3 | 277.2203, 217.0050 | 3 | Hydroxylinoleic acid VI | 1.52 × 105 | 0.23 |
49 | 28.38 | 353.2138 | N | C23H30O3 | 91.38 | −1.6 | 177.0907, 163.1124 | 9 | Etretinate | 7.47 × 105 | 1.12 | |
50 | 28.85 | 297.2444 | 299.2590 | N/P | C18H34O3 | 82.02 | −0.82 | 217.0027 | 2 | Hydroxyoleic acid IV | 1.29 × 105 | 0.19 |
51 | 28.97 | 397.2401 | 399.2443 | N/P | C25H34O4 | 95.02 | 0.43 | 337.2188 | 9 | (7E,12E/Z,20Z,18S)-Variabilin | 2.04 × 105 | 0.30 |
52 | 30.50 | 355.2292 | 357.2442 | N/P | C23H32O3 | 84.92 | −1.87 | 179.1108 | 8 | Dihyroetretinate II | 1.26 × 105 | 0.19 |
53 | 30.74 | 277.2186 | N | C18H30O2 | 79.66 | −1.22 | N.D. | 4 | Linolenic acid I | 4.39 × 104 | 0.07 | |
54 | 30.97 | 277.2192 | 279.2332 | N/P | C18H30O2 | 88.5 | −1.79 | 259.2083, 233.2274 | 4 | Linolenic acid II | 3.63 × 106 | 5.43 |
55 | 31.32 | 277.2188 | 279.2328 | N/P | C18H30O2 | 92.13 | −1.44 | 259.2055, 233.2272 | 4 | Linolenic acid III | 1.26 × 106 | 1.89 |
56 | 31.44 | 339.2352 | N | C23H32O2 | 86.38 | −2.18 | 163.1135 | 8 | 2,2′-Bis(4-methyl6-tert-butylphenol) methane | 6.17 × 106 | 9.23 | |
57 | 31.68 | 453.2282 | N | C27H34O6 | 95.02 | 0.43 | N.D. | 11 | Chromequinolide | 3.29 × 105 | 0.49 | |
58 | 31.79 | 277.2186 | N | C18H30O2 | 93.55 | −1.99 | N.D. | 4 | Linolenic acid IV | 9.82 × 105 | 1.47 | |
59 | 31.9 | 253.2186 | N | C16H30O2 | 93.88 | −1.26 | 209.1569 | 2 | Palmitoleic acid I | 1.38 × 106 | 2.06 | |
60 | 32.3 | 253.2185 | N | C16H30O2 | 81.08 | 1.22 | 190.167 | 2 | Palmitoleic acid II | 9.43 × 105 | 1.41 | |
61 | 32.62 | 279.2344 | N | C18H32O2 | 92.07 | −1.42 | 261.2208, 200.8727 | 3 | Linoleic acid I | 1.49 × 106 | 2.23 | |
62 | 33.20 | 279.2343 | N | C18H32O2 | 93.63 | −1.32 | 261.2161 | 3 | Linoleic acid II | 1.62 × 106 | 2.41 | |
63 | 34.03 | 255.2336 | N | C16H32O2 | 85.46 | −0.58 | 236.9892 | 1 | Palmitic acid I | 6.40 × 104 | 0.10 | |
64 | 34.50 | 255.2336 | N | C16H32O2 | 97.14 | −0.43 | 226.9553 | 1 | Palmitic acid II | 2.58 × 105 | 0.39 | |
65 | 34.61 | 281.2495 | N | C18H34O2 | 94.8 | −0.99 | 262.3939 | 2 | Oleic acid I | 2.84 × 105 | 0.42 | |
66 | 34.97 | 281.2490 | N | C18H34O2 | 98.15 | −0.43 | 262.6257 | 2 | Oleic acid II | 3.23 × 105 | 0.48 | |
67 | 37.44 | 283.2652 | N | C18H36O2 | 83 | −0.91 | 262.6257 | 1 | Stearic acid | 1.70 × 105 | 0.25 |
Active Metabolites PubChem Id (CID) | Target Enzymes | Binding Score kcal/mol | Key Amino Acid Residues | Type of Binding | Two-Dimensional Representation |
---|---|---|---|---|---|
442879 | EGFR | −6.2373 | Lys745 CSO797 | Hydrophobic H-Bonding | |
5312775 | EGFR | −6.1899 | Lys745 Glu762 Asp855 | H-Bonding H-Bonding H-Bonding | |
51683 | PI3K | −5.1383 | Asp810 Asp933 Lys802 | H-Bonding, Ionic H-Bonding H-Bonding | |
129846263 | PI3K | −4.8623 | Lys802 Tyr836 | H-Bonding, Ionic H-Bonding | |
5312775 | ERK | −4.9854 | Ser170 Asn171 Lys168 Ala52 | H-Bonding H-Bonding H-Bonding H-Bonding | |
46178008 | ERK | −4.8738 | Lys168 Asp184 Glu50 | 2 H-Bonding H-Bonding Hydrophobic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanin, S.O.; Hegab, A.M.M.; Mekky, R.H.; Said, M.A.; Khalil, M.G.; Hamza, A.A.; Amin, A. Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer. Mar. Drugs 2024, 22, 328. https://doi.org/10.3390/md22070328
Hassanin SO, Hegab AMM, Mekky RH, Said MA, Khalil MG, Hamza AA, Amin A. Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer. Marine Drugs. 2024; 22(7):328. https://doi.org/10.3390/md22070328
Chicago/Turabian StyleHassanin, Soha Osama, Amany Mohammed Mohmmed Hegab, Reham Hassan Mekky, Mohamed Adel Said, Mona G. Khalil, Alaaeldin Ahmed Hamza, and Amr Amin. 2024. "Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer" Marine Drugs 22, no. 7: 328. https://doi.org/10.3390/md22070328
APA StyleHassanin, S. O., Hegab, A. M. M., Mekky, R. H., Said, M. A., Khalil, M. G., Hamza, A. A., & Amin, A. (2024). Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer. Marine Drugs, 22(7), 328. https://doi.org/10.3390/md22070328