Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases
Abstract
:1. Introduction
2. Major Function and Functional Diversity of A Domains
2.1. Substrate-Activation Function of A Domain
2.1.1. Substrate Recognition Mechanism of A Domain
Amino Acid Recognition Mechanism of A Domain
Keto Acid Recognition Mechanism of A Domain
2.1.2. Catalytic Mechanism of the A Domain
2.2. Auxiliary Functions of A Domains
3. Engineering of A Domains
3.1. Site-Specific Mutation of Substrate Specificity Codes
3.2. Substitution of the A Domain
3.3. Substitution of the Recognition Subdomain of the A Domain
3.4. Domain Insertion
3.5. Substitution of C-A Bidomain
3.6. NRPS Engineering by Whole-Module Rearrangements
Engineering Method | Details | Reference |
---|---|---|
Site-directed mutation | Site-specific mutation of substrate binding site | [26,64,65,66,67,68] |
Substitution of A domain | The A domain is replaced by an A domain with alternative substrate-specificity | [69,70,71,72] |
Substitution of the recognition subdomain of A domain | Only partial domain sequence associated with substrate recognition is substituted | [74,75] |
Domain insertion | Substitution of the domain inserted in interrupted A domain | [76] |
Removal of the inserted domain from the interrupted A domain | [76] | |
Inserting domains into non-interrupted A domain | [77] | |
Inserting domains at different positions in A domain | [78] | |
Substitution of C-A bidomain | Substitution of the region, including both C and A domains | [71] |
Whole-module rearrangements | Module Replacement | [72] |
Module deletion | [87,88] | |
Module extension | [88,89] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Izore, T.; Cryle, M.J. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat. Prod. Rep. 2018, 35, 1120–1139. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.A.E.; Schoppet, M.; Hansen, M.H.; Cryle, M.J. Diversity of nature’s assembly lines recent discoveries in non-ribosomal peptide synthesis. Mol. Biosyst. 2017, 13, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R.; Gulick, A.M. Structural Biology of Nonribosomal Peptide Synthetases. Methods Mol. Biol. 2016, 1401, 3–29. [Google Scholar] [CrossRef]
- Walsh, C.T.; Brien, R.V.O.; Khosla, C. Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angew. Chem.-Int. Ed. 2013, 52, 7098–7124. [Google Scholar] [CrossRef]
- Duckworth, B.P.; Wilson, D.J.; Aldrich, C.C. Measurement of Nonribosomal Peptide Synthetase Adenylation Domain Activity Using a Continuous Hydroxylamine Release Assay. Methods Mol. Biol. 2016, 1401, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Giessen, T.W.; Marahiel, M.A. Ribosome-independent biosynthesis of biologically active peptides: Application of synthetic biology to generate structural diversity. FEBS Lett. 2012, 586, 2065–2075. [Google Scholar] [CrossRef] [PubMed]
- Benny, A.M.; Gopakumar, S.T.; Janardhanan, R.K.; Nair, A.V.; Raj, N.B.; Vakkachan, A.P.; Raveendran, R.K.; Balakrishnan, S.K.; Karayi, S.N. Analysis of nonribosomal peptide synthetase genes in haemolymph microbes of marine crabs. Arch. Microbiol. 2021, 203, 1251–1258. [Google Scholar] [CrossRef]
- Schorn, M.A.; Jordan, P.A.; Podell, S.; Blanton, J.M.; Agarwal, V.; Biggs, J.S.; Allen, E.E.; Moore, B.S. Comparative genomics of cyanobacterial symbionts reveals distinct, specialized metabolism in tropical Dysideidae sponges. mBio 2019, 10, 10–1128. [Google Scholar] [CrossRef]
- Tambadou, F.; Lanneluc, I.; Sablé, S.; Klein, G.L.; Doghri, I.; Sopéna, V.; Didelot, S.; Barthélémy, C.; Thiéry, V.; Chevrot, R. Novel nonribosomal peptide synthetase (NRPS) genes sequenced from intertidal mudflat bacteria. FEMS Microbiol. Lett. 2014, 357, 123–130. [Google Scholar]
- Kahlert, L.; Lichstrahl, M.S.; Townsend, C.A. Colorimetric Determination of Adenylation Domain Activity in Nonribosomal Peptide Synthetases by Using Chrome Azurol S. Chembiochem 2023, 24, e202200668. [Google Scholar] [CrossRef]
- Fu, X.; Su, J.; Zeng, L. Prepatellamide A, a new cyclic peptide from the ascidian Lissoclinum patella. Sci. China Ser. B Chem. 2000, 43, 643–648. [Google Scholar] [CrossRef]
- Williams, D.E.; Dalisay, D.S.; Patrick, B.O.; Matainaho, T.; Andrusiak, K.; Deshpande, R.; Myers, C.L.; Piotrowski, J.S.; Boone, C.; Yoshida, M. Padanamides A and B, highly modified linear tetrapeptides produced in culture by a Streptomyces sp. isolated from a marine sediment. Org. Lett. 2011, 13, 3936–3939. [Google Scholar] [CrossRef]
- Jiao, W.-H.; Xu, Q.-H.; Ge, G.-B.; Shang, R.-Y.; Zhu, H.-R.; Liu, H.-Y.; Cui, J.; Sun, F.; Lin, H.-W. Flavipesides A–C, PKS-NRPS hybrids as pancreatic lipase inhibitors from a marine sponge symbiotic fungus Aspergillus flavipes 164013. Org. Lett. 2020, 22, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Acharya, D.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential. Front. Pharmacol. 2017, 8, 828. [Google Scholar] [CrossRef] [PubMed]
- Reimer, J.M.; Hague, A.S.; Tarry, M.J.; Schmeing, T.M. Piecing together nonribosomal peptide synthesis. Curr. Opin. Struc. Biol. 2018, 49, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xu, C.Y.; Wang, X.; Wu, Y.A.; Li, L. Nonribosomal peptide synthetases and nonribosomal cyanopeptides synthesis in Microcystis: A comparative genomics study. Algal Res. 2021, 59, 102432. [Google Scholar] [CrossRef]
- Drake, E.J.; Miller, B.R.; Shi, C.; Tarrasch, J.T.; Sundlov, J.A.; Allen, C.L.; Skiniotis, G.; Aldrich, C.C.; Gulick, A.M. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 2016, 529, U235–U289. [Google Scholar] [CrossRef] [PubMed]
- Abbood, N.; Prave, L.; Bozhueyuek, K.A.J.; Bode, H.B. A Practical Guideline to Engineering Nonribosomal Peptide Synthetases. Methods Mol. Biol. 2023, 2670, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Condurso, H.L.; Bruner, S.D. Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Nat. Prod. Rep. 2012, 29, 1099–1110. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, X.H.; Yuan, X.; Liu, F.; Wang, T. Engineered Biosynthesis through the Adenylation Domains from Nonribosomal Peptide Synthetases. Curr. Top. Med. Chem. 2023, 23, 1973–1984. [Google Scholar] [CrossRef]
- Marahiel, M.A. A structural model for multimodular NRPS assembly lines. Nat. Prod. Rep. 2016, 33, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Hur, G.H.; Vickery, C.R.; Burkart, M.D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 2012, 29, 1074–1098. [Google Scholar] [CrossRef] [PubMed]
- Samel, S.A.; Czodrowski, P.; Essen, L.O. Structure of the epimerization domain of tyrocidine synthetase A. Acta Crystallogr. D 2014, 70, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Sussmuth, R.D.; Mainz, A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew. Chem.-Int. Ed. 2017, 56, 3770–3821. [Google Scholar] [CrossRef] [PubMed]
- Konno, S.; Ishikawa, F.; Suzuki, T.; Dohmae, N.; Burkart, M.D.; Kakeya, H. Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem. Commun. 2015, 51, 2262–2265. [Google Scholar] [CrossRef] [PubMed]
- Kaljunen, H.; Schiefelbein, S.H.H.; Stummer, D.; Kozak, S.; Meijers, R.; Christiansen, G.; Rentmeister, A. Structural Elucidation of the Bispecificity of A Domains as a Basis for Activating Non-natural Amino Acids. Angew. Chem.-Int. Ed. 2015, 54, 8833–8836. [Google Scholar] [CrossRef] [PubMed]
- Rottig, M.; Medema, M.H.; Blin, K.; Weber, T.; Rausch, C.; Kohlbacher, O. NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 2011, 39, W362–W367. [Google Scholar] [CrossRef] [PubMed]
- Kittila, T.; Schoppet, M.; Cryle, M.J. Online Pyrophosphate Assay for Analyzing Adenylation Domains of Nonribosomal Peptide Synthetases. Chembiochem 2016, 17, 576–584. [Google Scholar] [CrossRef]
- Kudo, F.; Miyanaga, A.; Eguchi, T. Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. J. Ind. Microbiol. Biot. 2019, 46, 515–536. [Google Scholar] [CrossRef]
- Baranasic, D.; Zucko, J.; Diminic, J.; Gacesa, R.; Long, P.F.; Cullum, J.; Hranueli, D.; Starcevic, A. Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing. J. Ind. Microbiol. Biot. 2014, 41, 461–467. [Google Scholar] [CrossRef]
- Khayatt, B.I.; Overmars, L.; Siezen, R.J.; Francke, C. Classification of the Adenylation and Acyl-Transferase Activity of NRPS and PKS Systems Using Ensembles of Substrate Specific Hidden Markov Models. PLoS ONE 2013, 8, e62136. [Google Scholar] [CrossRef] [PubMed]
- Mongia, M.; Baral, R.; Adduri, A.; Yan, D.H.; Liu, Y.D.; Bian, Y.Y.; Kim, P.; Behsaz, B.; Mohimani, H. AdenPredictor: Accurate prediction of the adenylation domain specificity of nonribosomal peptide biosynthetic gene clusters in microbial genomes. Bioinformatics 2023, 39, i40–i46. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Zhao, Z.; Liu, K.; Liu, Y.; Zhang, H.; Wu, X.; Gong, S.; Ma, Y.; Zhao, H.; Liu, J. Screening the specific substrates of adenylation domain from marine actinomycetes by fluorescence quenching and isothermal titration calorimetry. Acta Pol. Pharm.-Drug Res. 2018, 75, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, Z.; Yao, L.; Wu, L.; Zhu, Y.; Zhao, M.; Xu, H. Advances in the adenylation domain: Discovery of diverse non-ribosomal peptides. Appl. Microbiol. Biot. 2023, 107, 4187–4197. [Google Scholar] [CrossRef]
- Stachelhaus, T.; Mootz, H.D.; Marahiel, M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 1999, 6, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, A.; Cieslak, J.; Shinohara, Y.; Kudo, F.; Eguchi, T. The crystal structure of the adenylation enzyme VinN reveals a unique beta-amino acid recognition mechanism. J. Biol. Chem. 2014, 289, 31448–31457. [Google Scholar] [CrossRef] [PubMed]
- Challis, G.L.; Ravel, J.; Townsend, C.A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 2000, 7, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Heard, S.C.; Winter, J.M. Structural, Biochemical and Bioinformatic Analyses of Nonribosomal Peptide Synthetase Adenylation Domains. Nat. Prod. Rep. 2024, 41, 1180–1205. [Google Scholar] [CrossRef]
- Bian, X.; Plaza, A.; Yan, F.; Zhang, Y.; Müller, R. Rational and efficient site-directed mutagenesis of adenylation domain alters relative yields of luminmide derivatives in vivo. Biotechnol. Bioeng. 2015, 112, 1343–1353. [Google Scholar] [CrossRef]
- Alonzo, D.A.; Chiche-Lapierre, C.; Tarry, M.J.; Wang, J.; Schmeing, T.M. Structural basis of keto acid utilization in nonribosomal depsipeptide synthesis. Nat. Chem. Biol. 2020, 16, 493–496. [Google Scholar] [CrossRef]
- Miyanaga, A.; Kudo, F.; Eguchi, T. Recent advances in the structural analysis of adenylation domains in natural product biosynthesis. Curr. Opin. Chem. Biol. 2022, 71, 102212. [Google Scholar] [CrossRef] [PubMed]
- Gulick, A.M. Conformational Dynamics in the Acyl-CoA Synthetases, Adenylation Domains of Non-ribosomal Peptide Synthetases, and Firefly Luciferase. ACS Chem. Biol. 2009, 4, 811–827. [Google Scholar] [CrossRef] [PubMed]
- Kasai, S.; Konno, S.; Ishikawa, F.; Kakeya, H. Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling. Chem. Commun. 2015, 51, 15764–15767. [Google Scholar] [CrossRef]
- Stanisic, A.; Kries, H. Adenylation Domains in Nonribosomal Peptide Engineering. Chembiochem 2019, 20, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.R.; Drake, E.J.; Shi, C.; Aldrich, C.C.; Gulick, A.M. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture. J. Biol. Chem. 2016, 291, 22559–22571. [Google Scholar] [CrossRef] [PubMed]
- Crusemann, M.; Kohlhaas, C.; Piel, J. Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains. Chem. Sci. 2013, 4, 1041–1045. [Google Scholar] [CrossRef]
- Boll, B.; Taubitz, T.; Heide, L. Role of MbtH-like Proteins in the Adenylation of Tyrosine during Aminocoumarin and Vancomycin Biosynthesis. J. Biol. Chem. 2011, 286, 36281–36290. [Google Scholar] [CrossRef] [PubMed]
- Herbst, D.A.; Boll, B.; Zocher, G.; Stehle, T.; Heide, L. Structural Basis of the Interaction of MbtH-like Proteins, Putative Regulators of Nonribosomal Peptide Biosynthesis, with Adenylating Enzymes. J. Biol. Chem. 2013, 288, 1991–2003. [Google Scholar] [CrossRef] [PubMed]
- Felnagle, E.A.; Barkei, J.J.; Park, H.; Podevels, A.M.; McMahon, M.D.; Drott, D.W.; Thomas, M.G. MbtH-Like Proteins as Integral Components of Bacterial Nonribosomal Peptide Synthetases. Biochemistry 2010, 49, 8815–8817. [Google Scholar] [CrossRef]
- Al-Mestarihi, A.H.; Villamizar, G.; Fernandez, J.; Zolova, O.E.; Lombo, F.; Garneau-Tsodikova, S. Adenylation and S-Methylation of Cysteine by the Bifunctional Enzyme TioN in Thiocoraline Biosynthesis. J. Am. Chem. Soc. 2014, 136, 17350–17354. [Google Scholar] [CrossRef]
- Labby, K.J.; Watsula, S.G.; Garneau-Tsodikova, S. Interrupted adenylation domains: Unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Nat. Prod. Rep. 2015, 32, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Baunach, M.; Chowdhury, S.; Stallforth, P.; Dittmann, E. The Landscape of Recombination Events That Create Nonribosomal Peptide Diversity. Mol. Biol. Evol. 2021, 38, 2116–2130. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Garzan, A.; Tsodikov, O.V.; Gameau-Tsodikovae, S. Deciphering Nature’s Intricate Way of N,S-Dimethylating L-Cysteine: Sequential Action of Two Bifunctional Adenylation Domains. Biochemistry 2017, 56, 6087–6097. [Google Scholar] [CrossRef]
- Lundy, T.A.; Mori, S.; Garneau-Tsodikova, S. A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families. RSC Chem. Biol. 2020, 1, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Zolova, O.E.; Garneau-Tsodikova, S. KtzJ-dependent serine activation and O-methylation by KtzH for kutznerides biosynthesis. J. Antibiot. 2014, 67, 59–64. [Google Scholar] [CrossRef]
- Mori, S.; Pang, A.H.; Lundy, T.A.; Garzan, A.; Tsodikov, O.V.; Garneau-Tsodikova, S. Structural basis for backbone N-methylation by an interrupted adenylation domain. Nat. Chem. Biol. 2018, 14, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Duan, Y.; Zou, Y.; Deng, Z.; Lin, S. NRPS Protein MarQ Catalyzes Flexible Adenylation and Specific S-Methylation. ACS Chem. Biol. 2018, 13, 2387–2391. [Google Scholar] [CrossRef]
- Biron, E.; Chatterjee, J.; Ovadia, O.; Langenegger, D.; Brueggen, J.; Hoyer, D.; Schmid, H.A.; Jelinek, R.; Gilon, C.; Hoffman, A.; et al. Improving oral bioavailability of peptides by multiple N-methylation: Somatostatin analogues. Angew. Chem. Int. Ed. Engl. 2008, 47, 2595–2599. [Google Scholar] [CrossRef]
- Tillett, D.; Dittmann, E.; Erhard, M.; von Dohren, H.; Borner, T.; Neilan, B.A. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chem. Biol. 2000, 7, 753–764. [Google Scholar] [CrossRef]
- Lundy, T.A.; Mori, S.; Thamban Chandrika, N.; Garneau-Tsodikova, S. Characterization of a Unique Interrupted Adenylation Domain That Can Catalyze Three Reactions. ACS Chem. Biol. 2020, 15, 282–289. [Google Scholar] [CrossRef]
- Nishizawa, T.; Ueda, A.; Nakano, T.; Nishizawa, A.; Miura, T.; Asayama, M.; Fujii, K.; Harada, K.; Shirai, M. Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium Microcystis. J. Biochem. 2011, 149, 475–485. [Google Scholar] [CrossRef]
- Zhang, J.J.; Tang, X.; Huan, T.; Ross, A.C.; Moore, B.S. Pass-back chain extension expands multimodular assembly line biosynthesis. Nat. Chem. Biol. 2020, 16, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.H.; Liu, Z.H.; Zhao, H.M.; Ang, E.L. Recent advances in combinatorial biosynthesis for drug discovery. Drug Des. Dev. Ther. 2015, 9, 823–833. [Google Scholar] [CrossRef]
- Eppelmann, K.; Stachelhaus, T.; Marahiel, M.A. Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 2002, 41, 9718–9726. [Google Scholar] [CrossRef] [PubMed]
- Kries, H.; Wachtel, R.; Pabst, A.; Wanner, B.; Niquille, D.; Hilvert, D. Reprogramming nonribosomal peptide synthetases for “clickable” amino acids. Angew. Chem. Int. Ed. Engl. 2014, 53, 10105–10108. [Google Scholar] [CrossRef]
- Thirlway, J.; Lewis, R.; Nunns, L.; Al Nakeeb, M.; Styles, M.; Struck, A.W.; Smith, C.P.; Micklefield, J. Introduction of a Non-Natural Amino Acid into a Nonribosomal Peptide Antibiotic by Modification of Adenylation Domain Specificity. Angew. Chem.-Int. Ed. 2012, 51, 7181–7184. [Google Scholar] [CrossRef]
- Kim, E.; Du, Y.E.; Ban, Y.H.; Shin, Y.-H.; Oh, D.-C.; Yoon, Y.J. Enhanced ohmyungsamycin a production via adenylation domain engineering and optimization of culture conditions. Front. Microbiol. 2021, 12, 626881. [Google Scholar] [CrossRef] [PubMed]
- Soeriyadi, A.H.; Ongley, S.E.; Kehr, J.C.; Pickford, R.; Dittmann, E.; Neilan, B.A. Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase. Chembiochem 2022, 23, e202100574. [Google Scholar] [CrossRef]
- Calcott, M.J.; Owen, J.G.; Ackerley, D.F. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nat. Commun. 2020, 11, 4554. [Google Scholar] [CrossRef]
- Stachelhaus, T.; Schneider, A.; Marahiel, M.A. Rational Design of Peptide Antibiotics by Targeted Replacement of Bacterial and Fungal Domains. Science 1995, 269, 69–72. [Google Scholar] [CrossRef]
- Calcott, M.J.; Owen, J.G.; Lamont, I.L.; Ackerley, D.F. Biosynthesis of Novel Pyoverdines by Domain Substitution in a Nonribosomal Peptide Synthetase of Pseudomonas aeruginosa. Appl. Env. Microb. 2014, 80, 5723–5731. [Google Scholar] [CrossRef] [PubMed]
- Winn, M.; Fyans, J.K.; Zhuo, Y.; Micklefield, J. Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep. 2016, 33, 317–347. [Google Scholar] [CrossRef] [PubMed]
- Throckmorton, K.; Vinnik, V.; Chowdhury, R.; Cook, T.; Cheyrette, M.G.; Maranas, C.; Pfleger, B.; Thomas, M.G. Directed Evolution Reveals the Functional Sequence Space of an Adenylation Domain Specificity Code. ACS Chem. Biol. 2019, 14, 2044–2054. [Google Scholar] [CrossRef] [PubMed]
- Kries, H.; Niquille, D.L.; Hilvert, D. A Subdomain Swap Strategy for Reengineering Nonribosomal Peptides. Chem. Biol. 2015, 22, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Thong, W.L.; Zhang, Y.; Zhuo, Y.; Robins, K.J.; Fyans, J.K.; Herbert, A.J.; Law, B.J.C.; Micklefield, J. Gene editing enables rapid engineering of complex antibiotic assembly lines. Nat. Commun. 2021, 12, 6872. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.K.; Garneau-Tsodikova, S. Expanding Substrate Promiscuity by Engineering a Novel Adenylating-Methylating NRPS Bifunctional Enzyme. Chembiochem 2016, 17, 1328–1332. [Google Scholar] [CrossRef] [PubMed]
- Lundy, T.A.; Mori, S.; Garneau-Tsodikova, S. Engineering Bifunctional Enzymes Capable of Adenylating and Selectively Methylating the Side Chain or Core of Amino Acids. ACS Synth. Biol. 2018, 7, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Lundy, T.A.; Mori, S.; Garneau-Tsodikova, S. Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, N-, and S-methylation. Org. Biomol. Chem. 2019, 17, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Lundy, T.A.; Mori, S.; Garneau-Tsodikova, S. Lessons learned in engineering interrupted adenylation domains when attempting to create trifunctional enzymes from three independent monofunctional ones. RSC Adv. 2020, 10, 34299–34307. [Google Scholar] [CrossRef]
- Meyer, S.; Kehr, J.C.; Mainz, A.; Dehm, D.; Petras, D.; Sussmuth, R.D.; Dittmann, E. Biochemical Dissection of the Natural Diversification of Microcystin Provides Lessons for Synthetic Biology of NRPS. Cell Chem. Biol. 2016, 23, 462–471. [Google Scholar] [CrossRef]
- Ackerley, D.F.; Lamont, I.L. Characterization and genetic manipulation of peptide synthetases in Pseudomonas aeruginosa PAO1 in order to generate novel pyoverdines. Chem. Biol. 2004, 11, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Tanovic, A.; Samel, S.A.; Essen, L.O.; Marahiel, M.A. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 2008, 321, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Messenger, S.R.; McGuinniety, E.M.; Stevenson, L.J.; Owen, J.G.; Challis, G.L.; Ackerley, D.F.; Calcott, M.J. Metagenomic domain substitution for the high-throughput modification of nonribosomal peptides. Nat. Chem. Biol. 2024, 20, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Bozhüyük, K.A.; Fleischhacker, F.; Linck, A.; Wesche, F.; Tietze, A.; Niesert, C.-P.; Bode, H.B. De novo design and engineering of non-ribosomal peptide synthetases. Nat. Chem. 2018, 10, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Bozhüyük, K.A.; Linck, A.; Tietze, A.; Kranz, J.; Wesche, F.; Nowak, S.; Fleischhacker, F.; Shi, Y.-N.; Grün, P.; Bode, H.B. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat. Chem. 2019, 11, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Bozhüyük, K.A.; Präve, L.; Kegler, C.; Schenk, L.; Kaiser, S.; Schelhas, C.; Shi, Y.-N.; Kuttenlochner, W.; Schreiber, M.; Kandler, J. Evolution-inspired engineering of nonribosomal peptide synthetases. Science 2024, 383, eadg4320. [Google Scholar] [CrossRef] [PubMed]
- Mootz, H.D.; Kessler, N.; Linne, U.; Eppelmann, K.; Schwarzer, D.; Marahiel, M.A. Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. J. Am. Chem. Soc. 2002, 124, 10980–10981. [Google Scholar] [CrossRef]
- Awakawa, T.; Fujioka, T.; Zhang, L.; Hoshino, S.; Hu, Z.; Hashimoto, J.; Kozone, I.; Ikeda, H.; Shin-Ya, K.; Liu, W.; et al. Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nat. Commun. 2018, 9, 3534. [Google Scholar] [CrossRef]
- Butz, D.; Schmiederer, T.; Hadatsch, B.; Wohlleben, W.; Weber, T.; Sussmuth, R.D. Module extension of a non-ribosomal peptide synthetase of the glycopeptide antibiotic balhimycin produced by Amycolatopsis balhimycina. Chembiochem 2008, 9, 1195–1200. [Google Scholar] [CrossRef]
- Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; et al. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front. Microbiol. 2019, 10, 1404. [Google Scholar] [CrossRef]
Product | Interrupted A Domains | Interruption Site | Methylation Type | Reference |
---|---|---|---|---|
Microcystin-LR | McyA (A3-Mb-A3) | a8, a9 | N-methylation | [59] |
Pyochelin | PchF (A2-Mb-A2) | a8, a9 | N-methylation | [51] |
Kutzneride | KtzH (A4-Ms-A4) | a8, a9 | O-methylation | [55] |
Columbamides | ColG (A-Ms-Mb-A) | a8, a9 | O-methylation, N-methylation | [60] |
Micropeptin | McnC (A6-Mb-A6) | a8, a9 | N-methylation | [61] |
Thiocoraline | TioS (A3-Mb-A3) (A4-Mb-A4) | a8, a9 | N-methylation | [53,56] |
Thiocoraline | TioN(A-Ms-A) | a2, a3 | S-methylation | [50] |
Maremycins | MarQ (A-Ms-A) | a2, a3 | S-methylation | [57] |
Thalassospiramide | TtcC (A6-Mb-A6) | a2, a3 | N-methylation | [62] |
Thalassospiramide | TtmB (A6-Mb-A6) | a2, a3 | N-methylation | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Peng, Z.; Huang, Z.; Fang, J.; Li, X.; Qiu, X. Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases. Mar. Drugs 2024, 22, 349. https://doi.org/10.3390/md22080349
Zhang M, Peng Z, Huang Z, Fang J, Li X, Qiu X. Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases. Marine Drugs. 2024; 22(8):349. https://doi.org/10.3390/md22080349
Chicago/Turabian StyleZhang, Mengli, Zijing Peng, Zhenkuai Huang, Jiaqi Fang, Xinhai Li, and Xiaoting Qiu. 2024. "Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases" Marine Drugs 22, no. 8: 349. https://doi.org/10.3390/md22080349
APA StyleZhang, M., Peng, Z., Huang, Z., Fang, J., Li, X., & Qiu, X. (2024). Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases. Marine Drugs, 22(8), 349. https://doi.org/10.3390/md22080349