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Abstract: This study was conducted to evaluate the potential anti-inflammatory and immune-
enhancement properties of lipids derived from Aptocyclus ventricosus eggs on RAW264.7 cells. Firstly,
we determined the fatty acid compositions of A. ventricosus lipids by performing gas chromatography
analysis. The results showed that A. ventricosus lipids contained saturated fatty acids (24.37%),
monounsaturated fatty acids (20.90%), and polyunsaturated fatty acids (54.73%). They also contained
notably high levels of DHA (25.91%) and EPA (22.05%) among the total fatty acids. Our results for the
immune-associated biomarkers showed that A. ventricosus lipids had immune-enhancing effects on
RAW264.7 cells. At the maximum dose of 300 µg/mL, A. ventricosus lipids generated NO (119.53%)
and showed greater phagocytosis (63.69%) ability as compared with untreated cells. A. ventricosus
lipids also upregulated the expression of iNOS, IL-1β, IL-6, and TNF-α genes and effectively upregu-
lated the phosphorylation of MAPK (JNK, p38, and ERK) and NF-κB p65, indicating that these lipids
could activate the MAPK and NF-κB pathways to stimulate macrophages in the immune system.
Besides their immune-enhancing abilities, A. ventricosus lipids significantly inhibited LPS-induced
RAW264.7 inflammatory responses via the NF-κB and MAPK pathways. The results indicated that
these lipids significantly reduced LPS-induced NO production, showing a decrease from 86.95%
to 38.89%. Additionally, these lipids downregulated the expression of genes associated with the
immune response and strongly suppressed the CD86 molecule on the cell surface, which reduced
from 39.25% to 33.80%. Collectively, these findings imply that lipids extracted from A. ventricosus
eggs might have biological immunoregulatory effects. Thus, they might be considered promising
immunomodulatory drugs and functional foods.

Keywords: lipids; cytokines; macrophages; inflammation; A. ventricosus

1. Introduction

Inflammation is one of the important immune regulation systems and a highly complex
one that protects against external harm or tissue damage caused by various stimuli, includ-
ing pathogens, toxic chemicals, mechanical substances, and autoimmune responses [1,2].
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Numerous marine-derived compounds have immune-modulatory properties that can re-
duce inflammation while also stimulating immunity [3,4]. RAW264.7 is a macrophage
cell line established from a tumor in a mouse induced with the Abelson murine leukemia
virus. It is a useful model for examining immune activities of macrophages [5–8]. Activated
macrophages are known to release multiple immunomodulatory factors such as nitric oxide
(NO), inducible nitric oxide synthase, prostaglandin E2 (PGE2), cyclooxygenase (COX)-2,
reactive oxygen species (ROS), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, tumor necrosis
factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1), which can serve as
indicators of immunity [6,9–11]. Additionally, they can promote immunoregulatory ef-
fects by triggering the NF-κB and MAPK signaling pathways [6,11,12]. Moreover, many
kinds of natural compounds have been revealed to affect the immunological responses of
macrophages [6,9,11].

Fish-derived lipids are known to contain substantial quantities of omega-3 polyun-
saturated fatty acids (PUFAs), particularly C22:6n-3 (docosahexaenoic acid, DHA) and
C20:5n-3 (eicosapentaenoic acid, EPA) [13–15]. They can act as lipid mediator precursors
and affect inflammatory and immunological responses [16]. EPA and DHA also show
potent anti-inflammatory effects in THP-1-derived macrophages [17]. In studies using
RAW264.7 cells, EPA has been shown to possess biological functions of immune modula-
tion, such as immune enhancement and anti-inflammation, in diverse marine species [5,12].
Lipids and fatty acids (FAs) have a variety of naturally occurring effects. For example, they
can prevent thrombosis, diabetes, obesity, cancer, inflammation, Alzheimer’s disease, and
cardiovascular diseases [18,19]. Lipids extracted from Ammodytes personatus eggs contain
high levels of PUFAs, which boost immunity and reduce inflammation by regulating inflam-
matory mediators, cytokines, surface expression, and intracellular signaling pathways [20].
Previous research has demonstrated that CD14, CD40, and CD86 with immunopotentiation
activity on the surfaces of macrophages can be activated by fish lipids and FAs [8,9,20,21].

Aptocyclus ventricosus (smooth lumpsucker) is a species of cold-water fish belonging
to the Cyclopteridae family. These fish live in the North Pacific, originating from the
coast of the Korean Peninsula including water areas of the East Sea of Korea, the Sea of
Okhotsk, and the Bering Sea [22,23]. It is an iteroparous gonochoristic species with an
extremely high fertilization rate. Its fully ripe internal egg masses have significant eco-
nomic value [24]. A. ventricosus has been a popular food in the Gangwon-do region in
Korea for a long time, with people especially favoring the roe for its good texture [25].
The muscles and roe (eggs) of A. ventricosus contains the following fatty acids: C16:0,
C18:0, C18:1n-9, C18:1n-7, C20:4n-6, EPA, and DHA. Its eggs contain higher amounts of
EPA and DHA compared to those of other fish species [25]. Consuming fish with sub-
stantial n-3 PUFAs has been shown to prevent mortality from fetal development issues,
cardiovascular disease, Alzheimer’s disease, and chronic inflammatory diseases [26,27].
However, most studies on A. ventricosus have focused on its development, distribution,
genetic features, morphological characteristics, taxonomy, physiological features, and re-
sponses to environmental changes [22,24,28,29]. Information about the functional materials
of A. ventricosus for human health is limited. Moreover, no studies related to A. ventricosus
eggs as promising immunomodulatory drugs or functional foods have yet to be described.
In particular, the biological activities of A. ventricosus, especially the immune-enhancing
and anti-inflammatory effects of lipids from A. ventricosus eggs on macrophages, have not
yet been reported. Hence, the current study aimed to assess the immunological regulatory
effects of lipids derived from A. ventricosus eggs on RAW264.7 cells.

2. Results
2.1. Analysis of Fatty Acids (FAs) in A. ventricosus Lipids

In the present study, the GC-FID method was applied to determine the FA pro-
files of lipids derived from A. ventricosus eggs. Figure 1 depicts the FA compositions
of A. ventricosus lipids which include saturated fatty acids (SFAs), monounsaturated fatty
acids (MUFAs), and PUFAs. The FA compositions of A. ventricosus lipids included SFAs
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(24.37 ± 0.06%), MUFAs (20.90 ± 0.06%), and PUFAs (54.73 ± 0.90%). Among the SFAs
present in A. ventricosus lipids, myristic acid (C14:0), palmitic acid (C16:0), and stearic acid
(C18:0) accounted for 2.82%, 17.81%, and 3.37%, respectively. Among the MUFAs, oleic acid
(C18:1n-9) and C18:1n-7 accounted for 11.94% and 5.35%, respectively. Among the PUFAs,
DHA (C22:6n-3), EPA (C20:5n-3), docosapentaenoic acid (C22:5n-3), and eicosatrienoic acid
(C20:3n-3 cis-11) accounted for 25.91%, 22.05%, 2.66%, and 2.28%, respectively.
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Figure 1. Compositions of FAs in A. ventricosus lipids (% of all detected FAs). Values are shown as
the mean ± standard deviation (SD) (n = 5). Significant changes in fatty acid levels are shown by
different superscript lowercase letters (p < 0.05).

2.2. Cytotoxic Effect of A. ventricosus Lipids on Macrophages

The cytotoxic influence of A. ventricosus lipids on RAW264.7 macrophages was deter-
mined using an EZ-Cytox Cell Viability Assay Kit. The results are displayed in Figure 2.
No treatment was cytotoxic to RAW264.7 cells, as assessed using untreated cells (RPMI)
as the control. Figure 2A shows the cell viability upon treatment with A. ventricosus lipids
without LPS stimulation. The results show that cell viability after treatment with DMSO
(1%) or A. ventricosus lipids at 100, 250, or 300 µg/mL was not drastically different from
that of RPMI. Although cell viability after treatment with A. ventricosus lipids at 150 or
200 µg/mL significantly improved cell viability compared to RPMI, no cytotoxicity was
observed. For LPS-induced RAW264.7 cells, cell viability was not significantly different
among the treatments except for the group treated with A. ventricosus lipids at the highest
concentration (300 µg/mL) (Figure 2B). Likewise, LPS (1 µg/mL), aspirin (200 µg/mL),
and the control showed no cytotoxicity. Therefore, 100–300 µg/mL of A. ventricosus lipids
were determined to be the optimal concentrations for subsequent experiments.
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statistical differences compared to cells treated with RPMI.

2.3. Effects of A. ventricosus Lipids on Phagocytosis of Macrophages

Macrophage phagocytosis after treatment with A. ventricosus lipids was analyzed
using FITC-labeled dextran. As illustrated in Figure 3, LPS dramatically boosted phago-
cytic capacity as compared to RPMI, the negative control. A reagent control experiment
with DMSO showed a slight stimulation of phagocytosis and no difference compared to
RPMI. Moreover, A. ventricosus lipids (100–300 µg/mL) reinforced the phagocyte activities
observed in RAW264.7 cells, depending on the dose.
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2.4. Effects of A. ventricosus Lipids on NO Production and iNOS Expression

The effects of A. ventricosus lipids on macrophage immunity were tested by measur-
ing NO production in macrophages treated with these lipids at varying concentrations
(100–300 µg/mL). As shown in Figure 4A, A. ventricosus lipids promoted NO secretion
of macrophages in a dose-varying manner. When compared with RPMI, treatments with
DMSO and A. ventricosus lipids at 100 or 150 µg/mL slightly and non-significantly in-
creased NO secretion of macrophages, whereas A. ventricosus lipids at 200, 250, and
300 µg/mL significantly increased NO secretion. Furthermore, the anti-inflammatory
effect of A. ventricosus lipids (100–300 µg/mL) dramatically decreased LPS-induced NO
generation by 86.95–38.89%, depending on the dose. The highest dose of A. ventricosus
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lipids, at 300 µg/mL, had a significant suppressive effect on LPS-induced NO generation
(38.89 ± 2.94%), similar to the result of aspirin (39.08 ± 0.98%), a positive drug (Figure 4B).
As shown in Figure 4C, A. ventricosus lipids substantially boosted iNOS expression, whereas
these lipids suppressed LPS-induced iNOS expression (Figure 4D).
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2.5. Effects of A. ventricosus Lipids on Cytokine Expression

The immunoregulatory effects of A. ventricosus lipids on the expression of immune-related
genes are shown in Figure 5. The expression levels of IL-1β, IL-6, and TNF-α were substantially
enhanced by A. ventricosus lipids in a dose-varying manner when compared with those in
RPMI, as shown in Figure 5A–C. The mRNA expression of three cytokines (IL-1β, IL-6, and
TNF-α) in LPS-treated cells were also significantly increased when compared with those in RPMI.
However, A. ventricosus lipids effectively suppressed the LPS-induced expression of IL-1β, IL-6,
and TNF-α in a dose-varying manner (Figure 5D–F).
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2.6. Effects of A. ventricosus Lipids on NF-κB and MAPK Activation

To determine whether A. ventricosus lipids modulate immune signaling pathways,
their effects on the expression levels of NF-κB and MAPK proteins were explored using
a Western blotting assay. As a control for the immune-enhancement function, RPMI was
used. A. ventricosus lipids substantially increased the phosphorylation of NF-κB-p65 in
RAW264.7 cells in a dose-varying manner. The phosphorylation levels of ERK1/2, JNK,
and p38 were also increased by A. ventricosus lipids (Figure 6A). Conversely, to identify the
regulation of anti-inflammatory function of A. ventricosus lipids, LPS-stimulated cells were
used. A. ventricosus lipids (100–300 µg/mL) obviously suppressed the phosphorylation of
NF-κB p65. Depending on the dose, A. ventricosus lipids also strongly reduced JNK, ERK,
and p38 activation induced by LPS (Figure 6B).

Mar. Drugs 2024, 22, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 5. Effects of A. ventricosus lipids on cytokine expression. The mRNA levels of TNF-α, IL-1β, 
and IL-6 in RAW264.7 cells (A–C) and in LPS-stimulated RAW264.7 cells (D–F) are shown. Values 
are shown as the mean ± SD (n = 3). * p < 0.05, indicating statistical differences compared to cells 
treated with the control (RPMI or LPS). 

2.6. Effects of A. ventricosus Lipids on NF-κB and MAPK Activation 
To determine whether A. ventricosus lipids modulate immune signaling pathways, 

their effects on the expression levels of NF-κB and MAPK proteins were explored using a 
Western bloĴing assay. As a control for the immune-enhancement function, RPMI was 
used. A. ventricosus lipids substantially increased the phosphorylation of NF-κB-p65 in 
RAW264.7 cells in a dose-varying manner. The phosphorylation levels of ERK1/2, JNK, 
and p38 were also increased by A. ventricosus lipids (Figure 6A). Conversely, to identify 
the regulation of anti-inflammatory function of A. ventricosus lipids, LPS-stimulated cells 
were used. A. ventricosus lipids (100–300 µg/mL) obviously suppressed the phosphoryla-
tion of NF-κB p65. Depending on the dose, A. ventricosus lipids also strongly reduced JNK, 
ERK, and p38 activation induced by LPS (Figure 6B). 

 
Figure 6. Effect of A. ventricosus lipids on NF-κB and MAPK activation. Phosphorylation levels of 
proteins of the NF-κB and MAPK signaling pathways in RAW264.7 cells (A) and in LPS-induced 
Figure 6. Effect of A. ventricosus lipids on NF-κB and MAPK activation. Phosphorylation levels of
proteins of the NF-κB and MAPK signaling pathways in RAW264.7 cells (A) and in LPS-induced



Mar. Drugs 2024, 22, 368 7 of 14

RAW264.7 cells (B). Effects of specific inhibitors of NF-κB and MAPK on A. ventricosus lipid-induced
TNF-α expression in RAW264.7 cells (C) and in LPS-stimulated RAW264.7 cells (D). Values are shown
as the mean ± SD (n = 3). * p < 0.05, indicating statistically significant differences compared to cells
treated with the control (RPMI or LPS).

2.7. Effects of A. ventricosus Lipids on TNF-α Expression after Co-Treatment with Specific
Inhibitors via NF-κB and MAPK Activation

To confirm that the MAPK and NF-κB pathways were involved in A. ventricosus lipid-
induced macrophage activation, specific NF-κB, JNK, ERK, and p38 MAPK inhibitors were
used along with A. ventricosus lipids (300 µg/mL). To identify which immune-enhancement
signaling pathway was involved, the levels of TNF-α expression were measured by real-
time qPCR (Figure 6C). A. ventricosus lipids or LPS alone increased the expression levels of
NF-κB, p38, JNK, and ERK1/2 when compared with the control (RPMI). TNF-α expression
was significantly decreased after treatment with A. ventricosus lipids in the presence of
NF-κB and MAPK compared to that after treatment with LPS, whereas A. ventricosus lipids
increased TNF-α expression in the presence of NF-κB and MAPK activation compared to
RPMI (Figure 6C). Conversely, to confirm which immune-signaling pathway was involved
in the anti-inflammation effect, LPS was used to stimulate the cells (Figure 6D). Compared
to LPS alone, co-treatment of A. ventricosus lipids with NF-κB, JNK, ERK, and p38 MAPK
inhibitors markedly decreased TNF-α expression: 3.46 ± 0.04-fold by a specific inhibitor for
NF-κB, 4.51 ± 0.24-fold by a specific inhibitor for p38 MAPK, 3.37 ± 0.19-fold by a specific
inhibitor for JNK, and 4.54 ± 0.07-fold by a specific inhibitor for ERK.

2.8. Effects of A. ventricosus Lipids on LPS-Induced Cell Surface Molecule Expression

Figure 7 show cell surface molecule associated with inflammation regulation in LPS-
stimulated cells. Results revealed that expression level of cell surface molecule CD40
on macrophages was significantly upregulated after treatment with LPS, whereas CD40
expression did not differ significantly from that of the group treated with LPS followed
by A. ventricosus lipids (Figure 7A). However, A. ventricosus lipids at 100–300 µg/mL
significantly decreased LPS-induced expression of CD86 by 39.25–33.80% (Figure 7B).
These findings suggested that A. ventricosus lipids triggered cell surface activation via the
CD86 molecule.
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significant differences when compared with cells treated with LPS. M1 = macrophage phenotypes
related to immunological stimulating activity. AVL = A. ventricosus lipids.
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3. Discussion

In the present study, lipids were extracted from A. ventricosus eggs. Their FA profile
was then evaluated using a GC assay after sample saponification and derivatization to their
corresponding methyl esters. Among them, palmitic acid, oleic acid, DHA, and EPA stood
out. EPA and DHA are major fatty acids found in eggs of several fish species including tuna,
white seabream, Atlantic bonito, cuttlefish, lumpfish, and Atlantic salmon [13,14,30]. The
immunomodulatory effect of DHA on RAW264.7 cells was associated with the release of
NO and the protein expression of cytokines (iNOS, IL-1β, IL-6, IL-10, IL-12, TNF-α, IFN-γ,
and TGF-β) by stimulating GPR120, C-Raf, and MAPKs of the NF-κB p65 pathway [31].
Many previous studies have shown its immunomodulating effect in fish eggs [20,21,32,33].
However, the mechanisms of the immune-regulating actions of A. ventricosus lipids remain
unknown. In this study, the anti-inflammatory and immunostimulatory effects of A. ventri-
cosus lipids on RAW264.7 macrophages were elucidated and their possible mechanisms of
action were examined.

Macrophages are immune cells that generate cytotoxic and inflammatory substances
such as NO and release cytokines in reaction to foreign infections [34]. NO is a biomarker
that regulates immune function and inflammatory mediators. It may contribute to the
release of various hormones implicated in immunological regulation [35,36]. Our results
showed that A. ventricosus lipids had the capacity to increase NO generation in RAW264.7
cells for immune enhancement. Consistent with previous reports showing that syntheses
of pro-inflammatory mediators such as NO and PGE2 are induced by iNOS and COX-2
enzymes, respectively [7], A. ventricosus lipids also induced iNOS expression. Addition-
ally, previous studies have indicated that fish lipids can lead to the expression of inflam-
matory cytokines (such as TNF-α, IL-1β, and IL-6) and mediators (iNOS) in RAW264.7
cells [20,21,37], consistent with similar the immune-regulating effects of another compound
previously reported [38,39]. Our results also revealed that A. ventricosus lipids increased
the expression of IL-1β, IL-6, and TNF-α in RAW264.7 cells. Conversely, the secretion of NO
and the expression levels of iNOS gene were reduced in LPS-stimulated cells due to the
anti-inflammatory effects of A. ventricosus lipids. A. ventricosus lipids reduced the expres-
sion of immune-associated genes. They also decreased iNOS expression in LPS-stimulated
cells, similar to previous reports [9,11,12]. These results suggest that A. ventricosus lipids
may regulate immunity, such as through immune enhancement and anti-inflammation, by
releasing pro-inflammatory mediators and cytokines through macrophages depending on
the conditions.

Activation of NF-κB and MAPK cellular signaling plays important roles in macrophage
immunity [5,6,11]. Once the macrophage is stimulated by diverse stimulants such as
bacteria and LPS, the p65 subunit essential for the NF-κB family becomes activated and
transfers from the cytoplasm to the nucleus [40]. In addition, multiple biological functions
such as cell development, differentiation, proliferation, apoptosis, the reaction to oxidative
stress, and inflammatory responses are known to be regulated by MAPK, such as ERK,
JNK, and p38 [41]. Lipids extracted from fish eggs have been reported to be involved in
inflammation by activating the NF-κB and MAPK pathways [20,21,37]. Our study also
found that A. ventricosus lipids substantially regulated the immune system by increasing
or decreasing the phosphorylation of NF-κB- and MAPK-associated proteins, depending
on the conditions of immunity enhancement and anti-inflammation. In addition, the
analysis of TNF-α expression after treatment with specific NF-κB, JNK, ERK, and p38
MAPK inhibitors showed that A. ventricosus lipids were associated with its regulation via
the NF-κB and MAPK activation, similar to previous reports [4,7,11]. Taken together, these
findings suggest that A. ventricosus lipids can reduce inflammation by inhibiting the NF-κB
and MAPK pathways.

Phagocytosis is one of macrophages’ representative immunological responses. It
is activated at the initial phases of immunity and inflammatory [42]. Recently, it has
been reported that Paecilomyces lilacinus exopolysaccharide can significantly increase the
phagocytic capability of RAW264.7 cells using FITC-labeled dextran [43]. In our current
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study, to measure phagocytosis ability, flow cytometry was used. The results showed
that A. ventricosus lipids triggered phagocytosis, indicating that A. ventricosus lipids might
activate macrophages, increasing their ability to phagocytose. Moreover, prior research
has revealed that CD40 and CD86 lead to the immune function of the macrophage surface
induced by natural compounds [8,44]. It has been shown that T-cell responses are able to
modulated with either pro-inflammatory or regulatory effector functions by differential
expression of co-stimulatory molecules on antigen-presenting cells [45]. Our results showed
that CD86, a cell surface molecule, was decreased in LPS-stimulated macrophages due to
the anti-inflammatory effect of A. ventricosus lipids. These results indicate that A. ventricosus
lipids may influence the phagocytic activity and activation of LPS-induced macrophages
by decreasing CD86 expression.

Overall, these results indicate that A. ventricosus lipids exhibit immunomodulatory
effects by inhibiting or enhancing the immune system via macrophages, with their inhibi-
tion or enhancement depending on the presence of LPS, which thus shapes the immune
condition of macrophage cells. Numerous natural substances possess immunomodula-
tory agents that exhibit a broad spectrum of immune-enhancing and anti-inflammatory
activities, which are utilized to either increase or decrease an organism’s susceptibility to
invading antigens [46–48].

4. Materials and Methods
4.1. Samples

A. ventricosus was obtained from Jumunjin Fish Market in Gangneung, Gangwon-do,
Korea. Eggs collected from A. ventricosus were freeze-dried, blended, and kept at −20 ◦C.

4.2. Preparation of A. ventricosus Lipids

The Bligh and Dyer method [49] was carried out to extract lipids from prepared
A. ventricosus eggs. In brief, solutions were produced by mixing 4.5 g of dried materials
with 30 mL of chloroform: methanol (1:2, v/v), then adding chloroform and distilled water.
After centrifuging the mixture at 3000 rpm for 10 min, the aqueous solution was collected
and filtered through a filter paper (Whatman No.2, Whatman, Maidstone, UK) and a 0.2 µm
PTFE membrane (CHM lab group, Barcelona, Spain). After that, the filtered solution was
concentrated using an IKA RV 10 Digital V-C rotary evaporator (IKA, Staufen, Germany)
and a 12 position N-EVAP nitrogen evaporator (Organomation, Berlin, MA, USA). The
lipid yield obtained from A. ventricosus eggs was 15.48 ± 0.68%. These lipids were then
extracted using a dimethyl sulfoxide (DMSO) solution for use in cell culture experiments.

4.3. Determination of Fatty Acid Compositions

A. ventricosus lipids were subjected to extraction of fatty acid methyl esters (FAMEs)
through a one-step procedure involving hydrolysis, extraction, and methylation [50,51]. FAMEs
were quantified using an Agilent 7890 gas chromatograph equipped with a flame-ionization
detector (Agilent Technologies, Santa Clara, CA, USA) and an Agilent J&W GC Column (30 m ×
0.32 mm I.D., 0.25 µm film thickness; Agilent Technologies, Santa Clara, CA, USA). Helium was
the primary gas used. Temperatures for the injector and detector were continually maintained at
250 ◦C, while the oven was initially set to 150 ◦C. It was subsequently raised to 230 ◦C at a rate
of 3.5 ◦C/min and held at this temperature for 10 min. FA peaks were identified by comparing
their retention times to those of various FAME standards.

4.4. Cell Culture and Treatments

Cells used in this study were RAW264.7 macrophages (Korea Cell Line Research
Foundation, Seoul, Republic of Korea). Cells were cultured in media containing RPMI-1640,
10% fetal bovine serum (FBS), and 1% penicillin/streptomycin (P/S) in an incubator at
37 ◦C with 5% CO2. Treatment groups were as follows: DMSO (1%), aspirin (200 µg/mL),
and A. ventricoseus lipids (at varying concentrations of 100, 150, 200, 250, and 300 µg/mL).
All samples were diluted and used by adding 1% FBS and 1% PS to RPMI-1640 medium
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without phenol red. Cultured cells received 100 µL of each reagent. After 1 h, the anti-
inflammatory model was treated with 100 µL of LPS (1 µg/mL), while 100 µL of medium
was added to the immune enhancement model and then incubated for another 24 h.

4.5. Assay of Cell Viability

Cells (1 × 106 cells/mL) were placed in a 96-well plate and then treated with different
samples. After 24 h of incubation, the cell culture medium was removed and the water-
soluble tetrazolium salt (WST) solution of the EZ-Cytox Cell Viability Assay Kit (Daeil
Lab Service, Seoul, Republic of Korea) was added. The cells were then incubated for 1 h
at 37 ◦C. The absorbance was measured at 450 nm using an EPOCH 2 microplate reader
(Agilent BioTek, Santa Clara, CA, USA).

4.6. Measurement of NO Production

To assess the immune-regulating efficacy of lipids, the NO level was determined using
Greiss reagent (Promega, Madison, WI, USA). Supernatants of treated cells (100 µL) were com-
bined with Griess solution (100 µL), which contained Greiss reagents A and B (1% sulfanilamide
in 5% phosphoric acid and 0.1% N-1-napthylethylenediamine dihydrochloride in water). After
incubating at room temperature for 10 min, the absorbance at 540 nm was recorded.

4.7. RNA Isolation and Real-Time qPCR

Following cell culture and sample treatment, the total RNA was prepared using TRI
reagent® (Molecular Research Center, Inc., Cincinnati, Ohio, USA). After cell lysis, the
solution was transferred to a fresh microtube and homogenized using a vortex with 200 µL
of chloroform. The supernatant was centrifuged at 13,000 rpm for 10 min at 4 ◦C before
being transferred to a fresh microtube and incubated with isopropanol at 4 ◦C for 1 h. The
pellet was obtained after incubation and centrifuged at 13,000 rpm for 10 min at 4 ◦C before
being washed three times with 70% ethanol. The pellet of total RNA was dissolved in DEPC-
treated water. The RNA purity and concentration were then assessed. A High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA, USA) was used to
perform reverse transcription of the RNA to cDNA. Amplification reactions contained
cDNA (5 ng), TB Green Premix Ex Taq II (Takara Bio Inc., Kusatsu, Japan), ROX Reference
Dye, and 7.5 µg of forward and reverse primers to assess the expression of immune genes.
The primer sequences were as follows: IL-1β (5′-GGGCCTCAAAGGAAAGAATC-3′ and
5′-TACCAGTTGGGGAACTCTGC-3′); IL-6 (5′-AGTTGCCTTCTTGGGAC TGA-3′ and
5′-CAGAATTGCCATTGCACAAC-3′); TNF-α (5′-ATGAGCACAGAAAGCA TGATC-3′

and 5′-TACAGGCTTGTCACTCGAATT-3′); iNOS (5′-TTCCAGAATCCCTGGACAAG-3′

and 5′-TGGTCAAACTCTTGGGGTTC-3′); β-actin (5′-CCACAGCTGAGAG GGAAATC-3′

and 5′-AAGGAAGGCTGGAAAAGAGC-3′). A QuantStudio™ 3 FlexReal-Time PCR Sys-
tem (Applied Biosystems, Waltham, MA, USA) was used to conduct the experiment and
analyze the obtained results.

4.8. Western Blotting Assay

Cells (2 × 106 cells/mL) were collected and incubated on ice for 30 min in a cell
lysis buffer supplemented with protease and phosphatase inhibitors. The cell lysate was
centrifuged at 13,000 rpm for 10 min at 4 ◦C, and the supernatant was collected. The protein
concentration was determined using a Pierce™ BCA protein assay (Thermo Fisher Scientific,
Waltham, MA, USA). Proteins from each treatment were separated by SDS-polyacrylamide
gel electrophoresis before they were subsequently transferred to polyvinylidene fluoride
membranes (Merck, Kenilworth, NJ, USA). The membranes were blocked with 5% skim
milk in TBST buffer for 1 h at room temperature. Following primary antibody incubation
against phospho-p38 MAPK, phospho-SAPK/JNK, phospho-p44/42 MAPK (ERK1/2),
phospho-NF-κB p65 (Cell signaling Technology, Danvers, MA, USA), and α-tubulin (Abcam,
Cambridge, UK), the membranes were then incubated with secondary antibodies such as
goat anti-rabbit IgG(H+L)-HRP (GenDEPOT, Katy, TX, USA). Detection of protein signals
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was performed with Pierce® ECL Plus Western Blotting Substrate (Thermo Fisher Scientific,
Waltham, MA, USA) and a Bio-Rad ChemiDoc XRS+ system (Bio-Rad, Hercules, CA, USA).

4.9. Inhibition of NF-κB and MAPK Using Specific Inhibitors

To further investigate signaling pathways through which A. ventricosus lipids activated
macrophages, RAW264.7 cells were pretreated with either 100 nM of NF-κB activation inhibitor
(Calbiochem, Burlington, MA, USA) for 3 h or 20 µM of MAPK inhibitors including ERK, JNK
inhibitor II, and p38 MAP kinase inhibitor (Calbiochem, Burlington, MA, USA) for 1 h. These
inhibitor-treated cells were washed with 1×PBS buffer twice. Cells were then treated with
A. ventricosus lipids at 300 µg/mL and LPS. After 24 h of incubation, the cells were then used to
isolate RNA. TNF-α expression was determined using real-time qPCR, as described above.

4.10. Phagocytic Uptake of Macrophages

Cells treated with A. ventricosus lipids were harvested and incubated with 1 mg/mL
of FITC-dextran (Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C for 1 h. After three washes
with cold 1×PBS buffer, the cells were resuspended with cold FACS buffer (2% FBS and
0.1% sodium azide in 1×PBS buffer). Flow cytometry was then performed using a Cyto
FLEX Flow Cytometer (Beckman Coulter, Inc., Brea, CA, USA).

4.11. Analysis of Expression of Cell Surface Molecules

Sample-treated cells were collected and washed with cold FACS buffer. The cells
were blocked with purified rat IgG (Thermo Fisher Scientific, Waltham, MA, USA) for
10 min. Then, the cells were incubated with specific antibodies of CD40-PE and CD86-APC
(Invitrogen, USA) in combination with their isotype control antibodies for 20 min. Flow
cytometry analysis was conducted using a CytoFLEX Flow Cytometer and the CytEx-pert
program (Beckman Coulter, Inc., Brea, CA, USA).

4.12. Statistical Analysis

All analysis of data were carried out using IBM SPSS statistics 23 software. One-way
ANOVA was applied, immediately following Duncan’s multiple-range test at p < 0.05.
Results are presented as the mean ± SD.

5. Conclusions

In this study, lipids extracted from A. ventricosus eggs contained a high concentration of
PUFAs (54.73%) such as DHA and EPA. A. ventricosus lipids exhibited immune-regulating
effects on RAW264.7 macrophages by modulating the expression of inflammatory mediators
(NO and iNOS) and cytokines (TNF-α, IL-1β, and IL-6) through the NF-κB and MAPK path-
ways. Furthermore, A. ventricosus lipids significantly improved the phagocytic function and
suppressed cell surface molecule CD86 expression. These results suggest that lipids extracted
from A. ventricosus eggs might have potential as immunomodulatory functional substances.
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