Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs
Abstract
:1. Introduction
2. Chemical Constitution
2.1. Sesquiterpenoids (1–48)
2.1.1. Linear Sesquiterpenoid
2.1.2. Nardosinane-Type Sesquiterpenes
2.1.3. Neolemnane Sesquiterpenes and Aristolane-Type Sesquiterpenoids
2.1.4. Drimane Sesquiterpenes
2.1.5. Carotane-Style Sesquiterpenoids
2.1.6. Illudalane Sesquiterpenoids
2.1.7. Merosesquiterpenoids
2.1.8. Bisabolane-Type Phenolic Sesquiterpenoids
2.1.9. Sesquiterpene-Derived Compounds
2.1.10. Others Sesquiterpenoids
2.2. Diterpenoids (49–87)
2.2.1. 5,5,6,6,5-Pentacyclic Spongian Diterpenes
2.2.2. Indole Diterpenes
2.2.3. Cembrane Diterpenes
2.2.4. Cyclopiane Diterpenes
2.2.5. Diterpene Alkaloids
2.2.6. Bicyclic Diterpene Glycosides
2.2.7. Biflorane-Type Diterpenoids
2.2.8. Decalin-Type Bicyclic Diterpenes
2.3. Triterpenoids (88–107)
2.3.1. Isomalabaricane Terpenoids
2.3.2. Fusicane-Type Nortriterpenoids
2.4. Meroterpenoids (108–141)
2.4.1. Drimane-Type Meroterpenoid
2.4.2. α-Pyrone Meroterpenoids
2.4.3. Spiromeroterpenoids
2.4.4. Andrastin-Type Meroterpenoids
2.4.5. Chlorinated Meroterpenoids
2.4.6. 3,5-Dimethylorsellinic Acid-Based Meroterpenoid
2.4.7. Meroterpenoid-Type Alkaloid
3. Antibacterial and/or Antifungal Activity
3.1. Sesquiterpenoids
3.2. Diterpenoids
3.3. Triterpenoids
3.4. Meroterpenoids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SAR | structure–activity relationships |
MIC | minimum inhibitory concentration |
VRE | vancomycin-resistant Enterococcus faecalis |
MRSA | methicillin-resistant Staphylococcus aureus |
K. pneumoniae | Klebsiella pneumoniae |
A. baumannii | Acinetobacter baumannii |
P. aeruginosa | Pseudomonas aeruginosa |
E. coli | Escherichia coli |
PRSP | penicillin-resistant Streptococcus pneumoniae |
XDR | extensively drug-resistant |
NMR | nuclear magnetic resonance |
MS | mass spectroscopic |
QM | quantum mechanics |
TDDFT | time-dependent density functional theory |
ECD | electronic circular dichroism |
HRESIMS | high-resolution electrospray ionization mass spectrometry |
CD | circular dichroism |
VCD | vibrational circular dichroism |
NOESY | nuclear Overhauser effect spectroscopy |
HSQC | heteronuclear single quantum coherence |
HMBC | heteronuclear multiple bond correlation |
NOE | nuclear Overhauser effect |
M. tuberculosis | Mycobacterium tuberculosis |
V. harveyi | Vibrio harveyi |
A. brassicae | Alternaria brassicae |
C. cornigerum | Calonectria cornigerum |
C. gloeosporioides | Colletotrichum gloeosporioides |
B. cereus | Bacillus cereus |
S. aureus | Staphylococcus aureus |
A. niger | Aspergillus niger |
F. oxysporum | Fusarium oxysporum |
C. albicans | Candida albicans |
C. difficile | Clostridium difficile |
P. italicum | Penicillium italicum |
V. parahaemolyticus | Vibrio parahaemolyticus |
B. megaterium | Bacillus megaterium |
M. luteus | Micrococcus luteus |
S. pyogenes | Streptococcus pyogenes |
E. faecium | Enterococcus faecium |
B. subtilis | Bacillus subtilis |
S. typhimurium | Salmonella typhimurium |
E. faecalis | Enterococcus faecalis |
V. anguillarum | Vibrioanguillarum |
IC50 | half-maximal inhibitory concentration |
S. pneumoniae | Streptococcus pneumoniae |
A. hydrophilia | Aeromonas hydrophilia |
E. tarda | Edwardsiella tarda |
C. diplodiella | Coniothyrium diplodiella |
F. graminearum | Fusarium graminearum |
EtOAc | ethyl acetate |
L. monocytogenes | Listeria monocytogenes |
P. litchii | Peronophythora litchii |
S. faecalis | Streptococcus faecalis |
H. undatus | Hylocereus undatus |
H. pylori | Helicobacter pylori |
R. solanacearum | Ralstonia solanacearum |
A. alternata | Alternaria alternata |
B. cinerea | Botrytis cinerea |
P. digitatum | Penicillium digitatum |
V. mali | Valsa mali |
References
- Uluseker, C.; Kaster, K.M.; Thorsen, K.; Basiry, D.; Shobana, S.; Jain, M.; Kumar, G.; Kommedal, R.; Pala-Ozkok, I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021, 12, 717809. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Guo, J.; de la Fuente-Nunez, C.; Wang, J.; Han, B.; Tao, H.; Liu, J.; Wang, X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. Sci. Total Environ. 2023, 860, 160461. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. 2019 Antibiotic Resistance Threats Report. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/ (accessed on 22 April 2024).
- Inoue, H. Strategic approach for combating antimicrobial resistance (AMR). Glob. Health Med. 2019, 1, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
- Endale, H.; Mathewos, M.; Abdeta, D. Potential Causes of Spread of Antimicrobial Resistance and Preventive Measures in One Health Perspective—A Review. Infect Drug Resist. 2023, 16, 7515–7545. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yang, B.; Wang, Z.; Liu, Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. Ecotoxicol. Environ. Saf. 2023, 262, 115124. [Google Scholar] [CrossRef]
- Oliveira, D.M.P.D.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Venkateswaran, P.; Vasudevan, S.; David, H.; Shaktivel, A.; Shanmugam, K.; Neelakantan, P.; Solomon, A.P. Revisiting ESKAPE Pathogens: Virulence, resistance, and combating strategies focusing on quorum sensing. Front. Cell. Infect. Microbiol. 2023, 13, 1159798. [Google Scholar] [CrossRef]
- Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007, 128, 1037–1050. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan on Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 22 April 2024).
- Velmurugan, P.; Venil, C.K.; Veera Ravi, A.; Dufossé, L. Marine Bacteria Is the Cell Factory to Produce Bioactive Pigments: A Prospective Pigment Source in the Ocean. Front. Sustain. Food Syst. 2020, 4, 589655. [Google Scholar] [CrossRef]
- Thawabteh, A.M.; Swaileh, Z.; Ammar, M.; Jaghama, W.; Yousef, M.; Karaman, R.; Bufo, S.A.; Scrano, L. Antifungal and Antibacterial Activities of Isolated Marine Compounds. Toxins 2023, 15, 93. [Google Scholar] [CrossRef]
- Izzati, F.; Warsito, M.F.; Bayu, A.; Prasetyoputri, A.; Atikana, A.; Sukmarini, L.; Rahmawati, S.I.; Putra, M.Y. Chemical Diversity and Biological Activity of Secondary Metabolites Isolated from Indonesian Marine Invertebrates. Molecules 2021, 26, 1898. [Google Scholar] [CrossRef] [PubMed]
- Brahmkshatriya, P.P.; Brahmkshatriya, P.S. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2665–2691. [Google Scholar]
- Ying, Z.; Li, X.M.; Yang, S.Q.; Wang, B.G.; Li, H.L.; Meng, L.H. New Polyketide and Sesquiterpenoid Derivatives from the Magellan Seamount-Derived Fungus Penicillium rubens AS-130. Chem. Biodivers. 2023, 20, e202300229. [Google Scholar] [CrossRef] [PubMed]
- Ayyad, S.N.; Deyab, M.A.; Kosbar, T.; Alarif, W.M.; Eissa, A.H. Bio-active sesquiterpenoids and norsesquiternoids from the Red Sea octocoral Rhytisma fulvum fulvum. Nat. Prod. Res. 2021, 35, 4303–4310. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Ouyang, H.; Wang, W.; Liu, J.; Li, T.; Wu, B.; Yan, X.; He, S. Antimicrobial Terpenoids from South China Sea Soft Coral Lemnalia sp. Mar. Drugs 2021, 19, 294. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, S.; Ge, H.; Yi, W.; Zhang, Z.; Wu, B. Isolation, structural elucidation, and antimicrobial evaluation of the metabolites from a marine-derived fungus Penicillium sp. ZZ1283. Nat. Prod. Res. 2021, 35, 2498–2506. [Google Scholar] [CrossRef]
- Chen, T.; Yang, W.; Li, T.; Yin, Y.; Liu, Y.; Wang, B.; She, Z. Hemiacetalmeroterpenoids A-C and Astellolide Q with Antimicrobial Activity from the Marine-Derived Fungus Penicillium sp. N-5. Mar. Drugs 2022, 20, 514. [Google Scholar] [CrossRef]
- Liu, X.-H.; Song, Y.-P.; Yin, X.-L.; Ji, N.-Y. Antimicrobial Terpenoids and Polyketides from the Algicolous Fungus Byssochlamys spectabilis RR-dl-2-13. J. Agric. Food Chem. 2022, 70, 4658–4666. [Google Scholar] [CrossRef]
- Limon, A.D.; Patabendige, H.; Azhari, A.; Sun, X.; Kyle, D.E.; Wilson, N.G.; Baker, B.J. Chemistry and Bioactivity of the Deep-Water Antarctic Octocoral Alcyonium sp. Mar. Drugs 2022, 20, 576. [Google Scholar] [CrossRef]
- Balansa, W.; Mettal, U.; Wuisan, Z.G.; Plubrukarn, A.; Ijong, F.G.; Liu, Y.; Schaberle, T.F. A New Sesquiterpenoid Aminoquinone from an Indonesian Marine Sponge. Mar. Drugs 2019, 17, 158. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Hong, L.L.; Zhan, K.X.; Lin, Z.J.; Jiao, W.H.; Lin, H.W. New bisabolane-type phenolic sesquiterpenoids from the marine sponge Plakortis simplex. Chin. J. Nat. Med. 2021, 19, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.L.; Li, X.M.; Shi, X.S.; Wang, Y.R.; Wang, B.G.; Meng, L.H. Diketopiperazine Alkaloids and Bisabolene Sesquiterpenoids from Aspergillus versicolor AS-212, an Endozoic Fungus Associated with Deep-Sea Coral of Magellan Seamounts. Mar. Drugs 2023, 21, 293. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhao, Q.; Gu, Y.C.; Lan, L.; Wang, C.Y.; Guo, Y.W. Xishaeleganins A-D, Sesquiterpenoid Hydroquinones from Xisha Marine Sponge Dactylospongia elegans. Mar. Drugs 2022, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Chao, C.-H.; Fu, C.-W.; Chiou, S.-F.; Huang, T.-Y.; Yang, Y.-J.; Wu, S.-H.; Chen, S.-L.; Wang, H.-C.; Yu, M.-C.; et al. Computationally assisted structure elucidation of new 2-guanidinoethanesulfonyl sesquiterpenoid alkaloids: Agelasidines G–I from the marine sponge Agelas nakamurai. Tetrahedron 2022, 126, 133077. [Google Scholar] [CrossRef]
- Niu, S.; Huang, S.; Wang, J.; He, J.; Chen, M.; Zhang, G.; Hong, B. Malfilanol C, a new sesquiterpenoid isolated from the deep-sea-derived Aspergillus puniceus A2 fungus. Nat. Prod. Res. 2024, 38, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.M.; Yang, S.Q.; Zhang, F.Z.; Wang, B.G.; Li, H.L.; Meng, L.H. Sesquiterpene and Sorbicillinoid Glycosides from the Endophytic Fungus Trichoderma longibrachiatum EN-586 Derived from the Marine Red Alga Laurencia obtusa. Mar. Drugs 2022, 20, 177. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Chang, Y.; Che, Q.; Li, D.; Zhang, G.; Zhu, T. Citreobenzofuran D-F and Phomenone A-B: Five Novel Sesquiterpenoids from the Mangrove-Derived Fungus Penicillium sp. HDN13-494. Mar. Drugs 2022, 20, 137. [Google Scholar] [CrossRef] [PubMed]
- El Feky, S.E.; Abd El Hafez, M.S.M.; Abd El Moneim, N.A.; Ibrahim, H.A.H.; Okbah, M.A.; Ata, A.; El Sedfy, A.S.; Hussein, A. Cytotoxic and antimicrobial activities of two new sesquiterpenoids from red sea brittle star Ophiocoma dentata. Sci. Rep. 2022, 12, 8209. [Google Scholar] [CrossRef]
- Smanski, M.J.; Peterson, R.M.; Shen, B. Platensimycin and platencin biosynthesis in Streptomyces platensis, showcasing discovery and characterization of novel bacterial diterpene synthases. Methods Enzymol. 2012, 515, 163–186. [Google Scholar]
- Tai, C.J.; Ahmed, A.F.; Chao, C.H.; Yen, C.H.; Hwang, T.L.; Chang, F.R.; Huang, Y.M.; Sheu, J.H. Spongenolactones A-C, Bioactive 5,5,6,6,5-Pentacyclic Spongian Diterpenes from the Red Sea Sponge Spongia sp. Mar. Drugs 2022, 20, 498. [Google Scholar] [CrossRef]
- Cao, F.; Liu, X.M.; Wang, X.; Zhang, Y.H.; Yang, J.; Li, W.; Luo, D.Q.; Liu, Y.F. Structural diversity and biological activities of indole-diterpenoids from Penicillium janthinellum by co-culture with Paecilomyces formosus. Bioorg. Chem. 2023, 141, 106863. [Google Scholar] [CrossRef] [PubMed]
- Kankanamge, S.; Khalil, Z.G.; Bernhardt, P.V.; Capon, R.J. Noonindoles A-F: Rare Indole Diterpene Amino Acid Conjugates from a Marine-Derived Fungus, Aspergillus noonimiae CMB-M0339. Mar. Drugs 2022, 20, 698. [Google Scholar] [CrossRef] [PubMed]
- Tani, K.; Kamada, T.; Phan, C.S.; Vairappan, C.S. New cembrane-type diterpenoids from Bornean soft coral Nephthea sp. with antifungal activity against Lagenidium thermophilum. Nat. Prod. Res. 2019, 33, 3343–3349. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, A.N.; Zhuravleva, O.I.; Khmel, O.O.; Oleynikova, G.K.; Antonov, A.S.; Kirichuk, N.N.; Chausova, V.E.; Kalinovsky, A.I.; Berdyshev, D.V.; Kim, N.Y.; et al. New Cyclopiane Diterpenes and Polyketide Derivatives from Marine Sediment-Derived Fungus Penicillium antarcticum KMM 4670 and Their Biological Activities. Mar. Drugs 2023, 21, 584. [Google Scholar] [CrossRef] [PubMed]
- Pech-Puch, D.; Forero, A.M.; Fuentes-Monteverde, J.C.; Lasarte-Monterrubio, C.; Martinez-Guitian, M.; Gonzalez-Salas, C.; Guillen-Hernandez, S.; Villegas-Hernandez, H.; Beceiro, A.; Griesinger, C.; et al. Antimicrobial Diterpene Alkaloids from an Agelas citrina Sponge Collected in the Yucatan Peninsula. Mar. Drugs 2022, 20, 298. [Google Scholar] [CrossRef]
- Yan, X.; Ouyang, H.; Li, T.; Shi, Y.; Wu, B.; Yan, X.; He, S. Six New Diterpene Glycosides from the Soft Coral Lemnaliabournei. Mar. Drugs 2021, 19, 339. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, H.; Li, B.; Chen, X.; Li, T.; Yan, X.; Ouyang, H.; Lin, W.; He, S. New Diterpenes and Diterpene Glycosides with Antibacterial Activity from Soft Coral Lemnalia bournei. Mar. Drugs 2024, 22, 157. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Qiu, P.; Xu, B.; Zhao, Q.; Gu, Y.C.; Fu, L.; Bi, S.; Lan, L.; Wang, C.Y.; Guo, Y.W. Cytotoxic and Antibacterial Isomalabaricane Terpenoids from the Sponge Rhabdastrella globostellata. J. Nat. Prod. 2022, 85, 1799–1807. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, X.; Yao, F.H.; Liu, X.B.; Qi, S.H. Fusidane-Type Antibiotics from the Marine-Derived Fungus Simplicillium sp. SCSIO 41513. J. Nat. Prod. 2021, 84, 2945–2952. [Google Scholar] [CrossRef]
- Gomm, A.; Nelson, A. A radical approach to diverse meroterpenoids. Nat. Chem. 2020, 12, 109–111. [Google Scholar] [CrossRef]
- Russo, D.; Milella, L. Chapter 14—Analysis of Meroterpenoids. In Recent Advances in Natural Products Analysis; Sanches Silva, A., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 477–501. [Google Scholar]
- Nazir, M.; Saleem, M.; Tousif, M.I.; Anwar, M.A.; Surup, F.; Ali, I.; Wang, D.; Mamadalieva, N.Z.; Alshammari, E.; Ashour, M.L.; et al. Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules 2021, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Li, X.M.; Liu, H.; Wang, B.G.; Meng, L.H. Mining new meroterpenoids from the marine red alga-derived endophytic Penicillium chermesinum EN-480 by comparative transcriptome analysis. Bioorg. Chem. 2022, 128, 106021. [Google Scholar] [CrossRef]
- Hong, X.; Guan, X.; Lai, Q.; Yu, D.; Chen, Z.; Fu, X.; Zhang, B.; Chen, C.; Shao, Z.; Xia, J.; et al. Characterization of a bioactive meroterpenoid isolated from the marine-derived fungus Talaromyces sp. Appl. Microbiol. Biotechnol. 2022, 106, 2927–2935. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Xia, J.; Chen, Z.; Lin, F.; Shao, Z.; Wang, W.; Hong, X. Cytotoxic and Antibacterial Meroterpenoids Isolated from the Marine-Derived Fungus Talaromyces sp. M27416. Mar. Drugs 2024, 22, 186. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Zeng, Q.; Chen, Y.C.; Zhong, W.M.; Xiang, Y.; Wang, J.F.; Shi, X.F.; Zhang, W.M.; Zhang, S.; Wang, F.Z. Chevalones H-M: Six New alpha-Pyrone Meroterpenoids from the Gorgonian Coral-Derived Fungus Aspergillus hiratsukae SCSIO 7S2001. Mar. Drugs 2022, 20, 71. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Yang, L.; Ma, Q.; Xie, Q.; Dai, H.; Sun, K.; Zhao, Y. Meroterpenoids and Steroids from the Marine-Derived Fungus Trametes sp. ZYX-Z-16. Molecules 2022, 27, 8782. [Google Scholar] [CrossRef]
- Ryu, M.J.; Hillman, P.F.; Lee, J.; Hwang, S.; Lee, E.Y.; Cha, S.S.; Yang, I.; Oh, D.C.; Nam, S.J.; Fenical, W. Antibacterial Meroterpenoids, Merochlorins G-J from the Marine Bacterium Streptomyces sp. Mar. Drugs 2021, 19, 618. [Google Scholar] [CrossRef] [PubMed]
- Cen, S.; Jia, J.; Ge, Y.; Ma, Y.; Li, X.; Wei, J.; Bai, Y.; Wu, X.; Song, J.; Bi, H.; et al. A new antibacterial 3,5-dimethylorsellinic acid-based meroterpene from the marine fungus Aspergillus sp. CSYZ-1. Fitoterapia 2021, 152, 104908. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wei, X.L.; Xue, L.; Zhang, Z.F.; Zhang, P. Antimicrobial Meroterpenoids and Erythritol Derivatives Isolated from the Marine-Algal-Derived Endophytic Fungus Penicillium chrysogenum XNM-12. Mar. Drugs 2020, 18, 578. [Google Scholar] [CrossRef]
- Singh, K.; Kaur, G.; Shanika, P.S.; Dziwornu, G.A.; Okombo, J.; Chibale, K. Structure-activity relationship analyses of fusidic acid derivatives highlight crucial role of the C-21 carboxylic acid moiety to its anti-mycobacterial activity. Bioorg. Med. Chem. 2020, 28, 115530. [Google Scholar] [CrossRef]
No. | Names | Classes | Marine Sources | Ref. |
---|---|---|---|---|
1 | Chermesiterpenoid D | Linear Sesquiterpenoid | Magellan Seamount-Derived fungus Penicillium rubens AS-130 | [16] |
2 | 12-O-acetyl-nardosinan-6-en-1-one | Nardosinane Sesquiterpene | Octocoral Rhytisma fulvum fulvum | [17] |
3 | 6β-acetyl-1(10)-α-13-nornardosin-7-one | [17] | ||
4 | 6α-acetyl-1(10)-α-13-nornardosin-7-one | [17] | ||
5 | Lineolemnene E | Neolemnane Sesquiterpene | Soft coral Lemnalia sp. | [18] |
6 | Lineolemnene F | |||
7 | Lineolemnene G | |||
8 | 2-acetoxy-aristolane | Aristolane Sesquiterpenoid | Soft coral Lemnalia sp. | [18] |
9 | Lactone purpuride D | Drimane Sesquiterpene | The marine-derived Penicillium sp. ZZ1283 | [19] |
10 | Astellolide Q | Drimane Sesquiterpene | The marine-derived fungus Penicillium sp. N-5 | [20] |
11 | Byssocarotin A | Carotane Sesquiterpenoid | Macroalga-Derived Algicolous Fungus Penicillium rubens RR-dl-2-13 | [21] |
12 | Byssocarotin B | [21] | ||
13 | Byssocarotin C | [21] | ||
14 | Byssocarotin D | [21] | ||
15 | Alcyopterosin T | Illudalane Sesquiterpenoid | Octocoral Alcyonium sp. | [22] [22] |
16 | Alcyopterosin U | [22] | ||
17 | Alcyopterosin V | [22] | ||
18 | Nakijiquinone V | Sesquiterpenoid Aminoquinone | Indonesian marine Dactylospongia elegans sponge | [23] |
19 | Illimaquinone | Merosesquiterpenoid | Indonesian marine Dactylospongia elegans sponge | [23] |
20 | Smenospongine | [23] | ||
21 | Dyctioceratine C | [23] | ||
22 | Plakordiol A | Bisabolane Phenolic Sesquiterpenoid | The marine sponge Plakortis simplex | [24] |
23 | Plakordiol B | [24] | ||
24 | Plakordiol C | [24] | ||
25 | Plakordiol D | [24] | ||
26 | (7R, 10R)-hydroxycurcudiol | [24] | ||
27 | (7R, 10S)-hydroxycurcudiol | [24] | ||
28 | Sydonic acid | Bisabolene Sesquiterpenoid | Aspergillus versicolor AS-212 | [25] |
29 | (S)-(+)-11-dehydrosydonic acid | [25] | ||
30 | (−)-10-hydroxysydonic acid | [25] | ||
31 | hydroxysydonic acid | [25] | ||
32 | Peniciaculin B | [25] | ||
33 | Xishaeleganins A | Sesquiterpenoid Hydroquinone | Xisha Marine Sponge Dactylospongia elegans | [26] |
34 | Xishaeleganins B | [26] | ||
35 | Xishaeleganins C | [26] | ||
36 | Xishaeleganins D | [26] | ||
37 | Agelasidine G | Sesquiterpenoid Alkaloid | Sponge Agelas nakamurai | [27] |
38 | Agelasidine H | [27] | ||
39 | Agelasidine I | [27] | ||
40 | Malfilanol C | Sesquiterpenoid | The deep-sea-derived fungus Aspergillus puniceus A2 | [28] |
41 | Trichoacorside A | Sesquiterpene Glycoside | Red Alga Laurencia obtuse -Derived Endophytic Fungus Trichoderma longibrachiatum EN-586 | [29] |
42 | Citreobenzofuran D | Sesquiterpenoid | Mangrove-Derived Fungus Penicillium sp. HDN13-494 | [30] |
43 | Citreobenzofuran E | [30] | ||
44 | Citreobenzofuran F | [30] | ||
45 | Phomenone A | [30] | ||
46 | Phomenone B | [30] | ||
47 | O8-ophiocomane | Sesquiterpenoid | Brittle star; Ophiocoma dentata | [31] |
48 | O7-ophiocomane | [31] |
No. | Names | Classes | Marine Sources | Ref. |
---|---|---|---|---|
49 | Spongenolactone A | 5,5,6,6,5-Pentacyclic Spongian Diterpenes | Red Sea sponge Spongia sp. | [33] |
50 | Spongenolactone B | [33] | ||
51 | Spongenolactone C | [33] | ||
52 | Janthinellumine A | Indole Diterpene | Co-culturing the marine-derived fungi Penicillium janthinellium with Paecilomyces formosus | [34] |
53 | Janthinellumine B | [34] | ||
54 | Janthinellumine C | [34] | ||
55 | Janthinellumine D | [34] | ||
56 | Janthinellumine E | [34] | ||
57 | Janthinellumine F | [34] | ||
58 | Janthinellumine G | [34] | ||
59 | Janthinellumine H | [34] | ||
60 | Janthinellumine I | [34] | ||
61 | Noonindole A | Indole Diterpene Amino Acid | Fungus Aspergillus noonimiae CMB-M0339 | [35] |
62 | Nephthecrassocolide A | Cembrane Diterpene | Bornean soft coral Nephthea sp. | [36] |
63 | Nephthecrassocolide B | [36] | ||
64 | 6-Acetoxy Nephthenol Acetate | [36] | ||
65 | 4-Hydroxyleptosphin C | Cyclopiane Diterpene | The marine sediment-derived fungus Penicillium antarcticum KMM 4670 | [37] |
66 | 13-Epi-Conidiogenone F | [37] | ||
67 | (+)-8-Epiagelasine T | Diterpene Alkaloid | Agelas citrina Sponge | [38] |
68 | (+)-10-Epiagelasine B | [38] | ||
69 | (+)-12-Hydroxyagelasidine C | [38] | ||
70 | Lemnabourside E | Bicyclic Diterpene Glycoside | Soft coral Lemnalia bournei | [39] |
71 | Lemnabourside F | [39] | ||
72 | Lemnabourside G | [39] | ||
73 | Lemnadiolbourside A | [39] | ||
74 | Lemnadiolbourside B | [39] | ||
75 | Lemnadiolbourside C | [39] | ||
76 | Biofloranate E | Biflorane-Type Diterpenoid | Soft coral Lemnalia bournei | [40] |
77 | Biofloranate F | [40] | ||
78 | Biofloranate G | [40] | ||
79 | Biofloranate H | [40] | ||
80 | Biofloranate I | [40] | ||
81 | Lemnabourside H | Bicyclic Diterpene Glycoside | Soft coral Lemnalia bournei | [40] |
82 | Lemnabourside I | [40] | ||
83 | Biofloranate A | Decalin-Type Bicyclic Diterpene | Soft coral Lemnalia sp. | [18] |
84 | Biofloranate B | [18] | ||
85 | Biofloranate C | [18] | ||
86 | Biofloranate D | [18] | ||
87 | Cneorubin K | Aromadendrane-Type Diterpenoid | Soft coral Lemnalia sp. | [18] |
No. | Names | Classes | Marine Sources | Ref. |
---|---|---|---|---|
88 | 13-(E)-geoditin A | Isomalabaricane Terpenoid | Sponge Rhabdastrella globostellata | [41] |
89 | 13-(E)-isogeoditin B | [41] | ||
90 | 3-Acetylstelliferin D | [41] | ||
91 | 29-Acetylstelliferin D | [41] | ||
92 | Hainanstelletin A | [41] | ||
93 | Hainanstelletin B | [41] | ||
94 | 23,24-Ene-25-hydroxystelliferin D | [41] | ||
95 | 25,26-Ene-24-hydroxystelliferin D | [41] | ||
96 | Hainanstelletin C | [41] | ||
97 | Implifusidic acid A | Fusidane-Type Nortriterpenoid | The marine-derived fungus Simplicillium sp. SCSIO 41513. | [42] |
98 | Implifusidic acid B | [42] | ||
99 | Implifusidic acid C | [42] | ||
100 | Implifusidic acid D | [42] | ||
101 | Implifusidic acid E | [42] | ||
102 | Implifusidic acid F | [42] | ||
103 | Implifusidic acid G | [42] | ||
104 | Implifusidic acid H | [42] | ||
105 | Implifusidic acid I | [42] | ||
106 | Implifusidic acid J | [42] | ||
107 | Implifusidic acid K | [42] |
No. | Names | Classes | Marine Sources | Ref. |
---|---|---|---|---|
108 | Chermesin E | Meroterpenoid | Red alga-derived endophytic Penicillium chermesinum EN-480 | [46] |
109 | Chermesin F | [46] | ||
110 | Chermesin G | [46] | ||
111 | Chermesin H | [46] | ||
112 | Taladrimanin A | Drimane-Type Meroterpenoid | Fungus Talaromyces sp. HM6-1–1 | [47] |
116 | Taladrimanin B | Meroterpenoid | The marine-derived fungus Talaromyces sp. M27416 | [48] |
119 | Chevalone H | α-Pyrone Meroterpenoid | Gorgonian coral-derived fungus Aspergillus hiratsukae SCSIO 7S2001 | [49] |
120 | Chevalone I | [49] | ||
121 | Chevalone J | [49] | ||
122 | Chevalone K | [49] | ||
123 | Chevalone L | [49] | ||
124 | Chevalone M | [49] | ||
125 | Asnovolin C 5′6′-dehydrohydrogen | Spiromeroterpenoid | Conch snail-derived fungus Trametes sp. ZYX-Z-16 | [50] |
126 | Asnovolin C | [50] | ||
127 | Chermesin A | [50] | ||
128 | Chrodrimanin E | [50] | ||
129 | Chrodrimanin H | [50] | ||
130 | Thailandolide B | [50] | ||
131 | Asnovolin H | [50] | ||
132 | Asnovolin I | [50] | ||
133 | Hemiacetalmeroterpenoid A | Andrastin-Type Meroterpenoid | The marine-derived fungus Penicillium sp. N-5 | [20] |
134 | Hemiacetalmeroterpenoid B | [20] | ||
135 | Hemiacetalmeroterpenoid C | [20] | ||
136 | Merochlorin G | Chlorinated Meroterpenoid | Marine sediment-derived bacterium strain Streptomyces sp. CNH-189 | [51] |
137 | Merochlorin H | [51] | ||
138 | Merochlorin I | [51] | ||
139 | Merochlorin J | [51] | ||
140 | Aspergillactone | Meroterpenoid | The marine fungus Aspergillus sp. CSYZ-1 | [52] |
141 | Oxalicine C | Meroterpenoid-Type Alkaloid | The marine-algal-derived endophytic fungus Penicillium chrysogenum XNM-12 | [53] |
No. | Test Strains | Activity | Bioassays | Ref. |
---|---|---|---|---|
1 | MRSA | Antibacterial | MIC = 64 µg/mL | [16] |
2 | B. cereus | Antibacterial | diameters of inhibition zone 6 ± 0.03 mm (50 µg/mL) | [17] |
S. aureus | diameters of inhibition zone 5 ± 0.00 mm (50 µg/mL) | |||
E. coli | negative | |||
Pseudomonas sp. | diameters of inhibition zone 4 ± 0.00 mm (50 µg/mL) | |||
3 | B. cereus | Antibacterial | diameters of inhibition zone 6 ± 0.00 mm (100 µg/mL) | [17] |
S. aureus | diameters of inhibition zone 5 ± 0.00 mm (100 µg/mL) | |||
E. coli | diameters of inhibition zone 4 ± 0.00 mm (100 µg/mL) | |||
Pseudomonas sp. | negative | |||
4 | B. cereus | Antibacterial | diameters of inhibition zone 6 ± 0.00 mm (100 µg/mL) | [17] |
S. aureus | diameters of inhibition zone 5 ± 0.00 mm (100 µg/mL) | |||
E. coli | diameters of inhibition zone 4 ± 0.00 mm (100 µg/mL) | |||
Pseudomonas sp. | negative | |||
5 | S. aureus | Antibacterial | MIC > 128 µg/mL | [18] |
B. cereus | ||||
6 | S. aureus | Antibacterial | MIC > 128 µg/mL | [18] |
B. cereus | ||||
7 | S. aureus | Antibacterial | MIC > 128 µg/mL | [18] |
B. cereus | ||||
8 | S. aureus | Antibacterial | MIC > 128 µg/mL | [18] |
B. cereus | ||||
9 | MRSA | Antibacterial | MIC = 4 µg/mL | [19] |
E. coli | MIC = 3 µg/mL | |||
C. albicans | Antifungal | MIC = 8 µg/mL | ||
10 | MRSA | Antibacterial | MIC >50 µg/mL | [20] |
B. cereus | ||||
P. italicum | Antifungal | MIC = 25 µg/mL | ||
C. gloeosporioides | ||||
11 | V. anguillarum | Antibacterial | diameters of inhibition zone 6.3 ± 0.6 mm (50 µg/disk) | [21] |
V. harveyi | negative | |||
V. parahaemolyticus | diameters of inhibition zone 6.7 ± 0.6 mm (50 µg/disk) | |||
12 | V. anguillarum | Antibacterial | diameters of inhibition zone 6.7 ± 0.6 mm (50 µg/disk) | [21] |
V. harveyi | negative | |||
V. parahaemolyticus | diameters of inhibition zone 7.3 ± 0.6 mm (50 µg/disk) | |||
13 | V. anguillarum | Antibacterial | negative | [21] |
V. harveyi | negative | |||
V. parahaemolyticus | diameters of inhibition zone 7.3 ± 0.6 mm (50 µg/disk) | |||
14 | V. anguillarum | Antibacterial | negative | [21] |
V. harveyi | negative | |||
V. parahaemolyticus | diameters of inhibition zone 6.7 ± 0.6 mm (50 µg/disk) | |||
15 | ESKAPE | Inactive | inactive against the ESKAPE | [22] [22] |
16 | ESKAPE | Inactive | inactive against the ESKAPE | [22] |
17 | C. difficile | Antibacterial | MIC 8.1 µg/mL | [22] |
ESKAPE | inactive against the ESKAPE | |||
18 | B. megaterium DSM32 | Inactive | inactive against B. Megaterium DSM32 | [23] |
M. luteus ATCC 4698 | inactive against M. Luteus ATCC 4698 | |||
19 | B. megaterium DSM32 | Antibacterial | MIC = 32 µg/mL | [23] |
M. luteus ATCC 4698 | ||||
20 | B. megaterium DSM32 | Antibacterial | MIC = 32 µg/mL | [23] |
M. luteus ATCC 4698 | ||||
21 | B. megaterium DSM32 | Antibacterial | MIC = 32 µg/mL | [23] |
M. luteus ATCC 4698 | MIC = 64 µg/mL | |||
22 | S. aureus ATCC 25923 | Antibacterial | MIC > 64 µg/mL | [24] |
MRSA ATCC 43300 | ||||
A. baumannii ATCC19606 | ||||
P. aeruginosa (clinical) | ||||
VRE CD27 | ||||
23 | S. aureus ATCC 25923 | Antibacterial | MIC > 64 µg/mL | [24] |
MRSA ATCC 43300 | ||||
A. baumannii ATCC19606 | ||||
P. aeruginosa (clinical) | ||||
VRE CD27 | ||||
24 | S. aureus ATCC 25923 | Antibacterial | MIC > 64 µg/mL | [24] |
MRSA ATCC 43300 | ||||
A. baumannii ATCC19606 | ||||
P. aeruginosa (clinical) | ||||
VRE CD27 | ||||
25 | S. aureus ATCC 25923 | Antibacterial | MIC > 64 µg/mL | [24] |
MRSA ATCC 43300 | ||||
A. baumannii ATCC19606 | ||||
P. aeruginosa (clinical) | ||||
VRE CD27 | ||||
26 | S. aureus ATCC 25923 | Antibacterial | MIC > 64 µg/mL | [24] |
MRSA ATCC 43300 | ||||
A. baumannii ATCC19606 | ||||
P. aeruginosa (clinical) | ||||
VRE CD27 | ||||
27 | A. baumannii ATCC19606 | Antibacterial | diameters of inhibition zone 5.0 ± 0.6 mm, but MIC > 64 µg/mL | [24] |
28 | V. harveyi | Antibacterial | MIC = 15.0 µg/mL | [25] |
V. Parahaemolyticus | ||||
C. Gloeosporioides | Antifungal | MIC = 120.3 µg/mL | ||
29 | V. harveyi | Antibacterial | MIC = 15.2 µg/mL | [25] |
V. Parahaemolyticus | MIC = 121.2 µg/mL | |||
C. Gloeosporioides | Antifungal | MIC = 121.2 µg/mL | ||
30 | V. harveyi | Antibacterial | MIC = 28.4 µg/mL | [25] |
V. Parahaemolyticus | MIC = 113.5 µg/mL | |||
C. Gloeosporioides | Antifungal | MIC > 200 µg/mL | ||
31 | V. harveyi | Antibacterial | MIC > 200 µg/mL | [25] |
V. Parahaemolyticus | ||||
C. Gloeosporioides | Antifungal | MIC > 200 µg/mL | ||
32 | V. harveyi | Antibacterial | MIC > 200 µg/mL | [25] |
V. Parahaemolyticus | MIC = 64 µg/mL | |||
C. Gloeosporioides | Antifungal | MIC > 200 µg/mL | ||
33 | S. aureus USA300 LAC | Inactive | inactive against S. aureus USA300 LAC | [26] |
S. pyogenes ATCC 12344 | inactive against S. pyogenes ATCC 12344 | |||
E. Faecium Efm-HS0649 | inactive against E. Faecium Efm-HS0649 | |||
34 | S. aureus USA300 LAC | Antibacterial | MIC = 1.5 µg/mL | [26] |
S. pyogenes ATCC 12344 | MIC = 1.5 µg/mL | |||
E. Faecium Efm-HS0649 | MIC = 3.0 µg/mL | |||
35 | S. aureus USA300 LAC | Antibacterial | MIC = 11.1 µg/mL | [26] |
S. pyogenes ATCC 12344 | MIC = 2.8 µg/mL | |||
E. Faecium Efm-HS0649 | MIC = 5.6 µg/mL | |||
36 | S. aureus USA300 LAC | Antibacterial | MIC > 186.0 µg/mL | [26] |
S. pyogenes ATCC 12344 | MIC = 11.6 µg/mL | |||
E. Faecium Efm-HS0649 | MIC > 186.0 µg/mL | |||
37 | B. subtilis | Antibacterial | diameters of inhibition zone 3.0 mm (25 mg/disk) | [27] |
E. coli | ||||
K. Pneumoniae | ||||
S. aureus | ||||
38 | B. subtilis | Inactive | inactive against B. subtilis | [27] |
E. coli | inactive against E. coli | |||
K. Pneumoniae | inactive against K. Pneumoniae | |||
S. aureus | inactive against S. aureus | |||
40 | S. aureus ATCC 29213 | Antibacterial | diameters of inhibition zone 8 mm (200 mg/disk) | [28] |
41 | E. coli | Antibacterial | MIC > 64 µg/mL | [29] |
MRSA | MIC = 64 µg/mL | |||
P. Aeruginosa | MIC > 64 µg/mL | |||
V. harveyi | MIC = 4 µg/mL | |||
V. Parahaemolyticus | MIC > 64 µg/mL | |||
A. Brassicae | Antifungal | MIC = 32 µg/mL | ||
C. Cornigerum | MIC = 64 µg/mL | |||
C. Gloeosporioides | MIC = 16 µg/mL | |||
C. Gloeosporioides Penz | MIC = 16 µg/mL | |||
Curvularia spicifera | MIC = 8 µg/mL | |||
F. Graminearum | MIC > 64 µg/mL | |||
F. Oxysporum | MIC = 32 µg/mL | |||
F. Oxysporum f. Sp. Radicis lycopersici | MIC = 32 µg/mL | |||
Fusarium proliferatum | MIC = 32 µg/mL | |||
P. Digitatum | MIC = 64 µg/mL | |||
P. Piricola Nose | MIC = 32 µg/mL | |||
A. hydrophilia | MIC = 64 µg/mL | |||
42 | B. subtilis | Antibacterial | MIC > 50 µg/mL | [30] |
A. Baumannii | ||||
E. coil | ||||
MRSA | ||||
C. albicans | Antifungal | MIC > 50 µg/mL | ||
43 | B. subtilis | Antibacterial | MIC > 50 µg/mL | [30] |
A. Baumannii | ||||
E. coil | ||||
MRSA | ||||
C. albicans | Antifungal | MIC > 50 µg/mL | ||
44 | B. subtilis | Antibacterial | MIC > 50 µg/mL | [30] |
A. Baumannii | ||||
E. coil | ||||
MRSA | ||||
C. albicans | Antifungal | MIC > 50 µg/mL | ||
45 | B. subtilis | Antibacterial | MIC 6.25 µg/mL | [30] |
A. Baumannii | MIC > 50 µg/mL | |||
E. coil | MIC > 50 µg/mL | |||
MRSA | MIC > 50 µg/mL | |||
C. albicans | Antifungal | MIC > 50 µg/mL | ||
46 | B. subtilis | Antibacterial | MIC > 50 µg/mL | [30] |
A. Baumannii | ||||
E. coil | ||||
MRSA | ||||
C. albicans | Antifungal | MIC > 50 µg/mL | ||
47 | P. Aeruginosa | Antibacterial | 2.25 ± 0.04 mm AU | [31] |
E. Faecalis | 1.36 ± 0.04 mm AU | |||
48 | P. Aeruginosa | Antibacterial | 2.8 ± 0.05 mm AU | [31] |
E. Faecalis | 1.8 ± 0.02 mm AU |
No. | Test Strains | Activity | Bioassays | Ref. |
---|---|---|---|---|
49 | S. aureus | Antibacterial | 24% (50 µM), 42% (100 µM), 40% (200 µM) inhibition | [33] |
50 | S. aureus | Antibacterial | 46% (50 µM), 47% (100 µM), 93% (200 µM) inhibition | [33] |
51 | S. aureus | Inactive | Inactive against S. aureus | [33] |
52 | V. anguillarum | Antibacterial | MIC = 12.5 µg/mL | [34] |
53 | V. anguillarum | Inactive | Inactive against V. anguillarum | [34] |
54 | V. anguillarum | Inactive | Inactive against V. anguillarum | [34] |
55 | V. anguillarum | Inactive | Inactive against V. anguillarum | [34] |
56 | V. anguillarum | Inactive | Inactive against V. anguillarum | [34] |
57 | V. anguillarum | Inactive | Inactive against V. anguillarum | [34] |
58 | V. anguillarum | Inactive | Inactive against V. anguillarum | [34] |
59 | V. anguillarum | Antibacterial | MIC = 12.5 µg/mL | [34] |
60 | V. anguillarum | Inactive | Inactive against V. anguillarum | [34] |
61 | C. albicans | Antifungal | - | [35] |
E. coli ATCC 11775 | Inactive | - | ||
S. aureus ATCC 25923 | ||||
B. subtilis ATCC 6633 | ||||
62 | Exophiala sp. NJM 1551 | Antifungal | MIC = 25 µg/mL | [36] |
Fusarium moniliforme NJM 8995 | MIC > 100 µg/mL | |||
F. Oxysporum NJM 0179 | MIC = 50 µg/mL | |||
Fusarium solani NJM 8996 | MIC = 50 µg/mL | |||
Haliphthoros sabahensis IPMB 1402 | MIC = 25 µg/mL | |||
H. Milfordensis IPMB 1603 | MIC = 25 µg/mL | |||
Lagenidium thermophilum IPMB 1401 | MIC = 12.5 µg/mL | |||
63 | Exophiala sp. NJM 1551 | Antifungal | MIC = 50 µg/mL | [36] |
Fusarium moniliforme NJM 8995 | MIC > 100 µg/mL | |||
F. Oxysporum NJM 0179 | MIC > 100 µg/mL | |||
Fusarium solani NJM 8996 | MIC > 100 µg/mL | |||
Haliphthoros sabahensis IPMB 1402 | MIC = 25 µg/mL | |||
H. Milfordensis IPMB 1603 | MIC = 50 µg/mL | |||
Lagenidium thermophilum IPMB 1401 | MIC = 25 µg/mL | |||
64 | Exophiala sp. NJM 1551 | Antifungal | MIC = 50 µg/mL | [36] |
Fusarium moniliforme NJM 8995 | MIC > 100 µg/mL | |||
F. Oxysporum NJM 0179 | MIC > 100 µg/mL | |||
Fusarium solani NJM 8996 | MIC > 100 µg/mL | |||
Haliphthoros sabahensis IPMB 1402 | MIC = 50 µg/mL | |||
H. Milfordensis IPMB 1603 | MIC = 50 µg/mL | |||
Lagenidium thermophilum IPMB 1401 | MIC = 25 µg/mL | |||
65 | S. aureus | Antibacterial | 0 (12.5 µM), 19.1% (100 µM) inhibition | [37] |
66 | S. aureus | Antibacterial | 15.3% (12.5 µM), 29.3% (100 µM) inhibition | [37] |
67 | S. aureus ATCC 29213 | Antibacterial | MIC = 16 µg/mL | [38] |
S. aureus USA300LAC | MIC = 16 µg/mL | |||
S. Pneumoniae ATCC 49619 | MIC = 16 µg/mL | |||
S. Pneumoniae 549 CHUAC | MIC = 32 µg/mL | |||
E. Faecalis ATCC 29212 | MIC = 32 µg/mL | |||
E. Faecalis 256 CHUAC | MIC > 64 µg/mL | |||
E. Faecium 214 CHUAC | MIC = 32 µg/mL | |||
68 | S. aureus ATCC 29213 | Antibacterial | MIC = 1 µg/mL | [38] |
S. aureus USA300LAC | MIC = 2 µg/mL | |||
S. Pneumoniae ATCC 49619 | MIC = 4 µg/mL | |||
S. Pneumoniae 549 CHUAC | MIC = 8 µg/mL | |||
E. Faecalis ATCC 29212 | MIC = 4 µg/mL | |||
E. Faecalis 256 CHUAC | MIC = 4 µg/mL | |||
E. Faecium 214 CHUAC | MIC = 4 µg/mL | |||
69 | S. aureus ATCC 29213 | Antibacterial | MIC = 8 µg/mL | [38] |
S. aureus USA300LAC | MIC = 8 µg/mL | |||
S. Pneumoniae ATCC 49619 | MIC = 16 µg/mL | |||
S. Pneumoniae 549 CHUAC | MIC > 64 µg/mL | |||
E. Faecalis ATCC 29212 | MIC = 16 µg/mL | |||
E. Faecalis 256 CHUAC | MIC = 32 µg/mL | |||
E. Faecium 214 CHUAC | MIC = 8 µg/mL | |||
70 | S. aureus | Antibacterial | MIC = 8 µg/mL | [39] |
B. subtilis | MIC = 4 µg/mL | |||
71 | S. aureus | Antibacterial | MIC = 8 µg/mL | [39] |
B. subtilis | MIC = 4 µg/mL | |||
72 | S. aureus | Inactive | MIC > 128 µg/mL | [39] |
B. subtilis | MIC = 64 µg/mL | |||
73 | S. aureus | Inactive | MIC > 128 µg/mL | [39] |
B. subtilis | MIC = 64 µg/mL | |||
74 | S. aureus | Inactive | MIC > 128 µg/mL | [39] |
B. subtilis | ||||
75 | S. aureus | Inactive | MIC > 128 µg/mL | [39] |
B. subtilis | MIC = 64 µg/mL | |||
76 | S. aureus | Antibacterial | MIC = 32 µg/mL | [40] |
B. subtilis | MIC = 32 µg/mL | |||
V. harveyi | MIC = 64 µg/mL | |||
S. Pneumoniae | MIC > 128 µg/mL | |||
E. coli | MIC > 128 µg/mL | |||
77 | S. aureus | Antibacterial | MIC = 32 µg/mL | [40] |
B. subtilis | MIC = 32 µg/mL | |||
V. harveyi | MIC = 64 µg/mL | |||
S. Pneumoniae | MIC > 128 µg/mL | |||
E. coli | MIC > 128 µg/mL | |||
78 | S. aureus | Antibacterial | MIC = 64 µg/mL | [40] |
B. subtilis | MIC = 32 µg/mL | |||
V. harveyi | MIC > 128 µg/mL | |||
S. Pneumoniae | MIC > 128 µg/mL | |||
E. coli | MIC > 128 µg/mL | |||
79 | S. aureus | Antibacterial | MIC = 64 µg/mL | [40] |
B. subtilis | MIC = 64 µg/mL | |||
V. harveyi | MIC > 128 µg/mL | |||
S. Pneumoniae | MIC > 128 µg/mL | |||
E. coli | MIC > 128 µg/mL | |||
80 | S. aureus | Antibacterial | MIC = 64 µg/mL | [40] |
B. subtilis | MIC = 32 µg/mL | |||
V. harveyi | MIC > 128 µg/mL | |||
S. Pneumoniae | MIC > 128 µg/mL | |||
E. coli | MIC > 128 µg/mL | |||
81 | S. aureus | Antibacterial | MIC = 16 µg/mL | [40] |
B. subtilis | MIC = 16 µg/mL | |||
V. harveyi | MIC > 128 µg/mL | |||
S. Pneumoniae | MIC > 128 µg/mL | |||
E. coli | MIC = 8 µg/mL | |||
82 | S. aureus | Antibacterial | MIC = 32 µg/mL | [40] |
B. subtilis | MIC = 16 µg/mL | |||
V. harveyi | MIC = 64 µg/mL | |||
S. Pneumoniae | MIC > 128 µg/mL | |||
E. coli | MIC = 32 µg/mL | |||
83 | S. aureus | Antibacterial | MIC = 8 µg/mL | [18] |
B. Cereus | ||||
84 | S. aureus | Antibacterial | MIC = 4 µg/mL | [18] |
B. Cereus | MIC = 16 µg/mL | |||
85 | S. aureus | Antibacterial | MIC = 4 µg/mL | [18] |
B. Cereus | MIC = 16 µg/mL | |||
86 | S. aureus | Antibacterial | MIC = 16 µg/mL | [18] |
B. Cereus | MIC = 8 µg/mL | |||
87 | S. aureus | Antibacterial | MIC = 16 µg/mL | [18] |
B. Cereus | MIC = 8 µg/mL |
No. | Test Strains | Activity | Bioassays | Ref. |
---|---|---|---|---|
88 | S. aureus USA300LAC | Antibacterial | MIC = 28.1 µg/mL | [41] |
S. pyogenes ATCC12344 | MIC = 1.8 µg/mL | |||
89 | S. aureus USA300LAC | Antibacterial | MIC = 30.9 µg/mL | [41] |
S. pyogenes ATCC12344 | MIC = 1.0 µg/mL | |||
90 | S. aureus USA300LAC | Antibacterial | MIC > 250.0 µg/mL | [41] |
S. pyogenes ATCC12344 | MIC = 120.0 µg/mL | |||
91 | S. aureus USA300LAC | Antibacterial | MIC > 250.0 µg/mL | [41] |
S. pyogenes ATCC12344 | ||||
92 | S. aureus USA300LAC | Antibacterial | MIC > 250.0 µg/mL | [41] |
S. pyogenes ATCC12344 | MIC = 65.9 µg/mL | |||
93 | S. aureus USA300LAC | Antibacterial | MIC > 250.0 µg/mL | [41] |
S. pyogenes ATCC12344 | MIC = 124.5 µg/mL | |||
94 | S. aureus USA300LAC | Antibacterial | MIC > 250.0 µg/mL | [41] |
S. pyogenes ATCC12344 | ||||
95 | S. aureus USA300LAC | Antibacterial | MIC > 250.0 µg/mL | [41] |
S. pyogenes ATCC12344 | ||||
96 | S. aureus USA300LAC | Antibacterial | MIC > 250.0 µg/mL | [41] |
S. pyogenes ATCC12344 | MIC = 240.0 µg/mL | |||
98 | S. aureus | Antibacterial | MIC > 100 µg/mL | [42] |
100 | S. aureus | Antibacterial | MIC > 100 µg/mL | [42] |
101 | S. aureus | Antibacterial | MIC > 100 µg/mL | [42] |
102 | S. aureus | Antibacterial | MIC > 100 µg/mL | [42] |
104 | S. aureus | Antibacterial | MIC = 2.5 µg/mL | [42] |
105 | S. aureus | Antibacterial | MIC = 0.078 µg/mL | [42] |
No. | Test Strains | Activity | Bioassays | Ref. |
---|---|---|---|---|
108 | A. hydrophilia | Antibacterial | MIC = 32 µg/mL | [46] |
E. coli | MIC = 16 µg/mL | |||
E. Tarda | MIC = 0.5 µg/mL | |||
V. anguillarum | MIC = 0.5 µg/mL | |||
V. harveyi | MIC = 32 µg/mL | |||
C. Diplodiella, | Antifungal | MIC = 8 µg/mL | ||
F. Graminearum | MIC = 32 µg/mL | |||
109 | A. hydrophilia | Antibacterial | MIC = 16 µg/mL | |
E. coli | MIC = 1 µg/mL | [46] | ||
E. Tarda | MIC = 32 µg/mL | |||
V. anguillarum | MIC = 4 µg/mL | |||
V. harveyi | MIC = 32 µg/mL | |||
C. Diplodiella | Antifungal | MIC = 64 µg/mL | ||
F. Graminearum | ||||
110 | A. hydrophilia | Antibacterial | MIC = 32 µg/mL | [46] |
E. coli | MIC = 32 µg/mL | |||
E. Tarda | MIC = 16 µg/mL | |||
V. anguillarum | MIC = 32 µg/mL | |||
V. harveyi | MIC = 16 µg/mL | |||
C. Diplodiella | Antifungal | MIC > 64 µg/mL | ||
F. Graminearum | MIC > 32 µg/mL | |||
111 | A. hydrophilia | Antibacterial | MIC = 32 µg/mL | [46] |
E. coli | MIC = 16 µg/mL | |||
E. Tarda | MIC = 0.5 µg/mL | |||
V. anguillarum | MIC = 0.5 µg/mL | |||
V. harveyi | MIC = 32 µg/mL | |||
C. Diplodiella | Antifungal | MIC = 8 µg/mL | ||
F. Graminearum | MIC = 32 µg/mL | |||
112 | S. aureus ATCC6538P | Antibacterial | MIC = 15.2 µg/mL | [47] |
E. coli | - | |||
V. Parahaemolyticus | Antifungal | - | ||
116 | S. aureus CICC 10384 | Antibacterial | MIC = 12.5 µg/mL | [48] |
119 | M. lutea | Antibacterial | MIC = 6.25 µg/mL | [49] |
K. Pneumoniae | MIC = 50 µg/mL | |||
MRSA | MIC = 6.25 µg/mL | |||
S. faecalis | MIC = 6.25 µg/mL | |||
120 | M. lutea | Antibacterial | MIC = 25 µg/mL | [49] |
K. Pneumoniae | MIC > 100 µg/mL | |||
MRSA | MIC = 6.25 µg/mL | |||
S. faecalis | MIC = 25 µg/mL | |||
121 | M. lutea | Antibacterial | MIC = 25 µg/mL | [49] |
K. Pneumoniae | MIC = 25 µg/mL | |||
MRSA | MIC = 12.5 µg/mL | |||
S. faecalis | MIC > 100 µg/mL | |||
122 | M. lutea | Antibacterial | MIC > 100 µg/mL | [49] |
K. Pneumoniae | MIC = 6.25 µg/mL | |||
MRSA | MIC = 25 µg/mL | |||
S. faecalis | MIC = 50 µg/mL | |||
123 | M. lutea | Antibacterial | MIC = 12.5 µg/mL | [49] |
K. Pneumoniae | MIC > 100 µg/mL | |||
MRSA | MIC = 12.5 µg/mL | |||
S. faecalis | MIC = 12.5 µg/mL | |||
124 | M. lutea | Inactive | MIC > 100 µg/mL | [49] |
K. Pneumoniae | ||||
MRSA | ||||
S. faecalis | ||||
125 | S. aureus ATCC6538 | Antibacterial | MIC > 128 µg/mL | [50] |
B. subtilis ATCC 6633 | ||||
E. coli ATCC 25922 | ||||
L. Monocytogenes ATCC 1911 | ||||
F. Oxysporum f. Sp. Cubense | Inactive | MIC > 128 µg/mL | ||
Fusarium spp. | ||||
P. Litchii | ||||
C. Gloeosporioides | ||||
H. Undatus | ||||
126 | S. aureus ATCC6538 | Antibacterial | MIC > 128 µg/mL | [50] |
B. subtilis ATCC 6633 | ||||
E. coli ATCC 25922 | ||||
L. Monocytogenes ATCC 1911 | ||||
F. Oxysporum f. Sp. Cubense | Inactive | MIC > 128 µg/mL | ||
Fusarium spp. | ||||
P. Litchii | ||||
C. Gloeosporioides | ||||
H. Undatus | ||||
127 | S. aureus ATCC6538 | Antibacterial | MIC > 128 µg/mL | [50] |
B. subtilis ATCC 6633 | ||||
E. coli ATCC 25922 | ||||
L. Monocytogenes ATCC 1911 | ||||
F. Oxysporum f. Sp. Cubense | Inactive | MIC > 128 µg/mL | ||
Fusarium spp. | ||||
P. Litchii | ||||
C. Gloeosporioides | ||||
H. Undatus | ||||
128 | S. aureus ATCC6538 | Antibacterial | MIC > 128 µg/mL | [50] |
B. subtilis ATCC 6633 | ||||
E. coli ATCC 25922 | ||||
L. Monocytogenes ATCC 1911 | ||||
F. Oxysporum f. Sp. Cubense | Inactive | MIC > 128 µg/mL | ||
Fusarium spp. | ||||
P. Litchii | ||||
C. Gloeosporioides | ||||
H. Undatus | ||||
129 | S. aureus ATCC6538 | Antibacterial | MIC = 128 µg/mL | [50] |
B. subtilis ATCC 6633 | MIC > 128 µg/mL | |||
E. coli ATCC 25922 | MIC > 128 µg/mL | |||
L. Monocytogenes ATCC 1911 | MIC > 128 µg/mL | |||
F. Oxysporum f. Sp. Cubense | Inactive | Inactive against F. Oxysporum f. Sp. Cubense | ||
Fusarium spp. | Inactive against Fusarium spp. | |||
P. Litchii | Inactive against P. Litchii | |||
C. Gloeosporioides | Inactive against C. Gloeosporioides | |||
H. Undatus | Inactive against H. Undatus | |||
130 | S. aureus ATCC6538 | Antibacterial | MIC > 128 µg/mL | [50] |
B. subtilis ATCC 6633 | ||||
E. coli ATCC 25922 | ||||
L. Monocytogenes ATCC 1911 | ||||
F. Oxysporum f. Sp. Cubense | Inactive | MIC > 128 µg/mL | ||
Fusarium spp. | ||||
P. Litchii | ||||
C. Gloeosporioides | ||||
H. Undatus | ||||
131 | S. aureus ATCC6538 | Antibacterial | MIC > 128 µg/mL | [50] |
B. subtilis ATCC 6633 | ||||
E. coli ATCC 25922 | ||||
L. Monocytogenes ATCC 1911 | ||||
F. Oxysporum f. Sp. Cubense | Inactive | MIC > 128 µg/mL | ||
Fusarium spp. | ||||
P. Litchii | ||||
C. Gloeosporioides | ||||
H. Undatus | ||||
132 | S. aureus ATCC6538 | Antibacterial | MIC > 128 µg/mL | [50] |
B. subtilis ATCC 6633 | ||||
E. coli ATCC 25922 | ||||
L. Monocytogenes ATCC 1911 | ||||
F. Oxysporum f. Sp. Cubense | Inactive | MIC > 128 µg/mL | ||
Fusarium spp. | ||||
P. Litchii | ||||
C. Gloeosporioides | ||||
H. Undatus | ||||
133 | MRSA | Antibacterial | MIC = 25 µg/mL | [20] |
B. subtilis | MIC = 6.25 µg/mL | |||
P. Aeruginosa | MIC > 50 µg/mL | |||
S. Typhimurium | MIC > 50 µg/mL | |||
P. Italicum | Antifungal | MIC = 6.25 µg/mL | ||
C. Gloeosporioides | ||||
134 | MRSA | Antibacterial | MIC = 25 µg/mL | [20] |
B. subtilis | MIC = 25 µg/mL | |||
P. Aeruginosa | MIC = 25 µg/mL | |||
S. Typhimurium | MIC > 50 µg/mL | |||
P. Italicum | Antifungal | MIC = 50 µg/mL | ||
C. Gloeosporioides | MIC > 50 µg/mL | |||
135 | MRSA | Antibacterial | MIC > 50 µg/mL | [20] |
B. subtilis | ||||
P. Aeruginosa | ||||
S. Typhimurium | ||||
P. Italicum | Antifungal | MIC = 50 µg/mL | ||
C. Gloeosporioides | MIC > 50 µg/mL | |||
136 | B. subtilis KCTC 1021 | Antibacterial | MIC = 16 µg/mL | [51] |
K. Rhizophila KCTC 1915 | MIC = 32 µg/mL | |||
S. aureus KCTC 1927 | MIC = 16 µg/mL | |||
E. coli KCTC 2441 | MIC > 128 µg/mL | |||
S. Typhimurium KCTC 2515 | MIC > 128 µg/mL | |||
K. Pneumonia KCTC 2690 | MIC > 128 µg/mL | |||
137 | B. subtilis KCTC 1021 | Antibacterial | MIC = 64 µg/mL | [51] |
K. Rhizophila KCTC 1915 | MIC > 128 µg/mL | |||
S. aureus KCTC 1927 | MIC > 128 µg/mL | |||
E. coli KCTC 2441 | MIC > 128 µg/mL | |||
S. Typhimurium KCTC 2515 | MIC > 128 µg/mL | |||
K. Pneumonia KCTC 2690 | MIC > 128 µg/mL | |||
138 | B. subtilis KCTC 1021 | Antibacterial | MIC = 1 µg/mL | [51] |
K. Rhizophila KCTC 1915 | MIC = 2 µg/mL | |||
S. aureus KCTC 1927 | MIC = 2 µg/mL | |||
E. coli KCTC 2441 | MIC > 128 µg/mL | |||
S. Typhimurium KCTC 2515 | MIC > 128 µg/mL | |||
K. Pneumonia KCTC 2690 | MIC > 128 µg/mL | |||
139 | B. subtilis KCTC 1021 | Antibacterial | MIC > 128 µg/mL | [51] |
K. Rhizophila KCTC 1915 | ||||
S. aureus KCTC 1927 | ||||
E. coli KCTC 2441 | ||||
S. Typhimurium KCTC 2515 | ||||
K. Pneumonia KCTC 2690 | ||||
140 | H. pylori ATCC43504 | Antibacterial | MIC = 2 µg/mL | [52] |
H. pylori G27 | MIC = 1 µg/mL | |||
H. pylori Hp159 | MIC = 1 µg/mL | |||
H. pylori BY583 | MIC = 4 µg/mL | |||
S. aureus ATCC25923 | MIC = 16 µg/mL | |||
S. aureus USA300 | MIC = 2 µg/mL | |||
S. aureus BKS231 | MIC = 4 µg/mL | |||
S. aureus BKS233 | MIC = 8 µg/mL | |||
141 | E. coli | Antibacterial | MIC = 8 µg/mL | [53] |
M. Luteus | MIC = 8 µg/mL | |||
P. Aeruginosa | MIC = 16 µg/mL | |||
R. Solanacearum | MIC = 8 µg/mL | |||
A. Alternata | Antifungal | MIC > 64 µg/mL | ||
B. Cinerea | MIC = 32 µg/mL | |||
F. Oxysporum | MIC > 64 µg/mL | |||
P. Digitatum | MIC = 32 µg/mL | |||
V. Mali | MIC = 16 µg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xin, J.; Sun, Y.; Zhao, F.; Niu, C.; Liu, S. Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs. Mar. Drugs 2024, 22, 347. https://doi.org/10.3390/md22080347
Liu X, Xin J, Sun Y, Zhao F, Niu C, Liu S. Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs. Marine Drugs. 2024; 22(8):347. https://doi.org/10.3390/md22080347
Chicago/Turabian StyleLiu, Xiao, Jianzeng Xin, Yupei Sun, Feng Zhao, Changshan Niu, and Sheng Liu. 2024. "Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs" Marine Drugs 22, no. 8: 347. https://doi.org/10.3390/md22080347
APA StyleLiu, X., Xin, J., Sun, Y., Zhao, F., Niu, C., & Liu, S. (2024). Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs. Marine Drugs, 22(8), 347. https://doi.org/10.3390/md22080347