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Abstract: Ferroptosis has emerged as a potential mechanism for enhancing the efficacy of chemother-
apy in cancer treatment. By suppressing nuclear factor erythroid 2-related factor 2 (Nrf2), cancer cells
may lose their ability to counteract the oxidative stress induced by chemotherapy, thereby becoming
more susceptible to ferroptosis. In this study, we investigate the potential of penexanthone A (PXA),
a xanthone dimer component derived from the endophytic fungus Diaporthe goulteri, obtained from
mangrove plant Acanthus ilicifolius, to enhance the therapeutic effect of cisplatin (CDDP) on colorectal
cancer (CRC) by inhibiting Nrf2. The present study reported that PXA significantly improved the
ability of CDDP to inhibit the activity of and induce apoptosis in CRC cells. Moreover, PXA was
found to increase the level of oxidative stress and DNA damage caused by CDDP. In addition, the
overexpression of Nrf2 reversed the DNA damage and ferroptosis induced by the combination of PXA
and CDDP. In vivo experiments using zebrafish xenograft models demonstrated that PXA enhanced
the therapeutic effect of CDDP on CRC. These studies suggest that PXA enhanced the sensitivity of
CRC to CDDP and induce ferroptosis by targeting Nrf2 inhibition, indicating that PXA might serve
as a novel anticancer drug in combination chemotherapy.

Keywords: penexanthone A; ferroptosis; Nrf2; cisplatin; colorectal cancer

1. Introduction

Colorectal cancer (CRC) stands as the most prevalent form of malignant tumor within
the digestive tract and ranks as the second-leading cause of cancer-related mortality glob-
ally [1]. Cisplatin (CDDP), a DNA-damaging chemotherapeutic agent, has been approved
for treating various solid tumors, including CRC [2]. Nevertheless, the frequent devel-
opment of intrinsic and acquired chemoresistance hinders its therapeutic efficacy [3].
Consequently, there is an ongoing need for effective strategies to enhance CDDP sensitivity
in CRC treatment.

Ferroptosis, an iron-dependent form of regulated cell death, occurs when lipid perox-
ides accumulate to lethal levels on cellular membranes [4]. This process is distinct from
apoptosis and involves different cellular mechanisms, making it a compelling target for
combination therapy with CDDP [5]. Several studies have reported that CDDP can syn-
ergize with ferroptosis inducers, such as Erastin and RSL3, in multiple cancer types [6–8].
Therefore, ferroptosis presents a novel therapeutic method for enhancing the efficacy of
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CDDP in CRC treatment [9]. As a master regulator of antioxidant defense, the transcription
regulator nuclear factor erythroid 2-related factor 2 (Nrf2) governs the transcription of nu-
merous genes implicated in glutathione peroxidase 4 (GPX4)-glutathione (GSH)-associated
ferroptosis defenses, including solute carrier family 7 member 11 (SLC7A11) [10]. This
regulatory function mitigates the vulnerability of cancer cells to ferroptosis. Furthermore,
Nrf2 is overexpressed in diverse human malignancies, and its downstream targets are intri-
cately associated with the suppression of the ferroptotic cascade [11]. It has been reported
that various natural products can induce ferroptosis to enhance the sensitivity of CDDP
to cancer cells by inhibiting the Nrf2 pathway [10,12,13]. Notably, brusatol, a potent Nrf2
inhibitor, sensitizes esophageal adenocarcinoma cells to CDDP by inducing ferroptosis [14].
Similarly, ginkgetin, a natural anti-cancer product, also promotes CDDP-induced anticancer
effects and triggers ferroptosis in lung cancer cells by inhibiting the Nrf2 pathway [15].
Consequently, targeting the Nrf2 pathway to induce ferroptosis can enhance the therapeutic
efficacy of CDDP.

Marine fungi are known for their unique metabolic pathways that are different from
those of terrestrial fungi, making them a potential source of novel bioactive compounds [16].
Acanthus ilicifolius L. is an important medicinal plant in mangrove forests, which is rich
in secondary metabolites with various biological activities [17]. It is of great research
value to search for lead molecules with significant anti-tumor activity from marine fungi.
In this study, we incidentally isolated penexanthone A (PXA), a xanthone dimer, from
the metabolites of the fungus Diaporthe goulteri collected from Acanthus ilicifolius L. It has
been reported that PXA can also be isolated from other fungus, such as Phomopsis sp. [18]
and Penicillium sp. [19]. However, the anticancer potential and underlying molecular
mechanisms of PXA have not yet been explored, which was thus the aim of this study.
Here, we investigated whether PXA enhances the sensitivity of CRC cells to CDDP-induced
ferroptosis by inhibiting the Nrf2 signaling pathway. Our results demonstrated that PXA
possesses interesting chemosensitizing properties, and the combination of PXA and CDDP
may provide a novel therapeutic strategy for CRC.

2. Results
2.1. Structural Identification of PXA

The compound isolated from the metabolites of the fungus Diaporthe goulteri was
obtained as a yellow amorphous powder and characterized with UV, IR, 1H NMR, 13C NMR
and MS spectra (Figures S1–S5). The purity of PXA was greater than 99%, as determined
by HPLC (Figure S6). [α]25

D −16.2 (c 0.1, MeOH); UV (MeOH)λmax (log ε) 338 (4.25) nm;
IR (KBr) νmax 3490, 2967, 2933, 2360, 1749, 1611, 1564, 1441, 1368, 1322, 1222, 1135, 1096,
1047, 990, 883, 818, 738, 660, 600, 539, 485 cm−1. Analysis of 1H NMR and 13C NMR spectra
was as follows: 1H NMR (600 MHz, CDCl3) δ 7.35 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 8.0 Hz,
1H), 6.58 (d, J = 8.0 Hz, 1H), 6.44 (d, J = 8.0 Hz, 1H), 5.61 (br s, 1H), 5.34 (br s, 1H), 4.57 (d,
J = 13.8 Hz, 2H), 3.99 (d, J = 14.3 Hz, 2H), 3.90 (d, J = 13.8 Hz, 2H), 3.76 (d, J = 14.3 Hz, 2H),
2.50 (m, 2H), 2.50 (m, 2H), 2.40 (m, 1H), 2.40 (m, 1H), 2.15 (s, 3H), 2.10 (s, 3H), 1.87 (s, 3H),
1.10 (d, J = 7.0 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ: 188.0, 188.0,
178.1, 177.4, 170.7, 170.7, 170.0, 161.5, 159.8, 157.4, 154.5, 139.0, 138.7, 118.2, 117.1, 109.9,
107.3, 106.5, 106.5, 101.2, 100.2, 82.4, 80.0, 71.7, 69.4, 65.4, 63.8, 33.4, 33.0, 27.5, 27.5, 21.0, 20.9,
20.5, 17.5, 17.2; HRMS (ESI): m/z = 709.2130 [M + H]+, calculated for C36H37O15, 709.2132,
confirming the molecular formula as C36H36O15. A comparison of the compound spectral
data with the literature data [19] proved it to be PXA (Figure 1A).

2.2. Effect of PXA on CDDP-Induced Cytotoxicity and Apoptosis in CRC Cells

To determine the potential application of PXA in the treatment of certain cancers, we
first investigated the cytotoxicity of PXA to five cancer cell lines. As shown in Table S1,
PXA exhibited the best inhibitory effect on HCT116 cells compared to other cancer cell
lines (SKOV3, MCF-7, A549, and PC3). To further explore the therapeutic application
of PXA in CRC cells, we assessed whether PXA exerts chemosensitizing activity. Low-
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concentration PXA was used to test its synergistic effects with CDDP using cell viability
assays and SynergyFinder software (Release (3.19)). Interestingly, PXA showed obvious
synergistic effects with CDDP in reducing the cell viability of CRC (p < 0.05, Figure 1B),
with calculated synergy scores being > 10 (Figure 1C). Flow cytometry analysis revealed
that PXA (4 and 8 µM) significantly reinforced CDDP-induced apoptosis in both HCT116
and HT29 cells (p < 0.05, Figure 1D). Consistently, Western blotting further found that the
co-treatment of PXA and CDDP in HCT116 and HT29 cells led to a reduced expression of
Bcl-2, the activation of Bax, and the cleavage activation of caspase-3 and PARP, compared
with that caused by CDDP-alone (p < 0.05, Figure 1E). These results indicated that PXA could
potentiate CDDP-induced CRC cell apoptosis effectively and act as an adjuvant with CDDP.
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Figure 1. PXA sensitizes CRC cells to CDDP-induced cytotoxicity and apoptosis. (A) Chemical
structural of PXA. (B) CRC cells were co-treated with PXA and CDDP for 48 h, and the percentage
of cell viability was determined by CCK-8 assay. (C) 3D visualization of synergy scores between
PXA and CDDP obtained using the SynergyFinder tool; these calculated average synergy scores
are 20.7 and 11.3 for these two panels of drug combinations (Synergy scores > 10 are considered
synergistic). (D) The percentage of apoptotic cells was analyzed and quantified using flow cytometry
after Annexin V-FITC/PI staining. (E) The protein levels of Cleaved-PARP, Cleaved-caspase-3, BAX,
and Bcl-2 in HCT116 and HT29 cells were detected by Western blot after 24 h treatment; β-acting
was used as a loading control. Results are expressed as means ± SD. * p < 0.05, ** p < 0.01 versus the
control group, # p < 0.05, ## p < 0.01 versus the CDDP-treatment group.
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2.3. Effect of PXA on CDDP-Induced ROS in CRC Cells

The effects of PXA and CDDP on the cellular ROS levels in HCT116 and HT29 cells
were analyzed with the DCFH-DA probe kit. As shown in Figure 2A, the combination of
PXA and CDDP significantly increased the levels of cellular ROS in HCT116 and HT29
cells, as indicated by an increase in the DCF-liberated fluorescent signal. Meanwhile, flow
cytometry confirmed that PXA or CDDP treatment increased the cellular ROS levels, and
these ROS signals were significantly increased by the combination treatment of PXA and
CDDP in HCT116 and HT29 cells (p < 0.05, Figure 2B). These results suggested that PXA
enhanced the sensitivity of CRC cells to CDDP, which is associated with ROS generation.
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Figure 2. PXA increased CDDP-induced ROS production. (A,B) HCT116 and HT29 cells treated
with PXA and CDDP were incubated with the DCFH-DA probe for 20 min, and the ROS levels (DCF
fluorescence) were observed and analyzed by fluorescence microscopy (A) and flow cytometry (B).
Scale bars: 100 µm. Results are expressed as means ± SD. * p < 0.05, ** p < 0.01 versus the control
group, ## p < 0.01 versus the CDDP-treatment group.
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2.4. Effect of PXA on CDDP-Induced DNA Damage and Oxidative Stress in CRC Cells

The accumulation of ROS can lead to oxidative stress, which can cause damage to
cellular components, including DNA [20,21]. To assess the extent of DNA damage induced
by PXA and CDDP, a comet assay was employed. The results from the comet assay
indicated that the combination of PXA and CDDP significantly increased the extension
of the comet tail length compared to treatment with CDDP alone (p < 0.05, Figure 3A).
Biochemical kits were used to measure cellular antioxidants such as GSH, Superoxide
Dismutase (SOD) and Heme Oxygenase-1 (HO-1). The results revealed that the levels of
GSH, SOD, and HO-1 in the PXA and CDDP combination group were remarkably reduced
compared with the group undergoing treatment with CDDP alone (p < 0.05, Figure 3B).
These results demonstrated that the co-treatment of PXA and CDDP induced oxidative
stress, leading to DNA damage in CRC cells, and PXA increased the sensitivity of CRC
cells to CDDP-induced DNA damage.
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Figure 3. PXA increased CDDP-induced DNA damage and oxidative stress. (A) DNA damage levels
in HCT116 and HT29 cells treated with PXA and CDDP for 24 h were assessed using the comet assay.
Scale bars: 100 µm. (B) After 24 h of treating HCT116 and HT29 cells with PXA and CDDP, the
content of GSH, SOD, and HO-1 was measured using ELISA. Results are expressed as means ± SD.
* p < 0.05, ** p < 0.01 versus the control group, # p < 0.05, ## p < 0.01 versus the CDDP-treatment group.

2.5. Effect of PXA on Nrf2 Protein in CRC Cells

Nrf2 is a key transcription factor known for its role in the cellular defense against
oxidative stress and plays a crucial role in preventing lipid peroxidation and ferroptosis [10].
PXA was found to reduce the level of Nrf2 protein expression in a dose- and time-dependent
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manner in HCT116 and HT29 cells (p < 0.05, Figure 4A,B). To further investigate the
interaction between PXA and Nrf2 protein, a CETSA was performed on CRC cells. The
CETSA results indicated an increase in Nrf2 expression after PXA treatment compared to
controls under various high-temperature conditions (Figure 4C). This suggests that PXA
binding to the Nrf2 protein increases its thermal stability, making it less susceptible to
denaturation and precipitation. These initial findings suggested that PXA could potentiate
the inhibitory effect of CDDP on CRC cells by causing the degradation of the Nrf2 protein.
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(C) CETSA was performed to confirm that PXA targets Nrf2 proteins. Results are expressed as
means ± SD. * p < 0.05, ** p < 0.01 versus the control group.

2.6. Overexpression of Nrf2 Reverses the Sensitization Effect of PXA on CDDP

To verify whether PXA enhances the sensitivity of CRC cells to CDDP by targeting
Nrf2, we established a stable overexpression of Nrf2 in HCT116 and HT29 cells (Figure 5A).
The capacities of PXA combined with CDDP on reducing Nrf2 expression were significantly
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attenuated by Nrf2 overexpression (p < 0.05, Figure 5B). Consistently, Nrf2 overexpression
partially reversed the inhibitory effects of PXA combined with CDDP on cell survival
(Figure 5C). Moreover, Nrf2 overexpression also attenuated DNA damage caused by the
combination of PXA and CDDP (Figure 5D). Therefore, these results demonstrated that
PXA enhanced the sensitivity of CRC cells to CDDP by inhibiting Nrf2.
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Figure 5. Nrf2 overexpression reverses the chemosensitizing activity of PXA. (A) Protein levels of
Nrf2 in stably overexpressing empty vector (EV) and Nrf2 HCT116 and HT29 cells were examined by
Western blotting. (B) Western blot assay to detect the effect of PXA in combination with CDDP on
Nrf2 protein in EV and Nrf2 stable overexpressing HCT116 and HT29 cells. (C) CCK-8 assay was
performed on EV and Nrf2 stable overexpressing HCT116 and HT29 cells treated with PXA and
CDDP for 48 h. (D) The DNA damage levels of EV and Nrf2 stable overexpressing HCT116 and HT29
cells treated with PXA and CDDP for 24 h were evaluated using the comet assay. Scale bars: 100 µm.
Results are expressed as means ± SD. * p < 0.05, ** p < 0.01 versus the EV group.

2.7. Effect of Nrf2 on PXA Enhanced CDDP-Induced Ferroptosis

To investigate whether PXA can enhance the sensitivity of CRC cells to CDDP by
inducing ferroptosis, we conducted a series of experiments using the ferroptosis inhibitor
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Fer-1. Firstly, the viability of CRC cells was examined after treatment with PXA, both
alone and in combination with CDDP, in the presence or absence of Fer-1. The results
indicated that the inhibitory effect of PXA or its combination with CDDP on the viability
of CRC cells was significantly reversed when Fer-1 was added to the treatment (p < 0.05,
Figure 6A). In addition, Fer-1 was also able to inhibit the generation of lipid peroxides
induced by the combination of PXA and CDDP, which further confirms the importance of
ferroptosis in the mechanism of PXA action (Figure 6B). Western blot results showed that
PXA significantly inhibited the expression of SLC7A11 and GPX4. Notably, the combination
of PXA with CDDP resulted in significantly lower expression levels of SLC7A11 and GPX4
compared to either agent alone. However, Nrf2 overexpression could significantly alleviate
the inhibitory effect of PXA or its combination with CDDP on SLC7A11 and GPX4 protein
expression (p < 0.05, Figure 6C). These findings suggested that PXA induced ferroptosis in
CRC cells by inhibiting the Nrf2 signaling pathway, thereby enhancing the sensitivity of
CRC cells to CDDP.

2.8. Effect of PXA and CDDP on CRC Xenograft Zebrafish

We further examined whether the combination of PXA and CDDP could serve as
a promising therapeutic strategy using a CRC xenograft zebrafish model. HCT116 cells
labeled with red, fluorescent dye (CM-Dil) were injected into the zebrafish embryos by a
microinjector to establish the xenograft zebrafish model. After a 48 h treatment of PXA
and CDDP, the fluorescence intensity of the zebrafish in each group was evaluated via
a fluorescent stereo-microscope to assess the therapeutic potential of PXA in vivo. Our
results showed that PXA (0.1 and 10 µg/mL) or CDDP (3 µg/mL) at relatively low doses
moderately reduced the fluorescence intensity and area of the zebrafish; however, PXA and
CDDP co-administration led to a more significant reduction in the fluorescence intensity
and area of the zebrafish, compared with the CDDP treatment group (p < 0.05, Figure 7A,B).
Therefore, the results revealed that PXA efficiently enhanced the sensitivity of CRC to
CDDP in vivo.
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and cell viability was measured using the CCK-8 assay. (B) Detection of lipid hydroperoxides by
fluorescence imaging of Liperfluo in HCT116 and HT29 cells treated with PXA and CDDP with or
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3. Discussion

CDDP is an extensively utilized potent chemotherapeutic agent in various malignant
tumors including CRC, but drug resistance persists as the primary challenge in clinical
application [22]. Therefore, the development of innovative chemosensitizers with robust
anti-cancer potency for CDDP is indispensable. The mechanisms by which the anti-tumor
activity of CDDP is achieved have been studied extensively in various cancer cells, and
there is strong evidence that CDDP exerts anticancer effects mainly by interacting with
DNA resulting in DNA damage and activating the enzyme NADPH oxidase to trigger
an excessive production of ROS [23,24]. In this study, we firstly found that co-treatment
with PXA and CDDP produced synergistic cytotoxic effects on HCT116 and HT29 cells.
Secondly, PXA markedly sensitized CRC cells to CDDP-induced apoptosis and DNA dam-
age. CRC xenograft zebrafish studies also showed that the combination of PXA and CDDP
enhanced the sensitivity of CRC to CDDP. Most notably, our results demonstrated that
PXA in combination with CDDP promoted ROS accumulation, which was accompanied
by the depletion of the antioxidants GSH, SOD, and HO-1. Ferroptosis is characterized by
the depletion of intracellular GSH, the accumulation of ROS, and ultimately oxidative cell
death [25]. It has been reported that ferroptosis inducers can significantly increase the sen-
sitivity to chemotherapeutic drugs such as CDDP, which suggests that targeting ferroptosis
can be considered a promising therapeutic strategy in CDDP-resistant cancer cells [26]. The
balance between ROS production and antioxidant defenses is critical for determining the
susceptibility to ferroptosis [27]. Given that the combination treatment of PXA and CDDP
significantly promoted ROS accumulation and GSH depletion, we hypothesized that PXA
enhanced the CDDP chemosensitivity of CRC by inducing ferroptosis.

Multiple studies have provided evidence that GPX4 and SLC7A11 are crucial regula-
tors of ferroptosis, playing a critical role in mitigating cellular lipid peroxidation [28–30].
The inhibition of GPX4 and SLC7A11 can lead to GSH depletion and subsequently increase
the sensitivity of cells to ferroptosis [31]. Our data showed that the incubation of CRC
cells in the combination treatment of PXA and CDDP induced an increase in the fluores-
cence signal from Liperfluo compared to the CDDP group, indicating the accumulation
of hydroperoxy-lipids. In addition, ferroptosis inhibitor (Fer-1) can reverse the CRC cell
growth inhibition and lipid peroxidation caused by the combination of PXA and CDDP.
Furthermore, the protein expression of GPX4 and SLC7A11 proteins was significantly
decreased by PXA in combination with CDDP treatment, as compared with the CDDP
group. Our results demonstrated that PXA increased the sensitivity of CRC cells to CDDP
by enhancing ferroptosis.

Accumulating evidence has shown that Nrf2 pathway inhibitors are promising chemosen-
sitizers [32,33]. Nrf2, as a master regulator of antioxidants, has been reported to control
the regulatory pathways of ferroptosis, which involve proteins associated with GSH syn-
thesis/metabolism (i.e., SLC7A11, GCL, GSS, GSTP1, and PRDX1), ferroptosis regulators
(i.e., xCT, GPX4, FSP1, and GCH1), iron metabolism/ferritinophagy (i.e., FTH1, FTL,
FPN, ATG5, ATG7 ULK1/2, and HMOX1), and lipid metabolism (i.e., ALOX12, POR, and
NQO1) [10,11,34]. Alterations in the Nrf2 pathway are major events involved in redox
homeostasis and ferroptosis [35]. Nrf2 overexpression in many types of cancers enhanced
proliferation and contributed to chemoresistance [36]. Experimental evidence suggests
that Nrf2 inhibitors are frequently used in combination with chemotherapeutic drugs to
sensitize a broad spectrum of cancer cells to CDDP or other chemotherapeutic drugs by in-
ducing ferroptosis [10,37–39]. Tiliroside, novel ferroptosis inducer, enhances the sensitivity
of sorafenib to HepG2 and Hep3B cells by promoting Nrf2 degradation [40]. Withaferin
A, a natural steroidal lactone extracted from Withania somnifera, sensitizes HepG2 cells to
sorafenib via Nrf2-mediated ferroptosis [41]. Eicosapentaenoic acid, a polyunsaturated
fatty acid, enhances the chemosensitivity of osteosarcoma to CDDP by inducing ferroptosis
through the Nrf2 pathway [42]. Therefore, we tried to demonstrate whether PXA enhances
the sensitivity of CRC cells to CDDP by inducing ferroptosis through targeting Nrf2. In our
study, we confirmed Nrf2 as a potential target of PXA, and Nrf2 overexpression markedly
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reversed the inhibitory effect on CRC cell survival and the occurrence of ferroptosis induced
by the combination of PXA and CDDP. These results indicate that PXA may be a promising
chemosensitizer (Figure 8).
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4. Materials and Methods
4.1. Reagents and Antibodies

CDDP and Fer-1 were purchased from MedChemExpress (Princeton, NJ, USA). Cell
Count Kit-8 (CCK-8) was purchased from Meilunbio (Dalian, China). The protease inhibitor
cocktail was purchased from Apexbio (Houston, TX, USA). Fetal bovine serum (FBS),
RPMI-1640 and McCoy’s 5A medium were obtained from Gibco (Grand Island, NY, USA).
The recombinant lentivirus targeting Nrf2 for humans was purchased from GenePharma
(Suzhou, China). The RIPA buffer, ROS assay kit and BCA assay kit were purchased from
Beyotime Biotechnology (Guangzhou, China). The Annexin V-FITC/PI apoptosis detection
kit was purchased from Multi Sciences (Hangzhou, China). The kits used for the comet
assay and GSH and SOD assays were obtained from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). The HO-1 assay kit was purchased from Elabscience (Wuhan,
China). The Liperfluo assay kit was purchased from Dojindo (Kumamoto, Japan). CM-
Dil cell-labeling solution was purchased from Invitrogen (Carlsbad, CA, USA). Primary
antibodies against GAPDH, caspase-3, BAX, PARP, Bcl-2, Nrf2, GPX4, and SLC7A11 were
purchased from CST (Danvers, MA, USA).

4.2. Plant Materials and Isolation of PXA

The strain was isolated from the fresh root of Acanthus ilicifolius L. collected from
the Mangrove Nature Reserve in Guangxi, China. It was identified as Diaporthe goulteri
by Sangon Biotech Co., Ltd., Shanghai, China. The ITS (GenBank ID: MW479162), TEF
(GenBank ID: ON221692) and Tub (GenBank ID: ON221693) sequences of the strain were
amplified by PCR to obtain 552 bp, 585 bp and 801 bp DNA fragments, respectively.

The fungal strain was cultured on slants of potato dextrose agar (PDA) at 25 ◦C for
5 days. Agar plugs were used to inoculate nine Erlenmeyer flasks (250 mL), each containing
100 mL of potato dextrose broth (PDB). Fermentation was carried out in 40 Erlenmeyer
flasks (500 mL), each containing 70 g of rice. Distilled H2O (105 mL) was added to each flask,
and the rice was soaked overnight before autoclaving at 120 ◦C for 30 min. After cooling to
room temperature, each flask was inoculated with 5.0 mL of the seed culture containing
mycelia and incubated at room temperature for 49 days. The culture was extracted thrice
using EtOAc through cold maceration, and the organic solvent was evaporated to dryness
under vacuum to afford a crude extract (7.6 g). This was subjected to silica gel column
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chromatography using cyclohexane-CH3OH (100:0 and 0:100, v/v) to afford a cyclohexane
extract (1.4 g) and a CH3OH extract (5.6 g). The methanol extract was separated using
octadecyl silica and eluted with MeOH-H2O (15:85, 45:55, 70:30, 100:0, v/v) to yield four
fractions (w1–w4). Fraction w3 (2.1 g) was applied to a silica gel column and eluted with
CH2Cl2-MeOH (30:1, 18:1, 9:1,4:1, 0:100, v/v) to obtain fractions (w3-1–w3-5). The w3-1
fraction was purified on a Sephadex LH-20 column, eluted with MeOH, and separated
using high-performance liquid chromatography (HPLC) in 65% acetonitrile-35% water
(0.1% formic acid) to yield PXA (tR = 24.0 min, 3 mL/min, 41.1 mg, 0.54% yield).

4.3. Cell Culture and Transfection

The CRC cell lines HCT116 and HT29 were purchased from the cell bank of China Sci-
ence Academy (Shanghai, China), and HCT116 cells were cultured in RPMI-1640 medium
supplemented with 10% FBS, 0.5% penicillin, and streptomycin. HT29 cells were main-
tained in McCoy’s 5A medium with supplemented 10% FBS, 0.5% penicillin, and strepto-
mycin. All cell lines were grown at 37 ◦C in a 5% CO2 atmosphere. The stable cell lines
were established as we previously described [43]. HCT116 and HT29 cells were infected
with a lentivirus targeting Nrf2 for 48 h and then incubated with a medium containing
puromycin (3 µg/mL) to generate cells stably overexpressing Nrf2.

4.4. Cell Viability Assay

HCT116 and HT29 cells (5 × 103 cells/well) were seeded in 96-well plates and in-
cubated overnight. Then, cells were treated with indicated drugs at 37 ◦C for 48 h. Cell
viability was determined by CCK-8 assay according to the instructions of the assay kit, and
the absorbance of each well at 450 nm was measured using a microplate reader (Bio-Rad,
Hercules, CA, USA).

4.5. Flow Cytometry Assay

The apoptosis assay was measured using Annexin V-FITC/PI double staining. HCT116
and HT29 cells were seeded (1 × 105 cells/well) in six-well plates and treated with PXA
and CDDP for 48 h, according to the manufacturer’s protocol. Cells were resuspended in
500 µL of 1× binding buffer containing 5 µL of Annexin V-FITC and incubated for 10 min in
the dark. Then, 10 µL of PI work solution was added and incubated for another 5 min. The
percentage of apoptotic cells was analyzed by flow cytometry (BD, San Diego, CA, USA).

Cell ROS analysis was conducted using an ROS Assay Kit. HCT116 and HT29 cells
were treated with PXA and CDDP for 24 h; then, cells were incubated with a DCFH-DA
probe (10 µM) at 37 ◦C for 20 min according to the instructions of the manufacturer. The
ROS levels (DCF fluorescence) were observed and analyzed by fluorescence microscopy
(Leica DMi8, Wetzlar, Germany) and flow cytometry (BD, San Diego, CA, USA).

4.6. ELISA

According to the manufacturer’s instructions, the levels of GSH, SOD and HO-1 in
HCT116 and HT29 cells were measured using the ELISA kits.

4.7. Comet Assay

HCT116 and HT29 cells were treated with PXA and CDDP for 24 h. The DNA
damage levels were detected using the Comet Assay Kit according to the instructions of
the manufacturer [44].

4.8. Cellular Thermal Shift Assay

HCT116 and HT29 cells were cultured in a 10 cm dish and treated with PXA for 3 h.
Subsequently, the cells were lysed using RIPA buffer supplemented with a 1% protease
inhibitor cocktail. The resulting lysates were divided into six PCR tubes and subjected to a
series of temperature treatments at 25, 46, 50, 54, 58, and 62 ◦C for 3 min. Following this,
the samples underwent three freeze–thaw cycles in liquid nitrogen. After centrifugation at
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12,000 rpm for 20 min at 4 ◦C, the supernatant was collected and subjected to analysis via
Western blotting.

4.9. Liperfluo Staining

HCT116 and HT29 cells were treated with PXA and CDDP for 24 h. Cells were stained
with Liperfluo (10 µM) for 30 min at 37 ◦C. The fluorescence of Liperfluo was observed
using an inverted fluorescence microscope (Leica DMi8, Wetzlar, Germany).

4.10. Western Blot Analysis

Total protein was extracted using RIPA buffer mixed with a 1% protease inhibitor
cocktail. Protein concentrations were quantified using a BCA kit. Equal amounts of protein
samples were subjected to SDS-PAGE and subsequently transferred to 0.45 mm PVDF
membranes (EMD Millipore, Bedford, MA, USA). The PVDF membranes were blocked
in 5% skimmed milk for 2 h at room temperature, and then the membrane was further
incubated with the primary antibody overnight at 4 ◦C. This was followed by incubation
with the corresponding secondary antibody for 1 h at room temperature. Protein bands
were visualized using Odyssey CLx Infrared Imaging System (Licro, NE, USA).

4.11. CRC Xenograft Zebrafish Model

Animal experiments in this study were approved by and performed according to the
guidelines of the Animal Ethics Committee of Guangxi Medical University (authorization
number: 202311002). The study involving AB wild-type zebrafish tumor model was
established as we previously described [45]. Briefly, HCT116 cells were stained with
the red, fluorescent dye CM-Dil solution for 30 min at 37 ◦C. Then, we injected CM-
Dil-stained SKOV-3 cells into the zebrafish embryos at 2 days post-fertilization (2 dpf)
using a microinjector (Nanoject III, Drummond, USA). After 3 dpf, the zebrafish were
randomly divided into six groups to treat with the vehicle (DMSO), CDDP (3000 ng/mL),
PXA (100 ng/mL, 1000 ng/mL, and 10,000 ng/mL), and CDDP (3000 ng/mL) + PXA
(1000 ng/mL). After 48 h of treatment (at 5 dpf), fluorescence images of HCT116-CM-
Dil cells in zebrafish were acquired using a fluorescence stereo-microscope (Olympus
U-HGLGPSD, Tokyo, Japan).

4.12. Statistical Analysis

Data were statistically analyzed with SPSS software version 26.0 (SPSS Inc., Chicago,
IL, USA). Differences between multiple groups were determined using one-way ANOVA,
and data are presented as the mean ± SD with GraphPad Prism 6.0 (GraphPad Software,
CA, USA). The Synergy scores of the two-drug combinations were acquired using the
Synergy-finder software (https://synergyfinder.fimm.fi/, accessed on 7 June 2024), based
on the Zero Interaction Potency model. Synergy scores > 10 are considered synergistic. A
value of p < 0.05 indicated statistical significance.

5. Conclusions

In summary, our study demonstrates that PXA, a xanthone dimer compound isolated
from the endophytic fungus Diaporthe goulteri, has potential as a novel Nrf2 pathway in-
hibitor. PXA can hypersensitize CRC cells to CDDP by targeting Nrf2 to induce ferroptosis,
providing a promising chemosensitizing therapeutic strategy for treating cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md22080357/s1, Figure S1: UV spectrum of PXA; Figure S2: IR
spectrum of PXA; Figure S3: 1H-NMR spectrum of PXA; Figure S4: 13C-NMR spectrum of PXA;
Figure S5: HR-ESI-MS spectrum of PXA; Figure S6: The HPLC chromatographic analysis of PXA;
Table S1: IC50 values of PXA on various cancer cells.
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