A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study
Abstract
:1. Introduction
2. Results
2.1. Quantitation and Identification of E. acoroides Carotenoids Content
2.2. In Silico Analysis
2.2.1. Predicting the Activities of Bioactive Compounds, Analyzing Toxicity, and Assessing Drug-Likeness
2.2.2. Molecular Docking Simulations
2.3. In Vitro Analysis
2.3.1. Antioxidants: FRAP and DPPH with Trolox Control
2.3.2. Antidiabetes: α-Glucosidase and Acarbose Control
2.3.3. Antiobesity: Lipase and In Vitro MTT Assay 3T3-L1 Control Orlistat and Simvastatin
2.3.4. miR-21/132 Expressions
3. Discussion
4. Materials and Methods
4.1. Preparation and Extraction of E. acoroides
4.2. Carotenoid Identification and Analysis of E. acoroides via UHPLC-ESI-MS/MS
4.3. Evaluation of In Silico Study
4.3.1. Predicting the Activities of Bioactive Compounds, Analyzing Toxicity, and Assessing Drug-Likeness
4.3.2. Simulated Molecular Docking
4.4. Evaluation of In Vitro Study
4.4.1. Antioxidants Evaluation through DPPH Radical Scavenging Activities and FRAP Assay
4.4.2. Antidiabetes Evaluation through α-Glucosidase Inhibition
4.4.3. Antiobesity Evaluation: Lipase Inhibition and an In Vitro MTT Assay with the 3T3-L1 Cell Line
4.4.4. The miRNA Expression of miR-21/132
4.5. Data Management and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Menajang, F.S.I.; Mahmudi, M.; Yanuhar, U.; Herawati, E.Y. Evaluation of Phytochemical and Superoxide Dismutase Activities of Enhalus acoroides (L.f.) Royle from Coastal Waters of North Sulawesi, Indonesia. Vet. World 2019, 13, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Nanba, N. Ecological Characteristics of Tropical Seagrasses, Especially Enhalus Acoroides. Fish. Sci. 2002, 68, 1767–1770. [Google Scholar] [CrossRef] [PubMed]
- Rattanachot, E.; Prathep, A. Species-Specific Effects of Seagrass on Belowground Biomass, Redox Potential and Pillucina Vietnamica (Lucinidae). J. Mar. Biol. Assoc. UK 2015, 95, 1693–1704. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, H.; Chen, Q.; Zhao, M.; Sun, D.; Duan, S. Growth Inhibition of Phaeocystis Globosa Induced by Luteolin-7-O-Glucuronide from Seagrass Enhalus Acoroides. Int. J. Environ. Res. Public Health 2019, 16, 2615. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, Y.; Sandrina, S.; Nur Aina, R.; Narulita, E. Molecular Docking Analysis of Seagrass (Enhalus acoroides) Phytochemical Compounds as an Antidiabetic. J. Biol. Res. 2022, 95, 224. [Google Scholar] [CrossRef]
- Senthilkumar, P.; Santhosh Kumar, D.S.R.; Sudhagar, B.; Vanthana, M.; Parveen, M.H.; Sarathkumar, S.; Thomas, J.C.; Mary, A.S.; Kannan, C. Seagrass-Mediated Silver Nanoparticles Synthesis by Enhalus Acoroides and Its α-Glucosidase Inhibitory Activity from the Gulf of Mannar. J. Nanostruct. Chem. 2016, 6, 275–280. [Google Scholar] [CrossRef]
- De Vincenti, L.; Glasenapp, Y.; Cattò, C.; Villa, F.; Cappitelli, F.; Papenbrock, J. Hindering the Formation and Promoting the Dispersion of Medical Biofilms: Non-Lethal Effects of Seagrass Extracts. BMC Complement. Altern. Med. 2018, 18, 168. [Google Scholar] [CrossRef]
- Amudha, P.; Jayalakshmi, M.; Vidya, R.; Poojitha, B.N. Chemopreventive and Therapeutic Efficacy of Enhalus Acoroides against Diethylnitrosamine Induced Hepatocellular Carcinoma in Wistar Albino Rats. Appl. Biochem. Biotechnol. 2023, 195, 2597–2617. [Google Scholar] [CrossRef] [PubMed]
- Wismar, J.E.; Ambariyanto. Widianingsih Seagrass (Enhalus acoroides) Restoration Performance with Two Different Methods (Anchor and Seed) in Panjang Island, Jepara, Indonesia. J. Ilm. Perikan. Kelaut. 2023, 15, 84–94. [Google Scholar] [CrossRef]
- Amin, A.A.; Brawijaya, U.; Amrillah, A.M.; Brawijaya, U. Antibacterial test of enhalus acoroides seagrass against bacteria salmonella typhi. J. Environ. Eng. Sustain. Technol. 2023, 10, 95–103. [Google Scholar] [CrossRef]
- Thong-On, W.; Pathomwichaiwat, T.; Boonsith, S.; Koo-Amornpattana, W.; Prathanturarug, S. Green Extraction Optimization of Triterpenoid Glycoside-Enriched Extract from Centella asiatica (L.) Urban Using Response Surface Methodology (RSM). Sci. Rep. 2021, 11, 22026. [Google Scholar] [CrossRef]
- Boggia, R.; Turrini, F.; Villa, C.; Lacapra, C.; Zunin, P.; Parodi, B. Green Extraction from Pomegranate Marcs for the Production of Functional Foods and Cosmetics. Pharmaceuticals 2016, 9, 63. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Vigani, B.; Rossi, S.; Gentile, M.; Sandri, G.; Bonferoni, M.C.; Cavalloro, V.; Martino, E.; Collina, S.; Ferrari, F. Development of a Mucoadhesive and an in Situ Gelling Formulation Based on κ-Carrageenan for Application on Oral Mucosa and Esophagus Walls. II. Loading of a Bioactive Hydroalcoholic Extract. Mar. Drugs 2019, 17, 153. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhao, G.; Chen, F.; Wang, Z.; Wu, J.; Hu, X. Different Effects of Microwave and Ultrasound on the Stability of (All-E)-Astaxanthin. J. Agric. Food Chem. 2006, 54, 8346–8351. [Google Scholar] [CrossRef]
- Van Thanh, H.; Lan Phi, N.T.; Khoi, N.T.; Xuan, H.N.; Van Hung, P. Green Extraction and Biological Activity of Phenolic Extracts from Cashew Nut Testa Using a Combination of Enzyme and Ultrasound-assisted Treatments. J. Sci. Food Agric. 2023, 103, 5626–5633. [Google Scholar] [CrossRef]
- Albuquerque, B.R. Recovery of Anthocyanins From eugenia spp. Fruit Peels: A Comparison Between Heat- And Ultrasound-Assisted Extraction. Sustain. Food Technol. 2024, 2, 189–201. [Google Scholar] [CrossRef]
- Othman, S.B.; Kaldmäe, H.; Rätsep, R.; Bleive, U.; Aluvee, A.; Rinken, T. Optimization of Ultrasound-Assisted Extraction of Phloretin and Other Phenolic Compounds from Apple Tree Leaves (Malus domestica Borkh.) and Comparison of Different Cultivars from Estonia. Antioxid. Redox Signal. 2021, 10, 189. [Google Scholar] [CrossRef]
- Dai, J.L.; Raghavan, G.S.V.; Yaylayan, V.A.; Ngadi, M.; Orsat, V. Extraction of Ginsenosides from American Ginseng (Panax quinquefolium L.) Root with Different Extraction Methods and Chromatographic Analysis of the Extracts. Int. J. Food Eng. 2006, 6. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Dilek, N.M.; Karakaya, M.; Unal, K. Valorization of Sugar Beet Molasses Powder by Microwave and Ultrasound-assisted Extractions of Bioactive Compounds: An Optimization Study. J. Food Process. Preserv. 2022, 46, e16820. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Carvalho, A.M.; Barreiro, M.F.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Microwave-Assisted Extraction of Phenolic Acids and Flavonoids and Production of Antioxidant Ingredients from Tomato: A Nutraceutical-Oriented Optimization Study. Sep. Purif. Technol. 2016, 164, 114–124. [Google Scholar] [CrossRef]
- Huie, C.W. A Review of Modern Sample-Preparation Techniques for the Extraction and Analysis of Medicinal Plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Golmakani, M.; Rezaei, K. Microwave-assisted Hydrodistillation of Essential Oil from Zataria multiflora Boiss. Eur. J. Lipid Sci. Technol. 2008, 110, 448–454. [Google Scholar] [CrossRef]
- Shintawati; Widodo, Y.R.; Ermaya, D. Yield and Quality Improvement of Candlenut Oil by Microwave Assisted Extraction (MAE) Methods. Iop Conf. Ser. Earth Environ. Sci. 2022, 1012, 012024. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Lin, S.-J.; Zhang, J.; Zhao, C.; Li, H.-B. Microwave-Assisted Extraction of Natural Antioxidants from the Exotic Gordonia axillaris Fruit: Optimization and Identification of Phenolic Compounds. Molecules 2017, 22, 1481. [Google Scholar] [CrossRef] [PubMed]
- Dailey, A.; Vuong, Q.V. Optimum Conditions for Microwave Assisted Extraction for Recovery of Phenolic Compounds and Antioxidant Capacity from Macadamia (Macadamia tetraphylla) Skin Waste Using Water. Processes 2015, 4, 2. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M. Alzheimer hastaliğinda inos inhibitörlerinin umut verici rolü. Ank. Univ. Eczaci. Fak. Derg. 2023, 48, 4. [Google Scholar] [CrossRef]
- Cho, Y.D.; Choi, S.H.; Park, S.J.; Kim, J.Y.; Lim, C.W.; Yu, W.; Hwan, K.K.; Shin, T.G. The Impacts of Oxygen and Pentoxifylline in Hypoxic Condition. Eur. J. Inflam. 2022, 20, 20587392211056508. [Google Scholar] [CrossRef]
- Franceschelli, S.; Pia Gatta, D.M.; Pesce, M.; Ferrone, A.; Patruno, A.; De Lutiis, M.A.; Grilli, A.; Felaco, M.; Croce, F.; Speranza, L. New Approach in Translational Medicine: Effects of Electrolyzed Reduced Water (ERW) on NF-ΚB/INOS Pathway in U937 Cell Line Under Altered Redox State. Int. J. Mol. Sci. 2016, 17, 1461. [Google Scholar] [CrossRef] [PubMed]
- Minhas, R.; Bansal, Y.; Bansal, G. Inducible Nitric Oxide Synthase Inhibitors: A Comprehensive Update. Med. Res. Rev. 2019, 40, 823–855. [Google Scholar] [CrossRef] [PubMed]
- Sompong, W.; Muangngam, N.; Kongpatpharnich, A.; Manacharoenlarp, C.; Amorworasin, C.; Suantawee, T.; Thilavech, T. The Inhibitory Activity of Herbal Medicines on the Keys Enzymes and Steps Related to Carbohydrate and Lipid Digestion. BMC Complement. Altern. Med. 2016, 16, 439. [Google Scholar] [CrossRef] [PubMed]
- Wiyono, T.; Frediansyah, A.; Sholikhah, E.N.; Pratiwi, W.R. UHPLC-ESI-MS Analysis of Javanese Tamarindus Indica Leaves from Various Tropical Zones and Their Beneficial Properties in Relation to Antiobesity. J. Basic Appl. Pharm. Sci. 2022, 12, 137–147. [Google Scholar] [CrossRef]
- Jamous, R.M.; Abu-Zaitoun, S.Y.; Akkawi, R.J.; Ali-Shtayeh, M.S. Antiobesity and Antioxidant Potentials of Selected Palestinian Medicinal Plants. Evid. Based Complement. Alternat. Med. 2018, 2018, 8426752. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liang, H.; Chen, N.; Shi, B.; Zeng, W. Potential of Phenolic Compounds in Ligustrum robustum (Rxob.) Blume as Antioxidant and Lipase Inhibitors: Multi-spectroscopic Methods and Molecular Docking. J. Food Sci. 2022, 87, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Ridzwan Krishnamurthy, Z.M.; Ali, I.M.; Dayoob, M.; Hussein, S.S.; Karim Khan, N.A. Hibiscus Sabdariffa Extract as Anti-Aging Supplement Through Its Antioxidant and Anti-Obesity Activities. Biomed. Res. Ther. 2020, 7, 3572–3578. [Google Scholar] [CrossRef]
- Noorolahi, Z.; Sahari, M.A.; Barzegar, M.; Gavlighi, H.A. Tannin Fraction of Pistachio Green Hull Extract with Pancreatic Lipase Inhibitory and Antioxidant Activity. J. Food Biochem. 2020, 44, e13208. [Google Scholar] [CrossRef] [PubMed]
- Aabideen, Z.U.; Mumtaz, M.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum Officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
- Umami, K.; Fadlan, A.; Ersam, T. 3,6-Dimethyl Ester-A-Mangostin Compound Modified from Isolate A-Mangostin Garcinia Mangostana Linn. Iptek J. Proc. Ser. 2021, 6, 123–126. [Google Scholar] [CrossRef]
- Afolabi, O.B.; Oloyede, O.I.; Ojo, A.A.; Onansanya, A.A.; Agunbiade, S.O.; Ajiboye, B.O.; Jonathan, J.; Peters, O.A. In Vitro Antioxidant Potential and Inhibitory Effect of Hydro-Ethanolic Extract from African Black Velvet Tamarind (Dialium indium) Pulp on Type 2 Diabetes Linked Enzymes. Potravin. Slovak J. Food Sci. 2018, 12, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, Y.E. A-Glucosidase Inhibitory Activity of Tea and Kombucha from Rhizophora Mucronata Leaves. Beverages 2024, 10, 22. [Google Scholar] [CrossRef]
- Fauziah, F.; Ali, H.; Ilmiawati, C.; Aulia Bakhtra, D.D.; Agustin, Z.; Handayani, D. Inhibitory Activity of A-Glucosidase by the Extract and Fraction of Marine Sponge-Derived Fungus Penicillium Citrinum Xt6. Open Access Maced. J. Med. Sci. 2022, 10, 1290–1293. [Google Scholar] [CrossRef]
- Ranjana, R.; Singh, D.; Jadhav, B.L. Antidiabetic Activity of an Alkaloid (4a-Methyl-5-(6-Methylhept- 5-En-1-Yl)Octahydro-1h-Cyclopenta[A]Pyridazine) Isolated from Lumnitzera Racemosa in Streptozotocin-Induced Diabetic Wistar Rats. Int. J. Pharm. Investig. 2022, 12, 351–357. [Google Scholar] [CrossRef]
- Ahamad, J.; Uthirapathy, S. Chemical Characterization and Antidiabetic Activity of Essential Oils from Pelargonium Graveolens Leaves. Aro-Sci. J. Koya Univ. 2021, 9, 109–113. [Google Scholar] [CrossRef]
- Aguila-Muñoz, D.G. Synthesis and Molecular Docking Studies of Alkoxy- And Imidazole-Substituted Xanthones as A-Amylase and A-Glucosidase Inhibitors. Molecules 2023, 28, 4180. [Google Scholar] [CrossRef] [PubMed]
- Eliwa, D.; Kabbash, A.; El-Aasr, M.; Tawfik, H.O.; Batiha, G.E.-S.; Mahmoud, M.H.; Waard, M.D.; Eldehna, W.M.; Ibrahim, A.-R.S. Papaverinol-N-Oxide: A Microbial Biotransformation Product of Papaverine with Potential Antidiabetic and Antiobesity Activity Unveiled with in Silico Screening. Molecules 2023, 28, 1583. [Google Scholar] [CrossRef] [PubMed]
- Shanmugavadivu, M.; Velmurugan, B.K. Antibacterial Activity and Antidiabetic Activity of Costus igneus, Gymnema sylvestre and Ocimum sanctum. Int. J. Chemtech Res. 2018, 11, 126–134. [Google Scholar] [CrossRef]
- Rathod, C.H.; Nariya, P.B.; Maliwal, D.; Pissurlenkar, R.R.S.; Kapuriya, N.; Patel, A.S. Design, Synthesis and Antidiabetic Activity of Biphenylcarbonitrile-Thiazolidinedione Conjugates as Potential A-Amylase Inhibitors. Chemistryselect 2021, 6, 2464–2469. [Google Scholar] [CrossRef]
- Shafique, K.; Farrukh, A.; Ali, T.; Qasim, S.; Jafri, L.; Abd-Rabboh, H.S.M.; Al-Anazy, M.M.; Kalsoom, S. Designing Click One-Pot Synthesis and Antidiabetic Studies of 1,2,3-Triazole Derivatives. Molecules 2023, 28, 3104. [Google Scholar] [CrossRef]
- Bhutkar, M.A. In Vitro Studies on Alpha Amylase Inhibitory Activity of Some Indigenous Plants. Mod. Appl. Pharm. Pharmacol. 2018, 2, 28–36. [Google Scholar] [CrossRef]
- Lhamyani, S.; Gentile, A.; Giráldez-Pérez, R.M.; Feijóo-Cuaresma, M.; Romero-Zerbo, S.Y.; Clemente-Postigo, M.; Zayed, H.; Oliva-Olivera, W.; Bermúdez-Silva, F.J.; Salas, J.; et al. MiR-21 Mimic Blocks Obesity in Mice: A Novel Therapeutic Option. Mol. Ther. Nucleic Acids 2021, 26, 401–416. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, N.; Song, L.; Xie, H.; Zhao, C.; Li, S.; Zhao, W.; Zhao, Y.; Gao, C.; Xu, G. Adipokines and Free Fatty Acids Regulate Insulin Sensitivity by Increasing MicroRNA-21 Expression in Human Mature Adipocytes. Mol. Med. Rep. 2017, 16, 2254–2258. [Google Scholar] [CrossRef]
- Zhao, X.; Ye, Q.; Xu, K.; Cheng, J.; Gao, Y.; Li, Q.; Du, J.; Shi, H.; Zhou, L. Single-Nucleotide Polymorphisms Inside MicroRNA Target Sites Influence the Susceptibility to Type 2 Diabetes. J. Hum. Genet. 2013, 58, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Hulsmans, M.; Keyzer, D.D.; Holvoet, P. MicroRNAs Regulating Oxidative Stress and Inflammation in Relation to Obesity and Atherosclerosis. Faseb J. 2011, 25, 2515–2527. [Google Scholar] [CrossRef] [PubMed]
- Marques-Rocha, J.L.; Samblas, M.; Milagro, F.I.; Bressan, J.; Martínéz, J.A.; Marti, A. Noncoding RNAs, Cytokines, and Inflammation-Related Diseases. Faseb J. 2015, 29, 3595–3611. [Google Scholar] [CrossRef] [PubMed]
- Nesca, V.; Guay, C.; Jacovetti, C.; Menoud, V.; Peyot, M.; Laybutt, D.R.; Prentki, M.; Regazzi, R. Identification of Particular Groups of MicroRNAs That Positively or Negatively Impact on Beta Cell Function in Obese Models of Type 2 Diabetes. Diabetologia 2013, 56, 2203–2212. [Google Scholar] [CrossRef]
- Mulder, N.L.; Havinga, R.; Kluiver, J.; Groen, A.K.; Kruit, J.K. AAV8-Mediated Gene Transfer of MicroRNA-132 Improves Beta Cell Function in Mice Fed a High-Fat Diet. J. Endocrinol. 2019, 240, 123–132. [Google Scholar] [CrossRef]
- Nemecz, M. Microvesicle-Associated and Circulating MicroRNAs in Diabetic Dyslipidemia: MiR-218, MiR-132, MiR-143, and MiR-21, MiR-122, MiR-155 Have Biomarker Potential. Cardiovasc. Diabetol. 2023, 22, 260. [Google Scholar] [CrossRef]
- Zhu, H.; Leung, S.W. Identification of MicroRNA Biomarkers in Type 2 Diabetes: A Meta-Analysis of Controlled Profiling Studies. Diabetologia 2015, 58, 900–911. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, R.; Tian, L.; Han, X.; Ni, Y.; Jiang, L.; Zhou, H.; Xu, S. Decreased MiR-132 Plays a Crucial Role in Diabetic Encephalopathy by Regulating the GSK-3β/Tau Pathway. Aging 2020, 13, 4590–4604. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.-L.; Fernandez-Bueno, I.; Hernández-Cosido, L.; Bernardo, E.; Manzanedo-Bueno, L.; Hernández-García, I.; Mateos-Díaz, A.-M.; Rozo, O.; Matesanz, N.; Salete-Granado, D.; et al. PPAR-γ Gene Expression in Human Adipose Tissue Is Associated with Weight Loss After Sleeve Gastrectomy. J. Gastrointest. Surg. 2022, 26, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Puig, A.; Considine, R.V.; Jimenez-Liñan, M.; Werman, A.; Pories, W.J.; José, F.; Flier, J.S. Peroxisome Proliferator-Activated Receptor Gene Expression in Human Tissues. Effects of Obesity, Weight Loss, and Regulation by Insulin and Glucocorticoids. J. Clin. Investig. 1997, 99, 2416–2422. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Huang, Y.; Chen, X.; Lü, M.; Shi, L.; Li, C. Role and Mechanisms of Action of MicroRNA-21 as Regards the Regulation of the WNT/Β-catenin Signaling Pathway in the Pathogenesis of Non-alcoholic Fatty Liver Disease. Int. J. Mol. Med. 2019, 44, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- Keller, P.; Gburcik, V.; Petrovič, N.; Gallagher, I.J.; Nedergaard, J.; Cannon, B.; Timmons, J.A. Gene-Chip Studies of Adipogenesis-Regulated MicroRNAs in Mouse Primary Adipocytes and Human Obesity. BMC Endocr. Disord. 2011, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Kong Chung, A.C.; Chen, H.; Dong, Y.; Meng, X.; Li, R.; Yang, W.; Hou, F.F.; Lan, H. MiR-21 Is a Key Therapeutic Target for Renal Injury in a Mouse Model of Type 2 Diabetes. Diabetologia 2013, 56, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Li, A.-D.; Ji, L.; Yao, Y.; Wang, Z.; Tong, L. MiR-132 Regulates the Expression of Synaptic Proteins in APP/PS1 Transgenic Mice Through C1q. Eur. J. Histochem. 2019, 63, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Wang, K.; Lin, H.; Tao, E.; Xia, W.; Wang, F.; Mao, C.; Feng, Y. Engineered Exosomes Derived from MiR-132-Overexpresssing Adipose Stem Cells Promoted Diabetic Wound Healing and Skin Reconstruction. Front. Bioeng. Biotechnol. 2023, 11, 1129538. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D.; Wang, A.; Chu, T.; Lohcharoenkal, W.; Zheng, X.; Grünler, J.; Narayanan, S.; Eliasson, S.; Herter, E.K.; et al. MicroRNA-132 with Therapeutic Potential in Chronic Wounds. J. Investig. Dermatol. 2017, 137, 2630–2638. [Google Scholar] [CrossRef]
- Mziaut, H.; Henniger, G.; Ganss, K.; Hempel, S.; Wolk, S.; McChord, J.; Chowdhury, K.; Ravassard, P.; Knoch, K.-P.; Krautz, C.; et al. MiR-132 Controls Pancreatic Beta Cell Proliferation and Survival Through Pten/Akt/Foxo3 Signaling. Mol. Metab. 2020, 31, 150–162. [Google Scholar] [CrossRef]
- Elik, A.; Yanık, D.K.; Göğüş, F. Microwave-Assisted Extraction of Carotenoids from Carrot Juice Processing Waste Using Flaxseed Oil as a Solvent. Lebenson. Wiss. Technol. 2020, 123, 109100. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; June Chelyn, L.; Vimala, S.; Mohd Fairulnizal, M.N.; Brownlee, I.A.; Amin, I. Carotenoid Composition and Antioxidant Potential of Eucheuma Denticulatum, Sargassum Polycystum and Caulerpa Lentillifera. Heliyon 2020, 6, e04654. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y. Protein-Ligand Blind Docking Using CB-Dock2. Methods Mol. Biol. 2024, 2714, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Nurkolis, F.; Purnomo, A.F.; Alisaputra, D.; Gunawan, W.B.; Qhabibi, F.R.; Park, W.; Moon, M.; Taslim, N.A.; Park, M.N.; Kim, B. In Silico and in Vitro Studies Reveal a Synergistic Potential Source of Novel Anti-Ageing from Two Indonesian Green Algae. J. Funct. Foods 2023, 104, 105555. [Google Scholar] [CrossRef]
- Kuswari, M.; Nurkolis, F.; Mayulu, N.; Ibrahim, F.M.; Taslim, N.A.; Wewengkang, D.S.; Sabrina, N.; Arifin, G.R.; Mantik, K.E.K.; Bahar, M.R.; et al. Sea Grapes Extract Improves Blood Glucose, Total Cholesterol, and PGC-1α in Rats Fed on Cholesterol- and Fat-Enriched Diet. F1000Research 2021, 10, 718. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.S.; Kim, Y.-J.; Na, H.J.; Jung, H.R.; Song, C.K.; Kang, S.Y.; Kim, J.Y. Antioxidant Activity and Contents of Leaf Extracts Obtained from Dendropanax Morbifera LEV Are Dependent on the Collecting Season and Extraction Conditions. Food Sci. Biotechnol. 2019, 28, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Nurkolis, F.; Taslim, N.A.; Subali, D.; Kurniawan, R.; Hardinsyah, H.; Gunawan, W.B.; Kusuma, R.J.; Yusuf, V.M.; Pramono, A.; Kang, S.; et al. Dietary Supplementation of Caulerpa Racemosa Ameliorates Cardiometabolic Syndrome via Regulation of PRMT-1/DDAH/ADMA Pathway and Gut Microbiome in Mice. Nutrients 2023, 15, 909. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, R.; Nurkolis, F.; Taslim, N.A.; Subali, D.; Surya, R.; Gunawan, W.B.; Alisaputra, D.; Mayulu, N.; Salindeho, N.; Kim, B. Carotenoids Composition of Green Algae Caulerpa Racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties. Molecules 2023, 28, 3267. [Google Scholar] [CrossRef]
- Jiang, Z.; Yu, G.; Liang, Y.; Song, T.; Zhu, Y.; Ni, H.; Yamaguchi, K.; Oda, T. Inhibitory Effects of a Sulfated Polysaccharide Isolated from Edible Red Alga Bangia Fusco-Purpurea on α-Amylase and α-Glucosidase. Biosci. Biotechnol. Biochem. 2019, 83, 2065–2074. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Mao, X.; Qi, P.; Zhang, X. Separation and Lipid Inhibition Effects of a Novel Decapeptide from Chlorella Pyenoidose. Molecules 2019, 24, 3527. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.-U.; Park, Y.-J. Ergosterol Peroxide from the Medicinal Mushroom Ganoderma Lucidum Inhibits Differentiation and Lipid Accumulation of 3T3-L1 Adipocytes. Int. J. Mol. Sci. 2020, 21, 460. [Google Scholar] [CrossRef] [PubMed]
Observed Compounds | Selected Ion | Observed MW | Molecular Formula | TR (min) | PubChem CID | CAS Number |
---|---|---|---|---|---|---|
Fucoxanthin | [M + H–H2O]+ | 658.8779 | C42H58O6 | 16.19 | 5281239 | 3351-86-8 |
Lutein | [M + H–H2O]+ | 568.4239 | C40H56O2 | 20.22 | 5281243 | 127-40-2 |
Astaxanthin | [M + H]+ | 596.5900 | C40H52O4 | 18.99 | 5281224 | 472-61-7 |
Canthaxanthin | [M + H]+ | 564.7000 | C40H52O2 | 21.15 | 5281227 | 514-78-3 |
Zeaxanthin | [M]+ | 568.7209 | C40H56O2 | 20.09 | 5280899 | 144-68-3 |
β-Cryptoxanthin | [M]+ | 552.8838 | C40H56O | 22.49 | 5281235 | 472-70-8 |
Samples | Fucoxanthin | Astaxanthin | Zeaxanthin | Lutein | β-Carotene | β-Cryptoxanthin | Canthaxanthin |
---|---|---|---|---|---|---|---|
E-UAE | 7.65 ± 1.00 a | 6.80 ± 1.03 a | 6.35 ± 0.33 a | 9.73 ± 0.43 a | 8.58 ± 0.54 a | 2.61 ± 0.63 a | 3.51 ± 1.04 a |
E-MAE | 6.08 ± 0.64 b | 5.18 ± 0.56 b | 3.66 ± 0.26 b | 7.69 ± 0.87 b | 6.57 ± 0.52 b | 4.49 ± 0.16 b | 2.04 ± 0.13 a |
Code | Pa Score * | Toxicity Model Computation Analysis ** | Drug-Likeness *** | |||
---|---|---|---|---|---|---|
>0.4 | Predicted LD50 (mg/kg BW) | Toxicity Class | Lipinski Rule | Pfizer Rule | GSK | |
C1/Fucoxanthin | Antiobesity (0.908) | 130 | 3 | Rejected | Accepted | Rejected |
C2/Lutein | Lipid metabolism regulator (0.805) | 10 | 2 | Rejected | Rejected | Rejected |
C3/Astaxanthin | Lipid metabolism regulator (0.844) | 4600 | 5 | Rejected | Rejected | Rejected |
C4/Canthaxanthin | Lipid metabolism regulator (0.821) | 10,000 | 6 | Rejected | Rejected | Rejected |
C5/Zeaxanthin | Lipid metabolism regulator (0.936) | 10 | 2 | Rejected | Rejected | Rejected |
C6/β-Cryptoxanthin | Lipid metabolism regulator (0.946) | 10 | 2 | Rejected | Rejected | Rejected |
C7/β-Carotene | Lipid metabolism regulator (0.918) | 1190 | 4 | Rejected | Rejected | Rejected |
Receptors/Proteins (PDB ID) | Gibbs Free Energy (ΔG; kcal/mol) | |||||
---|---|---|---|---|---|---|
C3 | C4 | C7 | Control/Acarbose | Control/Orlistat | Control/S-Ibuprofen | |
iNOS (3E7G) | −9.3 | −9.4 | −9.7 | −8.3 | ||
Lipase (1LPB) | −9.2 | −9.7 | −9.6 | −7.1 | ||
α-Glucosidase (3L4Y) | −8.0 | −8.0 | −8.0 | −6.8 | ||
α-Amylase (2QV4) | −10.7 | −10.0 | −9.7 | −7.7 |
Proteins | C3 | C4 |
---|---|---|
iNOS | ||
Lipase | ||
α-Glucosidase | ||
α-Amylase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tjandrawinata, R.R.; Nurkolis, F. A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study. Mar. Drugs 2024, 22, 365. https://doi.org/10.3390/md22080365
Tjandrawinata RR, Nurkolis F. A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study. Marine Drugs. 2024; 22(8):365. https://doi.org/10.3390/md22080365
Chicago/Turabian StyleTjandrawinata, Raymond Rubianto, and Fahrul Nurkolis. 2024. "A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study" Marine Drugs 22, no. 8: 365. https://doi.org/10.3390/md22080365
APA StyleTjandrawinata, R. R., & Nurkolis, F. (2024). A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides: In Silico and In Vitro Study. Marine Drugs, 22(8), 365. https://doi.org/10.3390/md22080365