Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches
Abstract
:1. Introduction
2. Results
2.1. Optimization of Growth Parameters
2.2. Correlation between Antioxidant Activity and Compound Content
2.3. Optimization of Experimental Conditions by Experimental Design
2.4. In Silico Study
3. Discussion
4. Material and Methods
4.1. Cultivation of the Microalgae I. galbana
4.2. Procedure for Obtaining Extracts for Analyses
4.3. Determination of Antioxidant Activity by the DPPH Method
4.4. Estimation of Carotenoid Content
4.5. Total Phenolic Content
4.6. Quantification of Fucoxanthin
4.7. Statistical Studies
- Factor 1 = T: temperature (25 °C and 30 °C);
- Factor 2 = pH: pH (6.5 and 7.5);
- Factor 3 = light intensity: LI (100 µmol/m2/s and 500 µmol/m2/s);
- Factor 4 = air flow rate: AFR (0.5 L/min and 1.0 L/min);
- Factor 5 = CO2 flow rate: CO2FR (0.1–0.2 L/min).
- A mean: a0;
- 5 main effects for each factor: ai;
- 10 interactions of order 2: aij;
- 10 interactions of order 3: aijk;
- 5 interactions of order 4: aijkl;
- 1 interaction of order 5: aijklm.
4.8. In Silico Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bürck, M.; Ramos, S.D.P.; Braga, A.R.C. Enhancing the Biological Effects of Bioactive Compounds from Microalgae through Advanced Processing Techniques: Pioneering Ingredients for Next-Generation Food Production. Foods 2024, 13, 1811. [Google Scholar] [CrossRef] [PubMed]
- Maghzian, A.; Aslani, A.; Zahedi, R. A comprehensive review on effective parameters on microalgae productivity and carbon capture rate. J. Environ. Manag. 2024, 355, 120539. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liang, H.; Du, H.; Jesumani, V.; He, W.; Cheong, K.-L.; Li, T.; Hong, T. Industry chain and challenges of microalgal food industry—A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 4789–4816. [Google Scholar] [CrossRef]
- Ainane, T.; Abdoul-Latif, F.M.; El Yaagoubi, B.; Boujaber, N.; Oumaskour, K.; Ainane, A. Nannochloropsis oculata Microalga for Fertilization: Bioguided Fractionation of N-Hexane Extract by Stimulating Growth Activity for Cucurbita moschata. Pharmacologyonline 2021, 3, 1803–1809. [Google Scholar]
- Dhandwal, A.; Bashir, O.; Malik, T.; Salve, R.V.; Dash, K.K.; Amin, T.; Shams, R.; Wani, A.W.; Shah, Y.A. Sustainable microalgal biomass as a potential functional food and its applications in food industry: A comprehensive review. Environ. Sci. Pollut. Res. 2024, 1–19. [Google Scholar] [CrossRef]
- Guehaz, K.; Boual, Z.; Abdou, I.; Telli, A.; Belkhalfa, H. Microalgae’s polysaccharides, are they potent antioxidants? Critical review. Arch. Microbiol. 2023, 206, 14. [Google Scholar] [CrossRef]
- Duan, X.; Xie, C.; Hill, D.R.A.; Barrow, C.J.; Dunshea, F.R.; Martin, G.J.O.; Suleria, H.A. Bioaccessibility, bioavailability and bioactivities of carotenoids in microalgae: A review. Food Rev. Int. 2023, 40, 230–259. [Google Scholar] [CrossRef]
- Chandrika, U.G. Carotenoid Dyes—Properties and Production. Handb. Nat. Color. 2023, 351–369. [Google Scholar]
- Meléndez-Martínez, A.J.; Esquivel, P.; Rodriguez-Amaya, D.B. Comprehensive review on carotenoid composition: Transformations during processing and storage of foods. Food Res. Int. 2023, 169, 112773. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sagasti, M.T.; López-Pozo, M.; Artetxe, U.; Becerril, J.M.; Hernández, A.; García-Plazaola, J.I.; Esteban, R. Carotenoids and their derivatives: A “Swiss Army knife-like” multifunctional tool for fine-tuning plant-environment interactions. Environ. Exp. Bot. 2023, 207, 105229. [Google Scholar] [CrossRef]
- Xu, J.; Lin, J.; Peng, S.; Zhao, H.; Wang, Y.; Rao, L.; Liao, X.; Zhao, L. Development of an HPLC-PDA Method for the Determination of Capsanthin, Zeaxanthin, Lutein, β-Cryptoxanthin and β-Carotene Simultaneously in Chili Peppers and Products. Molecules 2023, 28, 2362. [Google Scholar] [CrossRef]
- González-Peña, M.A.; Ortega-Regules, A.E.; Anaya de Parrodi, C.; Lozada-Ramírez, J.D. Chemistry, occurrence, properties, applications, and encapsulation of carotenoids—A review. Plants 2023, 12, 313. [Google Scholar] [CrossRef]
- Bohn, T.; de Lera, A.R.; Landrier, J.-F.; Rühl, R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr. Res. Rev. 2023, 36, 498–511. [Google Scholar] [CrossRef]
- Jiří, B.; Lenka, V.; Josef, S.; Věra, K. Exploring carotenoids: Metabolism, antioxidants, and impacts on human health. J. Funct. Foods 2024, 118, 106284. [Google Scholar]
- Zhang, Z.; Wei, Z.; Xue, C. Delivery systems for fucoxanthin: Research progress, applications and future prospects. Crit. Rev. Food Sci. Nutr. 2024, 64, 4643–4659. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Ainane, A.; Aboubaker, I.H.; Ali, A.M.; Mohamed, H.; Jutur, P.P.; Ainane, T. Unlocking the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic Potential of Fucoxanthin Derivatives from Microalgae. Pharmaceuticals 2024, 17, 960. [Google Scholar] [CrossRef]
- Sun, H.; Yang, S.; Zhao, W.; Kong, Q.; Zhu, C.; Fu, X.; Zhang, F.; Liu, Z.; Zhan, Y.; Mou, H.; et al. Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application. Crit. Rev. Food Sci. Nutr. 2023, 63, 7996–8012. [Google Scholar] [CrossRef] [PubMed]
- Mapelli-Brahm, P.; Gómez-Villegas, P.; Gonda, M.L.; León-Vaz, A.; León, R.; Mildenberger, J.; Rebours, C.; Saravia, V.; Vero, S.; Vila, E.; et al. Microalgae, seaweeds and aquatic bacteria, archaea, and yeasts: Sources of carotenoids with potential antioxidant and anti-inflammatory health-promoting actions in the sustainability era. Mar. Drugs 2023, 21, 340. [Google Scholar] [CrossRef]
- Gonçalves, C.d.A.; Figueredo, C.C. What we really know about the composition and function of microalgae cell coverings? — An overview. Acta Bot. Bras. 2020, 34, 599–614. [Google Scholar] [CrossRef]
- Zarrinmehr, M.J.; Farhadian, O.; Heyrati, F.P.; Keramat, J.; Koutra, E.; Kornaros, M.; Daneshvar, E. Effect of ni-trogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt. J. Aquat. Res. 2020, 46, 153–158. [Google Scholar] [CrossRef]
- Matos, J.; Afonso, C.; Cardoso, C.; Serralheiro, M.L.; Bandarra, N.M. Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food. Foods 2021, 10, 1458. [Google Scholar] [CrossRef]
- Solomonova, E.S.; Shoman, N.Y.; Akimov, A.I. Hormesis effect of the herbicide glyphosate on growth and lipid synthesis in the microalga Isochrysis galbana, an object of industrial cultivation. Aquac. Int. 2024, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Xu, S.-M.; Cao, J.-Y.; Wu, M.-N.; Lin, J.-H.; Zhou, C.-X.; Zhang, L.; Zhou, H.-B.; Li, Y.-R.; Xu, J.-L.; et al. Co-cultivation of Isochrysis galbana and Marinobacter sp. can enhance algal growth and docosahexaenoic acid production. Aquaculture 2022, 556, 738248. [Google Scholar] [CrossRef]
- Abdoul-Latif, F.M.; Oumaskour, K.; Boujaber, N.; Ainane, A.; Mohamed, J.; Ainane, T. Formulations of a cosmetic product for hair care based on extract of the microalga Isochrysis galbana: In vivo and in vitro activities. J. Anal. Sci. Appl. Biotechnol. 2021, 3, 15–19. [Google Scholar]
- Pocha, C.K.R.; Chia, W.Y.; Chew, K.W.; Munawaroh, H.S.H.; Show, P.L. Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum. Algal Res. 2022, 65, 102735. [Google Scholar] [CrossRef]
- Kim, S.M.; Kang, S.-W.; Kwon, O.-N.; Chung, D.; Pan, C.-H. Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 477–483. [Google Scholar] [CrossRef]
- Stock, A.; Subramaniam, A. Accuracy of empirical satellite algorithms for mapping phytoplankton diagnostic pigments in the open ocean: A supervised learning perspective. Front. Mar. Sci. 2020, 7, 599. [Google Scholar] [CrossRef]
- Shannon, E.; Abu-Ghannam, N. Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. J. Appl. Phycol. 2017, 29, 1027–1036. [Google Scholar] [CrossRef]
- Grubišić, M.; Šantek, B.; Kuzmić, M.; Čož-Rakovac, R.; Šantek, M.I. Enhancement of Biomass Production of Diatom Nitzschia sp. S5 through Optimisation of Growth Medium Composition and Fed-Batch Cultivation. Mar. Drugs 2024, 22, 46. [Google Scholar] [CrossRef]
- Trinh, K.S. Comparison of Growth of Chlorella vulgaris in Flat-Plate Photobioreactor Using Batch, Fed-Batch, and Repeated Fed-Batch Techniques with Various Concentrations of Walne Medium. J. Tech. Educ. Sci. 2023, 18, 9–15. [Google Scholar] [CrossRef]
- Somade, O.T.; Ajayi, B.O.; Adeyi, O.E.; Dada, T.A.; Ayofe, M.A.; Inalu, D.C.; Ajiboye, O.I.; Shonoiki, O.M.; Adelabu, A.O.; Onikola, R.T.; et al. Ferulic acid inter-ventions ameliorate NDEA-CCl4-induced hepatocellular carcinoma via Nrf2 and p53 upregulation and Akt/PKB-NF-κB-TNF-α pathway downregulation in male Wistar rats. Toxicol. Rep. 2024, 12, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Alqrad, M.A.; El-Agamy, D.S.; Ibrahim, S.R.; Sirwi, A.; Abdallah, H.M.; Abdel-Sattar, E.; El-Halawany, A.M.; Elsaed, W.M.; Mohamed, G.A. SIRT1/Nrf2/NF-κB Signaling Mediates Anti-Inflammatory and Anti-Apoptotic Activities of Oleanolic Acid in a Mouse Model of Acute Hepatorenal Damage. Medicina 2023, 59, 1351. [Google Scholar] [CrossRef] [PubMed]
- Jeung, D.; Lee, G.-E.; Chen, W.; Byun, J.; Nam, S.-B.; Park, Y.-M.; Lee, H.S.; Kang, H.C.; Lee, J.Y.; Kim, K.D.; et al. Ribosomal S6 kinase 2-forkhead box protein O4 signaling pathway plays an essential role in melanogenesis. Sci. Rep. 2024, 14, 9440. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.; Elgohary, R.; Amin, M.M.; Elwahab, S.A. Impact of protocatechuic acid on alleviation of pulmonary damage induced by cyclophosphamide targeting peroxisome proliferator activator receptor, silent information regulator type-1, and fork head box protein in rats. Inflammopharmacology 2023, 31, 1361–1372. [Google Scholar] [CrossRef] [PubMed]
- Omorou, M.; Huang, Y.; Gao, M.; Mu, C.; Xu, W.; Han, Y.; Xu, H. The forkhead box O3 (FOXO3): A key player in the regulation of ischemia and reperfusion injury. Cell. Mol. Life Sci. 2023, 80, 102. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, V.S.; Shahid, M.; Deo, P.; Fenech, M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Int. J. Mol. Sci. 2024, 25, 718. [Google Scholar] [CrossRef] [PubMed]
- Mishra, Y.; Kaundal, R.K. Role of SIRT3 in mitochondrial biology and its therapeutic implications in neuro-degenerative disorders. Drug Discov. Today 2023, 28, 103583. [Google Scholar] [CrossRef]
- Miyashita, K.; Beppu, F.; Hosokawa, M.; Liu, X.; Wang, S. Bioactive significance of fucoxanthin and its effective extraction. Biocatal. Agric. Biotechnol. 2020, 26, 101639. [Google Scholar] [CrossRef]
- Wu, S.; Xie, X.; Huan, L.; Zheng, Z.; Zhao, P.; Kuang, J.; Liu, X.; Wang, G. Selection of optimal flocculant for effective harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana. J. Appl. Phycol. 2016, 28, 1579–1588. [Google Scholar] [CrossRef]
- Bigagli, E.; D’ambrosio, M.; Cinci, L.; Niccolai, A.; Biondi, N.; Rodolfi, L.; Nascimiento, L.B.D.S.; Tredici, M.R.; Luceri, C. A comparative in vitro evaluation of the anti-inflammatory effects of a Tisochrysis lutea extract and fucoxanthin. Mar. Drugs 2021, 19, 334. [Google Scholar] [CrossRef]
- Méresse, S.; Fodil, M.; Fleury, F.; Chénais, B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: A promising bioactive compound for cancer therapy. Int. J. Mol. Sci. 2020, 21, 9273. [Google Scholar] [CrossRef] [PubMed]
- Kawee-Ai, A.; Kim, A.T.; Kim, S.M. Inhibitory activities of microalgal fucoxanthin against α-amylase, α-glucosidase, and glucose oxidase in 3T3-L1 cells linked to type 2 diabetes. J. Oceanol. Limnol. 2019, 37, 928–937. [Google Scholar] [CrossRef]
- Foo, S.C.; Yusoff, F.M.; Ismail, M.; Basri, M.; Yau, S.K.; Khong, N.M.; Chan, K.W.; Ebrahimi, M. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J. Biotechnol. 2017, 241, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Sandhya, S.V.; Vijayan, K.K. Symbiotic association among marine microalgae and bacterial flora: A study with special reference to commercially important Isochrysis galbana culture. J. Appl. Phycol. 2019, 31, 2259–2266. [Google Scholar] [CrossRef]
- Medina, E.; Cerezal, P.; Morales, J.; Ruiz-Domínguez, M.C. Fucoxanthin from marine microalga Isochrysis galbana: Optimization of extraction methods with organic solvents. Dyna 2019, 86, 174–178. [Google Scholar] [CrossRef]
- Gao, F.; (Cabanelas, I.I.T.; Wijffels, R.H.; Barbosa, M.J. Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresour. Technol. 2020, 315, 123894. [Google Scholar] [CrossRef]
- Pereira, H.; Sá, M.; Maia, I.; Rodrigues, A.; Teles, I.; Wijffels, R.H.; Navalho, J.; Barbosa, M. Fucoxanthin production from Tisochrysis lutea and Phaeodactylum tricornutum at industrial scale. Algal Res. 2021, 56, 102322. [Google Scholar] [CrossRef]
- Mohamadnia, S.; Tavakoli, O.; Faramarzi, M.A. Enhancing production of fucoxanthin by the optimization of culture media of the microalga Tisochrysis lutea. Aquaculture 2021, 533, 736074. [Google Scholar] [CrossRef]
- Mohamadnia, S.; Tavakoli, O.; Faramarzi, M.A. Optimization of metabolic intermediates to enhance the production of fucoxanthin from Tisochrysis lutea. J. Appl. Phycol. 2022, 34, 1269–1279. [Google Scholar] [CrossRef]
- McElroy, C.R.; Kopanitsa, L.; Helmes, R.; Fan, J.; Attard, T.M.; Simister, R.; van den Burg, S.; Ladds, G.; Bailey, D.S.; Gomez, L.D. Integrated biorefinery approach to valorise Saccharina latissima biomass: Combined sustainable processing to produce biologically active fuco-xanthin, mannitol, fucoidans and alginates. Environ. Technol. Innov. 2023, 29, 103014. [Google Scholar] [CrossRef]
- Xia, Y.; Sekine, M.; Hirahara, M.; Kishinami, H.; Yusoff, F.M.; Toda, T. Effects of concentration and frequency of CO2 supply on productivity of marine microalga Isochrysis galbana. Algal Res. 2023, 70, 102985. [Google Scholar] [CrossRef]
- Bo, Y.; Wang, S.; Ma, F.; Manyakhin, A.Y.; Zhang, G.; Li, X.; Zhou, C.; Ge, B.; Yan, X.; Ruan, R.; et al. The influence of spermidine on the build-up of fucoxanthin in Isochrysis sp. Acclimated to varying light intensities. Bioresour. Technol. 2023, 387, 129688. [Google Scholar] [CrossRef] [PubMed]
- García-García, P.; Ospina, M.; Señoráns, F.J. Tisochrysis lutea as a source of omega-3 polar lipids and fucoxanthin: Extraction and characterization using green solvents and advanced techniques. J. Appl. Phycol. 2024, 36, 1697–1708. [Google Scholar] [CrossRef]
- Manochkumar, J.; Jonnalagadda, A.; Cherukuri, A.K.; Vannier, B.; Janjaroen, D.; Ramamoorthy, S. Enhancing cellular production of fucoxanthin through machine learning assisted predictive approach in Isochrysis galbana. bioRxiv 2024, 26, 591373. [Google Scholar]
- Khaw, Y.S.; Yusoff, F.M.; Tan, H.T.; Mazli, N.A.I.N.; Nazarudin, M.F.; Shaharuddin, N.A.; Omar, A.R.; Takahashi, K. Fucoxanthin production of microalgae under different culture factors: A systematic review. Mar. Drugs 2022, 20, 592. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhou, C.; Cheng, P.; Zhu, J.; Hou, Y.; Li, Y.; Zhang, J.; Yan, X. A simple and efficient strategy for fucoxanthin extraction from the microalga Phaeodactylum tricornutum. Algal Res. 2022, 61, 102610. [Google Scholar] [CrossRef]
- Mohamadnia, S.; Tavakoli, O.; Faramarzi, M.A.; Shamsollahi, Z. Production of fucoxanthin by the microalga Ti-sochrysis lutea: A review of recent developments. Aquaculture 2020, 516, 734637. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Liu, J. Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin. Algal Res. 2019, 41, 101545. [Google Scholar] [CrossRef]
- Ranjith, H.V.; Sagar, D.; Kalia, V.K.; Dahuja, A.; Subramanian, S. Differential activities of antioxidant enzymes, superoxide dismutase, peroxidase, and catalase vis-à-vis phosphine resistance in field populations of lesser grain borer (Rhyzopertha dominica) from India. Antioxidants 2023, 12, 270. [Google Scholar] [CrossRef]
- Vašková, J.; Kočan, L.; Vaško, L.; Perjési, P. Glutathione-related enzymes and proteins: A review. Molecules 2023, 28, 1447. [Google Scholar] [CrossRef]
- Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024, 25, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Lfitat, A.; Ed-dahmani, I.; Bousraf, F.Z.; Belhaj, A.; Ainane, T.; Taleb, M.; Gourch, A.; Abdellaoui, A. Antifungal Activity of the Argan Kernels Extracts and the Heat Treatment Effect on the Activity Variation. Indones. Food Nutr. Prog. 2023, 20, 10–23. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. The [DPPH●/DPPH-H]-HPLC-DAD method on tracking the antioxidant activity of pure antioxidants and goutweed (Aegopodium podagraria L.) hydroalcoholic extracts. Molecules 2020, 25, 6005. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Niu, Y.; Ding, X.; Zhao, S.; Li, Y.; Fan, G.; Zhang, S.; Liao, K. Analysis of carotenoid content and diversity in apricots (Prunus armeniaca L.) grown in China. Food Chem. 2020, 330, 127223. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physico-chemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Feng, H.; Ouyang, X.; Ling, J. Determination of Fucoxanthin in Bloom-Forming Macroalgae by HPLC–UV. J. Chromatogr. Sci. 2021, 59, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Abdoul-Latif, F.M.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Essential oil of Ruta chalepensis L. from Djibouti: Chemical Analysis and Modeling of In Vitro Anticancer Profiling. Separations 2022, 9, 387. [Google Scholar] [CrossRef]
- Aamir, H.; Aamir, K.; Javed, M.F. Linear and Non-Linear Regression Analysis on the Prediction of Compressive Strength of Sodium Hydroxide Pre-Treated Crumb Rubber Concrete. Eng. Proc. 2023, 44, 5. [Google Scholar] [CrossRef]
- Muhammed, M.T.; Aki-Yalcin, E. Molecular docking: Principles, advances, and its applications in drug discovery. Lett. Drug Des. Discov. 2024, 21, 480–495. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; Ainane, A.; Merito, A.; Aboubaker, I.H.; Mohamed, H.; Cherroud, S.; Ainane, T. The Effects of Khat Chewing among Djiboutians: Dental Chemical Studies, Gingival Histopathological Analyses and Bioinformatics Approaches. Bioengineering 2024, 11, 716. [Google Scholar] [CrossRef]
- Chen, G.; Seukep, A.J.; Guo, M. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs 2020, 18, 545. [Google Scholar] [CrossRef] [PubMed]
Culture Medium | Dry Weight Biomass (g/L) | DPPH IC50 (μg/mL) | Carotenoids Content (mg/g) | Total Phenolic Content (mg/100 g) | Fucoxanthin (mg/g) |
---|---|---|---|---|---|
Natural Seawater (Djibouti) | 0.65 ± 0.12 a | 481 ± 25 a | 9.9 ± 0.2 a | 12.0 ± 1.1 a | 2.8 ± 0.5 a |
3N-BBM+V Medium | 0.88 ± 0.17 a,b,c | 438 ± 20 a,b | 11.5 ± 1.3 b | 20.0 ± 1.8 b | 4.6 ± 0.8 b |
ASP-M Medium | 0.82 ± 0.16 a,b,c | 435 ± 25 a,b | 11.7 ± 1.2 b | 19.2 ± 1.7 b | 4.8 ± 0.7 b |
CHU-10 Medium | 0.91 ± 0.18 b,c | 440 ± 25 a,b | 11.5 ± 1.1 b | 20.1 ± 1.8 b | 5.0 ± 0.8 b |
Conway Medium | 0.92 ± 0.18 b,c | 415 ± 25 b,c | 13.1 ± 1.5 b,c | 20.3 ± 2.0 b | 5.0 ± 0.6 b |
Erdschreiber Medium | 0.95 ± 0.19 b,c | 405 ± 20 c | 12.8 ± 1.8 b,c | 20.1 ± 2.1 b | 5.2 ± 0.5 b |
Guillard F/2 Medium | 1.22 ± 0.21 c,d | 304 ± 15 d | 16.6 ± 2.4 d | 20.5 ± 1.8 b | 7.8 ± 1.0 c |
PM Medium | 0.82 ± 0.16 a,b,c | 421 ± 30 b,c | 11.2 ± 1.2 a,b | 19.1 ± 1.8 b | 4.6 ± 0.5 b |
Walne Medium | 1.28 ± 0.22 c,d | 285 ± 15 e | 15.4 ± 1.8 d | 23.6 ± 2.5 b,c | 7.8 ± 0.8 c |
Water Culture Medium | 1.15 ± 0.20 c,d | 413 ± 25 b,c | 14.2 ± 1.6 c,d | 19.4 ± 1.8 b | 5.5 ± 0.5 b |
Matrix | Z2 | Z3 | Z4 | Z1 |
---|---|---|---|---|
Z2 | 1 | |||
Z3 | 0.660 | 1 | ||
Z4 | 0.943 | 0.794 | 1 | |
Z1 | −0.913 | −0.706 | −0.970 | 1 |
Proteins | 3FS1 | 3L2C | 8BBK |
---|---|---|---|
Binding affinity (kcal/mol) | −7.3 | −9.4 | −9.3 |
pKi | 5.35 | 6.89 | 6.82 |
Ligand efficiency (kcal/mol) | 0.1521 | 0.1958 | 0.1938 |
Ligand–protein interactions | 25 | 10 | 31 |
Number of π-σ bond | 0 | 0 | 1 |
Number of alkyl bond | 15 | 0 | 10 |
Number of π-alkyl bond | 4 | 8 | 4 |
Number of conventional hydrogen bond | 1 | 1 | 1 |
Number of carbon–hydrogen bond | 0 | 1 | 0 |
Number of van der Waals bond | 5 | 0 | 15 |
Work | Reference | Year | Study Objective | Methodology | Key Results | Quantity of Fucoxanthin | Implications |
---|---|---|---|---|---|---|---|
1 | Médine et al. [45] | 2019 | Examine the extraction of fucoxanthin from I. galbana for obesity prevention. | Comparison of solvents (methanol, ethanol, petroleum ether, n-hexane). Optimization of extraction time. | Best yields with methanol (6.282 mg/g DW) and ethanol (4.187 mg/g DW). Optimal extraction in 10 min with 100% ethanol. | 6.282 mg/g DW (methanol), 4.187 mg/g DW (ethanol) | I. galbana is a promising source of fucoxanthin for the food industry. |
2 | Pereira et al. [46] | 2021 | Optimize industrial-scale fucoxanthin production. | Cultivation in 15 m3 tubular photobioreactors. Seasonal comparison between P. tricornutum and T. lutea. | P. tricornutum achieved 2.87 g DW L−1 and 0.7% DW fucoxanthin (7 mg/g DW) in fall/winter. T. lutea was more productive in spring/summer. | 7 mg/g DW | Feasibility of continuous fucoxanthin production year-round. |
3 | Gao et al. [47] | 2020 | Optimize fucoxanthin production in T. lutea. | Batch and continuous experiments, adjusting parameters like temperature, irradiation, and dilution rate. | Maximum productivity at 30 °C and 300 μmol m−2 s−1. High dilution rates (0.53 and 0.80 d−1) and light absorption of 2.23 mol m−2 d−1 favored high fucoxanthin content. | 16.39 mg/g DW | Light absorption can predict fucoxanthin content. |
4 | Mohamadnia et al. [48] | 2021 | Optimize fucoxanthin production in T. lutea using response surface methodology. | Adjustment of culture conditions in 1 L batch photobioreactors with polynomial second-order modeling. | Optimal conditions: salinity 36.27 g L−1, starch 3.90 g L−1, nitrate 0.162 g L−1. | 79.4 mg/g DW | Optimization of culture parameters to maximize fucoxanthin production. |
5 | Mohamadnia et al. [49] | 2022 | Refine fucoxanthin production using response surface methodology (RSM). | Adjustment of concentrations of glutamic acid, trisodium citrate, succinic acid, sodium aspartate, and pyruvate. | Optimal concentrations: sodium aspartate 7.5 mM, sodium pyruvate 7.5 mM, glutamic acid 3.29 mM. Productivity of 22.4 mg L−1 day−1. | 22.4 mg L−1 day−1 | Metabolic optimization strategies to increase fucoxanthin production. |
6 | McElroy et al. [50] | 2023 | Integrate biorefining to valorize Saccharina latissima biomass. | Optimized extraction of fucoxanthin at 40 MPa. Integration with mannitol and alginate extraction. Life cycle analysis. | 4.15% yield for fucoxanthin. Extraction of 67.27% to 69.38% of alginates. Reduction in environmental impact identified. | 41.5 mg/g DW | Integrated biorefining processes to reduce environmental footprint. |
7 | Xia et al. [51] | 2023 | Assess the impact of CO2 concentration and frequency on fucoxanthin production. | Comparison of continuous and intermittent CO2 supply at different concentrations. | Continuous CO2 at 5% achieved maximum biomass productivity (0.33 g L−1 day−1). Intermittent CO2 at 5% optimized fucoxanthin accumulation. | 0.56 mg/g DW | Improved fucoxanthin accumulation with intermittent CO2 supply. |
8 | Bo et al. [52] | 2023 | Study the effect of spermidine on fucoxanthin biosynthesis in Isochrysis sp. | Addition of spermidine under different light intensities and assessment of cell proliferation and pigment synthesis. | Optimal cell density of 5.40 × 106 cells/mL after 11 days. Maximum diadinoxanthin (1.09 mg/g DW) and fucoxanthin under low light intensity. | 6.11 mg/g DW | Spermidine enhances fucoxanthin production and mitigates photosystem damage under high light intensity. |
9 | Garcia-García et al. [53] | 2024 | Explore extraction of fucoxanthin and DHA from T. lutea using green solvents. | Use of green solvents and advanced extraction techniques, such as ultrasonic-assisted extraction with 2-methyltetrahydrofuran and ethanol. | High extraction yields of fucoxanthin and DHA. 2-Methyl-tetrahydrofuran-enriched extracts showed better composition. | High (exact quantity not provided) | Advanced extraction techniques to preserve bioactivity of extracts. |
10 | Manochkumar et al. [54] | 2024 | Optimize fucoxanthin production using machine learning. | Development of a machine learning model to predict fucoxanthin yield based on phytohormone supplementation. | Random Forest and ANN models showed improved accuracy with hormone descriptors. | - | Combining UV spectrometry and ML algorithms for precise fucoxanthin predictions and production optimization. |
11 | This work | - | Optimize fucoxanthin production from I. galbana and validate antioxidant potential. | Test various culture media. Evaluate antioxidant potential. Use PCA and regression models. Optimize growth conditions (air flow rate and CO2 flow). Perform molecular docking analysis. | Walne and Guillard media most effective. Strong correlation between antioxidant activity and fucoxanthin. Air flow rate and CO2 flow are key factors. Fucoxanthin interacts with antioxidant proteins. | 13.4 mg/g DW | Improved production methods. Validated antioxidant benefits. Insights for future research and applications. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Abdoul-Latif, F.; Ainane, A.; Achenani, L.; Merito Ali, A.; Mohamed, H.; Ali, A.; Jutur, P.P.; Ainane, T. Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches. Mar. Drugs 2024, 22, 358. https://doi.org/10.3390/md22080358
Mohamed Abdoul-Latif F, Ainane A, Achenani L, Merito Ali A, Mohamed H, Ali A, Jutur PP, Ainane T. Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches. Marine Drugs. 2024; 22(8):358. https://doi.org/10.3390/md22080358
Chicago/Turabian StyleMohamed Abdoul-Latif, Fatouma, Ayoub Ainane, Laila Achenani, Ali Merito Ali, Houda Mohamed, Ahmad Ali, Pannaga Pavan Jutur, and Tarik Ainane. 2024. "Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches" Marine Drugs 22, no. 8: 358. https://doi.org/10.3390/md22080358
APA StyleMohamed Abdoul-Latif, F., Ainane, A., Achenani, L., Merito Ali, A., Mohamed, H., Ali, A., Jutur, P. P., & Ainane, T. (2024). Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches. Marine Drugs, 22(8), 358. https://doi.org/10.3390/md22080358