In Vitro Anti-HIV-1 Activity of Fucoidans from Brown Algae
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Cells
4.2. Virus
4.3. Fucoidan Extraction
4.4. Compounds
4.4.1. Studied Compounds (Fucoidans)
4.4.2. Reference (Commercial) Antiretroviral Drugs
4.5. Cytotoxic Activity of Fucoidans
4.6. Antiviral Activity of Fucoidans
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. HIV and AIDS. Fact Sheets. (Updated 13 July 2023). Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 15 April 2024).
- Barré-Sinoussi, F.; Ross, A.L.; Delfraissy, J. Past, present and future: 30 years of HIV research. Nat. Rev. Microbiol. 2013, 11, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Anti-retroviral drugs: Current state and development in the next decade. Acta Pharm. Sin. B 2018, 8, 131–136. [Google Scholar] [CrossRef] [PubMed]
- VeryWellHealth. List of Approved HIV Antiretroviral Drugs. (Updated on 23 August 2023). Available online: https://www.verywellhealth.com/list-of-approved-hiv-antiretroviral-drugs-49309 (accessed on 15 April 2024).
- HIVinfo.NIH.gov. Available online: https://hivinfo.nih.gov/hiv-source (accessed on 15 April 2024).
- Yavuz, B.; Morgan, J.L.; Showalter, L.; Horng, K.R.; Dandekar, S.; Herrera, C.; LiWang, P.; Kaplan, D.L. Pharmaceutical Approaches to HIV Treatment and Prevention. Adv. Ther. 2018, 1, 1800054. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Arias, L.; Delgado, R. Update and latest advances in antiretroviral therapy. Trends Pharmacol. Sci. 2022, 43, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Heidary, M.; Shariati, S.; Nourigheimasi, S.; Khorami, M.; Moradi, M.; Motahar, M.; Bahrami, P.; Akrami, S.; Kaviar, V.H. Mechanism of action, resistance, interaction, pharmacokinetics, pharmacodynamics, and safety of fostemsavir. BMC Infect. Dis. 2024, 24, 250. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.T. Small Molecule HIV-1 Attachment Inhibitors: Discovery, Mode of Action and Structural Basis of Inhibition. Viruses 2021, 13, 843. [Google Scholar] [CrossRef] [PubMed]
- Karamov, E.V.; Yaroslavtseva, N.G.; Shchelkanov, M.Y.; Martovitsky, D.V.; Lukashov, V.V.; Kozlov, A.P.; Papuashvili, M.N.; Goudsmit, J.; Khaitov, R.M. Antigenic and genetic relations between different HIV-1 subtypes in Russia. Immunol. Infect. Dis. 1996, 6, 15–24. [Google Scholar]
- Shchelkanov, M.Y.; Starikov, N.S.; Yaroslavtsev, I.V.; Tsvetkov, P.O.; Yudin, A.N.; Denisov, M.V.; Slavsky, A.A.; Vedenov, A.A.; Karamov, E.V. Variability analysis of HIV-1 gp120 V3 region: IV. Distribution functions for intra- and inter-subtype amino acid Hamming distances. J. Biomol. Struct. Dyn. 1998, 15, 877–885. [Google Scholar] [CrossRef]
- Bangsberg, D.R. Preventing HIV antiretroviral resistance through better monitoring of treatment adherence. J. Infect. Dis. 2008, 197 (Suppl. S3), S272–S278. [Google Scholar] [CrossRef]
- Carr, A.; Mackie, N.E.; Paredes, R.; Ruxrungtham, K. HIV drug resistance in the era of contemporary antiretroviral therapy: A clinical perspective. Antivir. Ther. 2023, 28, 13596535231201162. [Google Scholar] [CrossRef]
- Godfrey, C.; Thigpen, M.C.; Crawford, K.W.; Jean-Phillippe, P.; Pillay, D.; Persaud, D.; Kuritzkes, D.R.; Wainberg, M.; Raizes, E.; Fitzgibbon, J. Global HIV Antiretroviral Drug Resistance: A Perspective and Report of a National Institute of Allergy and Infectious Diseases Consultation. J. Infect. Dis. 2017, 216, S798–S800. [Google Scholar] [CrossRef] [PubMed]
- WHO. HIV Drug Resistance. (Updated 17 November 2022). Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-drug-resistance (accessed on 15 April 2024).
- Vo, T.-S.; Kim, S.-K. Potential Anti-HIV Agents from Marine Resources: An Overview. Mar. Drugs 2010, 8, 2871–2892. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, T.U.; Nagahawatta, D.P.; Fernando, I.P.S.; Kim, Y.-T.; Kim, J.-S.; Kim, W.-S.; Lee, J.S.; Jeon, Y.-J. A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent. Mar. Drugs 2022, 20, 755. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, K.C.S.; Medeiros, V.P.; Queiroz, L.S.; Abreu, H.L.R.D.; Rocha, A.O.; Ferreira, C.V.; Jucá, M.B.; Aoyama, H.; Leite, E.L. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed. Pharmacother. 2008, 62, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Thuy, T.T.; Ly, B.M.; Van, T.T.; Quang, N.V.; Tu, H.C.; Zheng, Y.; Seguin-Devaux, C.; Mi, B.; Ai, U. Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydr. Polym. 2015, 115, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, K.K.A.; Herath, K.H.I.N.M.; Yang, H.-W.; Choi, C.S.; Jeon, Y.-J. Anti-Inflammatory Mechanisms of Fucoidans to Treat Inflammatory Diseases: A Review. Mar. Drugs 2021, 19, 678. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers 2020, 12, 2338. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Tan, X.; Zhang, Y.; Li, F.; Luo, P.; Liu, H. Molecular Targets and Related Biologic Activities of Fucoidan: A Review. Mar. Drugs 2020, 18, 376. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Dias, M.; Madusanka, D.M.D.; Han, E.J.; Kim, M.J.; Heo, S.J.; Lee, K.; Cheong, S.H.; Ahn, G. Low molecular weight fucoidan fraction ameliorates inflammation and deterioration of skin barrier in fine-dust stimulated keratinocytes. Int. J. Biol. Macromol. 2021, 168, 620–630. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Z.; Song, H.; Li, P. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2010, 46, 6–12. [Google Scholar] [CrossRef]
- Pereira, C.S.G.P.; Prieto, M.A.; Oliveira, M.B.P.P. Algal-Derived Hydrocolloids with Potential Antiviral Activity: A Mechanistic Approach. Biol. Life Sci. Forum 2022, 18, 23. [Google Scholar] [CrossRef]
- Krylova, N.V.; Ermakova, S.P.; Lavrov, V.F.; Leneva, I.A.; Kompanets, G.G.; Iunikhina, O.V.; Nosik, M.N.; Ebralidze, L.K.; Falynskova, I.N.; Silchenko, A.S.; et al. The Comparative Analysis of Antiviral Activity of Native and Modified Fucoidans from Brown Algae Fucus evanescens In Vitro and In Vivo. Mar. Drugs 2020, 18, 224. [Google Scholar] [CrossRef]
- Usoltseva (Menshova), R.V.; Anastyuk, S.D.; Shevchenko, N.M.; Zvyagintseva, T.N.; Ermakova, S.P. The comparison of structure and anticancer activity in vitro of polysaccharides from brown algae Alaria marginata and A. angusta. Carbohydr. Polym. 2016, 153, 258–265. [Google Scholar] [CrossRef]
- Surits, V.V.; Usoltseva, R.V.; Zueva, A.O.; Schevchenko, N.M.; Ermakova, S.P. Structural characteristics and in vitro anticancer activity of polysaccharides of brown alga Alaria ochotensis. In Proceedings of the XX Russian Youth School-Conference on Actual Problems of Chemistry and Biology, Vladivostok, Russia, 4-8 September 2023. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Shevchenko, N.M.; Malyarenko, O.S.; Anastyuk, S.D.; Kasprik, A.E.; Zvyagintsev, N.V.; Ermakova, S.P. Fucoidans from brown algae Laminaria longipes and Saccharina cichorioides: Structural characteristics, anticancer and radiosensitizing activity in vitro. Carbohydr. Polym. 2019, 221, 157–165. [Google Scholar] [CrossRef]
- Vishchuk, O.S.; Ermakova, S.P.; Zvyagintseva, T.N. The fucoidans from brown algae of Far-Eastern seas: Anti-tumor activity and structure-function relationship. Food Chem. 2013, 141, 1211–1217. [Google Scholar] [CrossRef]
- Shevchenko, N.M.; Anastyuk, S.D.; Gerasimenko, N.I.; Dmitrenok, P.S.; Isakov, V.V.; Zvyagintseva, T.N. Polysaccharide and Lipid Composition of the Brown Seaweed Laminaria gurjanovae. Russ. J. Bioorg. Chem. 2007, 33, 88–98. [Google Scholar] [CrossRef]
- Zvyagintseva, T.N.; Usoltseva, R.V.; Shevchenko, N.M.; Anastyuk, S.D.; Isakov, V.V.; Zvyagintsev, N.V.; Krupnova, T.N.; Zadorozhny, P.A.; Ermakova, S.P. Composition of polysaccharides and radiosensitizing activity of native and sulfated laminarans from the Tauya basicrassa Kloczc. et Krupn. Carbohydr. Polym. 2020, 250, 116921. [Google Scholar] [CrossRef]
- Pradhan, B.; Nayak, R.; Patra, S.; Bhuyan, P.P.; Behera, P.K.; Mandal, A.K.; Behera, C.; Ki, J.-S.; Adhikary, S.P.; MubarakAli, D.; et al. A state-of-the-art review on fucoidan as an antiviral agent to combat viral infections. Carbohydr. Polym. 2022, 291, 119551. [Google Scholar] [CrossRef]
- Lu, W.; Yang, Z.; Chen, J.; Wang, D.; Zhang, Y. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydr. Polym. 2021, 272, 118526. [Google Scholar] [CrossRef]
- Chen, L.; Huang, G. The antiviral activity of polysaccharides and their derivatives. Int. J. Biol. Macromol. 2018, 115, 77–82. [Google Scholar] [CrossRef]
- Mensah, E.O.; Kanwugu, O.N.; Panda, P.M.; Adadi, P. Marine fucoidans: Structural, extraction, biological activities and their applications in the food industry. Food Hydrocoll. 2023, 142, 108784. [Google Scholar] [CrossRef]
- Tan, M.; Gorji, M.; Toh, J.; Park, A.; Li, Y.; Gong, Z.; Li, D. Fucoidan from Fucus vesiculosus can inhibit human norovirus replication by enhancing the host innate immune response. J. Funct. Foods 2022, 95, 105149. [Google Scholar] [CrossRef]
- Trinchero, J.; Ponce, N.M.; Córdoba, O.L.; Flores, M.L.; Pampuro, S.; Stortz, C.A.; Salomón, H.; Turk, G. Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phytother. Res. 2009, 23, 707–712. [Google Scholar] [CrossRef]
- Artan, M.; Karadeniz, F.; Karagozlu, M.Z.; Kim, M.M.; Kim, S.K. Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr. Res. 2010, 345, 656–662. [Google Scholar] [CrossRef]
- Amornrut, C.; Toida, T.; Imanari, T.; Woo, E.R.; Park, H.; Linhardt, R.; Wu, S.J.; Kim, Y.S. A new sulfated beta-galactan from clams with anti-HIV activity. Carbohydr. Res. 1999, 321, 121–127. [Google Scholar] [CrossRef]
- Bourgougnon, N.; Lahaye, M.; Quemener, B.; Chermann, J.-C.; Rimbert, M.; Cormaci, M.; Furnari, G.; Kornprobst, J.-M. Annual variation in composition and in vitro anti-HIV-1 activity of the sulfated glucuronogalactan from Schizymenia dubyi (Rhodophyta, Gigartinales). J. Appl. Phycol. 1996, 8, 155–161. [Google Scholar] [CrossRef]
- Feng, Y.; Broder, C.C.; Kennedy, P.E.; Berger, E.A. HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor. Science 1996, 272, 872–877. [Google Scholar] [CrossRef]
- Huang, L.S.M.; Snyder, E.Y.; Schooley, R.T. Strategies and Progress in CXCR4-Targeted Anti-Human Immunodeficiency Virus (HIV) Therapeutic Development. Clin. Infect. Dis. 2021, 73, 919–924. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, R.; Cao, Q.; Yang, X.; Huang, Z.; An, J. Discoveries and developments of CXCR4-targeted HIV-1 entry inhibitors. Exp. Biol. Med. 2020, 245, 477–485. [Google Scholar] [CrossRef]
- Connell, B.J.; Hermans, L.E.; Wensing, A.M.J.; Schellens, I.; Schipper, P.J.; van Ham, P.M.; de Jong, D.T.C.M.; Otto, S.; Mathe, T.; Moraba, R.; et al. Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection. Sci. Rep. 2020, 10, 15866. [Google Scholar] [CrossRef]
- Bianchi, M.E.; Mezzapelle, R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front. Immunol. 2020, 11, 2109. [Google Scholar] [CrossRef]
- Teixidó, J.; Martínez-Moreno, M.; Díaz-Martínez, M.; Sevilla-Movilla, S. The good and bad faces of the CXCR4 chemokine receptor. Int. J. Biochem. Cell Biol. 2018, 95, 121–131. [Google Scholar] [CrossRef]
- Armani-Tourret, M.; Zhou, Z.; Gasser, R.; Staropoli, I.; Cantaloube-Ferrieu, V.; Benureau, Y.; Garcia-Perez, J.; Perez-Olmeda, M.; Lorin, V.; Puissant-Lubranoet, B.; et al. Mechanisms of HIV-1 evasion to the antiviral activity of chemokine CXCL12 indicate potential links with pathogenesis. PLoS Pathog. 2021, 17, e1009526. [Google Scholar] [CrossRef]
- Liu, P.; Sun, H.; Zhou, X.; Wang, Q.; Gao, F.; Fu, Y.; Li, T.; Wang, Y.; Li, Y.; Fan, B.; et al. CXCL12/CXCR4 axis as a key mediator in atrial fibrillation via bioinformatics analysis and functional identification. Cell Death Dis. 2021, 12, 813. [Google Scholar] [CrossRef]
- Schneider, T.; Ehrig, K.; Liewert, I.; Alban, S. Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: Superiority of a sulfated galactofucan from the brown alga Saccharina latissima and fucoidan over heparins. Glycobiology 2015, 25, 812–824. [Google Scholar] [CrossRef]
- Irhimeh, M.R.; Nordon, R.E.; Ko, K.-Y.E.; Fitton, H.; Lowenthal, R.M. Fucoidan down Regulates the Expression of CXCR4 In Vitro on Human Hematopoietic CD34+ Cells. Blood 2006, 108, 3384. [Google Scholar] [CrossRef]
- Mercer, J.; Schelhaas, M.; Helenius, A. Virus entry by endocytosis. Ann. Rev. Biochem. 2010, 79, 803–833. [Google Scholar] [CrossRef]
- Bai, G.; Tuvikene, R. Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic. Viruses 2021, 13, 1817. [Google Scholar] [CrossRef]
- Dinesh, S.; Menon, T.; Hanna, L.E.; Suresh, V.; Sathuvan, M.; Manikannan, M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int. J. Biol. Macromol. 2016, 82, 83–88. [Google Scholar] [CrossRef]
- Shevchenko, N.M.; Imbs, T.I.; Urvantseva, A.I.; Kusaykin, M.I.; Kornienko, V.G.; Zvyagintseva, T.N.; Elyakova, L.A. Method of Processing Seaweed. Patent WO 2005/014657, 2005. Available online: https://patents.google.com/patent/US20070218076A1/en (accessed on 28 June 2024).
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 4265. [Google Scholar] [CrossRef]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Waffenschmidt, S.; Jaenicke, L. Assay of reducing sugars in the nanomole range with 2,2’-bicinchoninate. Anal. Biochem. 1987, 165, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Weislow, O.S.; Kiser, R.; Fine, D.L.; Bader, J.; Shoemaker, R.H.; Boyd, M.R. New soluble-formazan assay for HIV-1 cytopathic effects: Application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. J. Natl. Cancer Inst. 1989, 81, 577–586. [Google Scholar] [CrossRef] [PubMed]
Fucoidan | Yield, % * | SO3Na, % ** | Monosaccharide Composition, mol % | Reference | |||
---|---|---|---|---|---|---|---|
Fuc | Gal | Man | Xyl | ||||
AmF3 | 0.4 | 28 | 47.5 | 47.3 | 0 | 5.2 | [27] |
AoF3 | 2.2 | 34 | 22 | 78 | 0 | 0 | [28] |
LlF | 0.35 | 32 | 100 | 0 | 0 | 0 | [29] |
ScF | 2.2 | 39 | 100 | 0 | 0 | 0 | [30] |
SgF2 | 2.0 | 38 | 50 | 40.6 | 2.0 | 0 | [31] |
1TbF1 | 0.21 | 21 | 42.4 | 57.6 | 0 | 0 | [32] |
Compound | CC50 (µg/mL) | Pre-Treatment of Virus | Pretreatment of Cells | Simultaneous Treatment | Treatment of Infected Cells | ||||
---|---|---|---|---|---|---|---|---|---|
IC50 (µg/mL) | SI | IC50 (µg/mL) | SI | IC50 (µg/mL) | SI | IC50 (µg/mL) | SI | ||
1 (AmF3) | 1058 ± 116 | 21.1 ± 2.5 | 50.1 ± 6.5 * | 49.8 ± 6.5 | 21.2 ± 2.7 | 33.1 ± 4.3 | 32.0 ± 4.2 | 25.6 ± 3.3 | 41.3 ± 5.4 * |
2 (AoF3) | 2395 ± 263 | 103.5 ± 12.4 | 23.1 ± 2.8 | 91.3 ± 11.0 | 26.2 ± 3.1 | 16.0 ± 2.1 | 149.7 ± 16.5 * | 101.9 ± 11.2 | 23.5 ± 3.3 |
3 (LlF) | 1509 ± 181 | 66.2 ± 8.6 | 22.8 ± 3.0 | 54.6 ± 7.1 | 27.6 ± 3.6 | 15.3 ± 2.0 | 98.6 ± 10.8 * | 76.3 ± 9.1 | 19.8 ± 2.6 |
4 (ScF) | 2203 ± 242 | 34.8 ± 4.5 | 63.3 ± 8.2 * | 28.8 ± 3.4 | 76.5 ± 9.2 * | 13.4 ± 1.7 | 164.4 ± 18.1 * | 45.9 ± 6.0 | 48.0 ± 6.2 * |
5 (SgF2) | 2232 ± 245 | 110.0 ± 13.0 | 20.3 ± 2.4 | 32.5 ± 3.9 | 68.7 ± 8.2 * | 25.9 ± 3.4 | 86.2 ± 11.2 * | 42.4 ± 5.5 | 52.6 ± 6.8 * |
6 (1TbF1) | 2523 ± 278 | 62.6 ± 7.5 | 40.3 ± 5.2 * | 93.0 ± 10.2 | 27.1 ± 3.5 | 19.9 ± 2.6 | 126.8 * | 35.8 ± 5.0 | 70.5 ± 9.2 * |
NNRTI | 54 ± 7 | 7.9 ± 1.0 | 6.8 ± 0.9 | 9.0 ± 1.2 | 5.9 ± 0.7 | 7.9 ± 1.0 | 6.7 ± 0.8 | 2.9 ± 0.4 | 18.6 ± 2.4 |
NRTI | 51 ± 7 | 11.6 ± 1.4 | 4.4 ± 0.5 | 10.2 ± 1.3 | 4.9 ± 0.6 | 5.4 ± 0.7 | 9.4 ± 1.0 | 2.2 ± 0.3 | 23.0 ± 3.2 |
INSTI | 63 ± 8 | 3.1 ± 0.4 | 20.2 ± 2.6 | 4.4 ± 0.5 | 14.2 ± 1.7 | 1.9 ± 0.2 | 32.9 ± 3.9 | 2.0 ± 0.3 | 31.3 ± 4.4 |
PI | 71 ± 9 | 2.8 ± 0.3 | 25.5 ± 3.3 | 2.9 ± 0.3 | 24.6 ± 2.9 | 2.3 ± 0.3 | 31.0 ± 4.0 | 2.9 ± 0.4 | 24.6 ± 3.2 |
Fucoidan | Concentration, µg/mL | Pretreatment of Cells | Pretreatment of Virus | Simultaneous Treatment | Treatment of Infected Cells |
---|---|---|---|---|---|
1 (AmF3) | 25 | + | - | - | + |
50 | - | - | - | - | |
100 | - | - | - | - | |
150 | - | - | - | - | |
2 (AoF3) | 25 | + | + + | - | + + |
50 | - | + + | - | + + | |
100 | - | + + | - | - | |
150 | - | - | - | - | |
3 (LlF) | 25 | - | + + | + | + + |
50 | - | + + | - | + + | |
100 | - | + | - | - | |
150 | - | - | - | - | |
4 (ScF) | 25 | + | + + | + | + + |
50 | - | + + | - | + + | |
100 | - | - | - | - | |
150 | - | - | - | - | |
5 (SgF2) | 25 | + | + + | + | + + |
50 | - | + + | - | + + | |
100 | - | ++ | - | - | |
150 | - | - | - | - | |
6 (1TbF1) | 25 | + | - | - | + |
50 | - | - | - | - | |
100 | - | - | - | - | |
150 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosik, M.N.; Krylova, N.V.; Usoltseva, R.V.; Surits, V.V.; Kireev, D.E.; Shchelkanov, M.Y.; Svitich, O.A.; Ermakova, S.P. In Vitro Anti-HIV-1 Activity of Fucoidans from Brown Algae. Mar. Drugs 2024, 22, 355. https://doi.org/10.3390/md22080355
Nosik MN, Krylova NV, Usoltseva RV, Surits VV, Kireev DE, Shchelkanov MY, Svitich OA, Ermakova SP. In Vitro Anti-HIV-1 Activity of Fucoidans from Brown Algae. Marine Drugs. 2024; 22(8):355. https://doi.org/10.3390/md22080355
Chicago/Turabian StyleNosik, Marina N., Natalya V. Krylova, Roza V. Usoltseva, Valerii V. Surits, Dmitry E. Kireev, Mikhail Yu. Shchelkanov, Oxana A. Svitich, and Svetlana P. Ermakova. 2024. "In Vitro Anti-HIV-1 Activity of Fucoidans from Brown Algae" Marine Drugs 22, no. 8: 355. https://doi.org/10.3390/md22080355
APA StyleNosik, M. N., Krylova, N. V., Usoltseva, R. V., Surits, V. V., Kireev, D. E., Shchelkanov, M. Y., Svitich, O. A., & Ermakova, S. P. (2024). In Vitro Anti-HIV-1 Activity of Fucoidans from Brown Algae. Marine Drugs, 22(8), 355. https://doi.org/10.3390/md22080355