Antiviral Effect of Microalgae Phaeodactylum tricornutum Protein Hydrolysates against Dengue Virus Serotype 2
Abstract
:1. Introduction
2. Results
2.1. Cell Viability Assay of Phaeodactylum tricornutum Derived Peptides
2.2. Inhibition Assays by Flow Cytometry
2.3. Viral Yield Reduction Efficacy at Varied Peptide Concentrations
3. Discussion
4. Materials and Methods
4.1. Biologic Materials and Reagents
4.2. Microalgae Culture Condition and Biomass Processing
4.3. Protein Concentration
4.4. Protein Hydrolysis
4.5. Differential Fractionation of Protein Hydrolysates
4.6. Cell Culture, Virus, and Reagents
4.7. Cell Viability Assay
4.8. Antiviral Activity Assays by Flow Cytometry
4.9. Viral Yield Reduction Assays
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paz-Bailey, G.; Adams, L.E.; Deen, J.; Anderson, K.B.; Katzelnick, L.C. Dengue. Lancet 2024, 403, 667–682. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; Nelson, C.B.; Picot, V.; Gubler, D.J. Arboviruses: A Global Public Health Threat. Vaccine 2020, 38, 3989–3994. [Google Scholar] [CrossRef]
- Yang, X.; Quam, M.B.M.; Zhang, T.; Sang, S. Global Burden for Dengue and the Evolving Pattern in the Past 30 Years. J. Travel Med. 2021, 28, taab146. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, R.; Kassiri, H. A Review on Epidemiology of Dengue Viral Infection as an Emerging Disease. Res. J. Pharm. Technol. 2021, 14, 2296–2301. [Google Scholar] [CrossRef]
- Kathiriya, J.B.; Shah, N.M.; Patel, J.S.; Javia, B.B.; Tajpara, M.M.; Ghodasara, S.N.; Barad, D.B. Epidemiological Surveillance of Dengue Fever: An Overview. Int. J. Vet. Sci. Amin. Hasb. 2020, 5, 1–10. [Google Scholar]
- Wong, P.-F.; Wong, L.-P.; AbuBakar, S. Diagnosis of Severe Dengue: Challenges, Needs and Opportunities. J. Infect. Public Health 2020, 13, 193–198. [Google Scholar] [CrossRef]
- Carbone, D.A.; Pellone, P.; Lubritto, C.; Ciniglia, C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics 2021, 10, 746. [Google Scholar] [CrossRef]
- Liu, J.; Obaidi, I.; Nagar, S.; Scalabrino, G.; Sheridan, H. The Antiviral Potential of Algal-Derived Macromolecules. Curr. Res. Biotechnol. 2021, 3, 120–134. [Google Scholar] [CrossRef]
- Mahendran, M.S.; Djearamane, S.; Wong, L.S.; Kasivelu, G.; Dhanapal, A.C.T.A. Antiviral Properties of Microalgae and Cyanobacteria. J. Exp. Biol. Agric. Sci. 2021, 9, S43–S48. [Google Scholar] [CrossRef]
- Zainuddin, E.N.; Mentel, R.; Wray, V.; Jansen, R.; Nimtz, M.; Lalk, M.; Mundt, S. Cyclic Depsipeptides, Ichthyopeptins A and B, from Microcystis Ichthyoblabe. J. Nat. Prod. 2007, 70, 1084–1088. [Google Scholar] [CrossRef]
- Jang, I.S.; Park, S.J. A Spirulina Maxima-Derived Peptide Inhibits HIV-1 Infection in a Human T Cell Line MT4. Fish. Aquat. Sci. 2016, 19, 1–5. [Google Scholar] [CrossRef]
- Cirne-Santos, C.C.; Barros, C.S.; da Silva, A.C.R.; Kurpan, D.; Oliveira, W.D.S.C.; Vasconcellos, B.M.; do Valle, A.F. Arthrospira Maxima Extract Prevents and Cures Zika Virus Infection: In vitro Analysis with VERO Cells. Algal Res. 2024, 79, 103479. [Google Scholar] [CrossRef]
- Vo, T.S.; Kim, S.-K. Potential Anti-HIV Agents from Marine Resources: An Overview. Mar. Drugs 2010, 8, 2871–2892. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhou, J.; Zhang, K.; Chu, H.; Liu, D.; Poon, V.K.M.; Chan, C.; Leung, H.; Fai, N.; Lin, Y.; et al. A Novel Peptide with Potent and Broad-Spectrum Antiviral Activities against Multiple Respiratory Viruses. Sci. Rep. 2016, 6, 22008. [Google Scholar] [CrossRef] [PubMed]
- Rojas, V.; Rivas, L.; Cárdenas, C.; Guzmán, F. Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020, 25, 5804. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Mendoza, S.; García-Silva, I.; González-Ortega, O.; Sandoval-Vargas, J.M.; Malla, A.; Vimolmangkang, S. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals. Molecules 2020, 25, 4049. [Google Scholar] [CrossRef] [PubMed]
- Khavari, F.; Saidijam, M.; Taheri, M.; Nouri, F. Microalgae: Therapeutic Potentials and Applications. Mol. Biol. Rep. 2021, 48, 4757–4765. [Google Scholar] [CrossRef] [PubMed]
- Souza, P. Synthetic Peptides as Promising Antiviral Molecules. Future Virol. 2021, 16, 353–356. [Google Scholar] [CrossRef]
- Ashour, M.; Omran, A.M.M. Recent Advances in Marine Microalgae Production: Highlighting Human Health Products from Microalgae in View of the Coronavirus Pandemic (COVID-19). Fermentation 2022, 8, 466. [Google Scholar] [CrossRef]
- Kumar, R.; Hegde, A.S.; Sharma, K.; Parmar, P.; Srivatsan, V. Microalgae as a Sustainable Source of Edible Proteins and Bioactive Peptides—Current Trends and Future Prospects. Food Res. Int. 2022, 157, 111338. [Google Scholar] [CrossRef]
- German-Báez, L.J.; Valdez-Flores, M.A.; Félix-Medina, J.V.; Norzagaray-Valenzuela, C.D.; Santos-Ballardo, D.U.; Reyes-Moreno, C.; Shelton, L.M.; Valdez-Ortiz, A. Chemical Composition and Physicochemical Properties of Phaeodactylum tricornutum Microalgal Residual Biomass. Food Sci. Technol. Int. 2017, 23, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Chew, M.-F.; Poh, K.-L.; Poh, C.-L. Peptides as Therapeutic Agents for Dengue Virus. Int. J. Med. Sci. 2017, 14, 1342–1351. [Google Scholar] [CrossRef]
- Panya, A.; Yongpitakwattana, P.; Budchart, P.; Sawasdee, N.; Krobthong, S.; Paemanee, A.; Roytrakul, S.; Rattanabunyong, S.; Choowongkomon, K.; Yenchitsomanus, P.T. Novel Bioactive Peptides Demonstrating Anti-dengue Virus Activity Isolated from the Asian Medicinal Plant Acacia Catechu. Chem. Biol. Drug Des. 2019, 93, 100–109. [Google Scholar] [CrossRef]
- Pujol, C.A.; Ray, S.; Ray, B.; Damonte, E.B. Antiviral Activity against Dengue Virus of Diverse Classes of Algal Sulfated Polysaccharides. Int. J. Biol. Macromol. 2012, 51, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhao, D.; Li, L.; Cheng, Z.; Guo, Y. Antiviral Peptides with in vivo Activity: Development and Modes of Action. Chempluschem 2021, 86, 1273–1281. [Google Scholar] [CrossRef]
- Lee, M.F.; Anasir, M.; Poh, C. Development of Novel Antiviral Peptides against Dengue Serotypes 1–4. Virology 2023, 580, 10–27. [Google Scholar] [CrossRef]
- Guntamadugu, R.; Ramakrishnan, R.; Darala, G.; Kothandan, S. Molecular Docking, Simulations of Animal Peptides against the Envelope Protein of Dengue Virus. J. Biomol. Struct. Dyn. 2023, 41, 1188–1201. [Google Scholar] [CrossRef]
- Recalde-Reyes, D.P.; Rodríguez-Salazar, C.; Castaño-Osorio, J.C.; Giraldo, M. PD1 CD44 Antiviral Peptide as an Inhibitor of the Protein-Protein Interaction in Dengue Virus Invasion. Peptides 2022, 38, 160–167. [Google Scholar] [CrossRef]
- Hoffmann, A.R.; Guha, S.; Wu, E.; Ghimire, J.; Wang, Y.; He, J.; Garry, R.F.; Wimley, W.C. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. J. Virol. 2020, 94, e01682-20. [Google Scholar] [CrossRef] [PubMed]
- Alhoot, M.A.; Rathinam, A.K.; Wang, S.M.; Manikam, R.; Sekaran, S.D. Inhibition of Dengue Virus Entry into Target Cells Using Synthetic Antiviral Peptides. Int. J. Med. Sci. 2013, 10, 719. [Google Scholar] [CrossRef]
- Sørensen, M.; Kousoulaki, K.; Hammerø, R.; Kokkali, M.; Kleinegris, D.; Marti-Quijal, F.J.; Barba, F.J.; Palihawadana, A.M.; Egeland, E.S.; Johnsen, C.A.; et al. Mechanical Processing of Phaeodactylum tricornutum and Tetraselmis chui Biomass Affects Phenolic and Antioxidant Compound Availability, Nutrient Digestibility and Deposition of Carotenoids in Atlantic Salmon. Aquaculture 2023, 569, 739395. [Google Scholar] [CrossRef]
- Mavropoulou, I.P.; Kosikowski, F.V. Free Amino Acids and Soluble Peptides of Whey Powders. J. Dairy Sci. 1973, 56, 1135–1138. [Google Scholar] [CrossRef]
- Sumon, T.A.; Hussain, M.A.; Hasan, M.; Rashid, A.; Abualreesh, M.H.; Jang, W.J.; Sharifuzzaman, S.M.; Brown, C.L.; Lee, E.-W.; Hasan, M.T. Antiviral Peptides from Aquatic Organisms: Functionality and Potential Inhibitory Effect on SARS-CoV-2. Aquaculture 2021, 541, 736783. [Google Scholar] [CrossRef]
- Jenssen, H.; Andersen, J.H.; Mantzilas, D.; Gutteberg, T.J. A Wide Range of Medium-Sized, Highly Cationic, $α$-Helical Peptides Show Antiviral Activity against Herpes Simplex Virus. Antiviral Res. 2004, 64, 119–126. [Google Scholar] [CrossRef]
- da Silva-Júnior, E.F.; de Araújo-Júnior, J.X. Peptide Derivatives as Inhibitors of NS2B-NS3 Protease from Dengue, West Nile, and Zika Flaviviruses. Bioorg. Med. Chem. 2019, 27, 3963–3978. [Google Scholar] [CrossRef]
- Ji, M.; Zhu, T.; Xing, M.; Luan, N.; Mwangi, J.; Yan, X.; Mo, G.; Rong, M.; Li, B.; Lai, R.; et al. An Antiviral Peptide from Alopecosa Nagpag Spider Targets NS2B--NS3 Protease of Flaviviruses. Toxins 2019, 11, 584. [Google Scholar] [CrossRef] [PubMed]
- Bharati, M.; Saha, D. Multiple Insecticide Resistance Mechanisms in Primary Dengue Vector, Aedes Aegypti (Linn.) from Dengue Endemic Districts of Sub-Himalayan West Bengal, India. PLoS ONE 2018, 13, e0203207. [Google Scholar] [CrossRef]
- Teixeira, R.R.; Pereira, W.L.; Oliveira, A.F.; Da Silva, A.M.; De Oliveira, A.S.; Da Silva, M.L.; Da Silva, C.C.; De Paula, S.O. Natural Products as Source of Potential Dengue Antivirals. Molecules 2014, 19, 8151–8176. [Google Scholar] [CrossRef] [PubMed]
- Guilard, R.R.L.; Ryther, J.H. Studies of Marine Planktonic Diatoms. I. Cyclotella Nana Hustedt and Detonula Confervacea Cleve. Gran Can J Microbiol 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Norzagaray-Valenzuela, C.D.; Valdez-Ortiz, A.; Shelton, L.M.; Jiménez-Edeza, M.; Rivera-López, J.; Valdez-Flores, M.A.; Germán-Báez, L.J. Residual Biomasses and Protein Hydrolysates of Three Green Microalgae Species Exhibit Antioxidant and Anti-Aging Activity. J. Appl. Phycol. 2017, 29, 189–198. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Safi, C.; Ursu, A.V.; Laroche, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Aqueous Extraction of Proteins from Microalgae: Effect of Different Cell Disruption Methods. Algal Res. 2014, 3, 61–65. [Google Scholar] [CrossRef]
- Afify, A.E.-M.M.R.; El Baroty, G.S.; El Baz, F.K.; Abd El Baky, H.H.; Murad, S.A. Scenedesmus Obliquus: Antioxidant and Antiviral Activity of Proteins Hydrolyzed by Three Enzymes. J. Genet. Eng. Biotechnol. 2018, 16, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Wu, L.; Wang, Z.; Saguer, E.; Zhang, D. Purification and Identification of Antioxidant Alcalase-Derived Peptides from Sheep Plasma Proteins. Antioxidants 2019, 8, 592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Serrano, B.V.; Cabanillas-Salcido, S.L.; Cordero-Rivera, C.D.; Jiménez-Camacho, R.; Norzagaray-Valenzuela, C.D.; Calderón-Zamora, L.; De Jesús-González, L.A.; Reyes-Ruiz, J.M.; Farfan-Morales, C.N.; Romero-Utrilla, A.; et al. Antiviral Effect of Microalgae Phaeodactylum tricornutum Protein Hydrolysates against Dengue Virus Serotype 2. Mar. Drugs 2024, 22, 369. https://doi.org/10.3390/md22080369
Rivera-Serrano BV, Cabanillas-Salcido SL, Cordero-Rivera CD, Jiménez-Camacho R, Norzagaray-Valenzuela CD, Calderón-Zamora L, De Jesús-González LA, Reyes-Ruiz JM, Farfan-Morales CN, Romero-Utrilla A, et al. Antiviral Effect of Microalgae Phaeodactylum tricornutum Protein Hydrolysates against Dengue Virus Serotype 2. Marine Drugs. 2024; 22(8):369. https://doi.org/10.3390/md22080369
Chicago/Turabian StyleRivera-Serrano, Bianca Vianey, Sandy Lucero Cabanillas-Salcido, Carlos Daniel Cordero-Rivera, Ricardo Jiménez-Camacho, Claudia Desiree Norzagaray-Valenzuela, Loranda Calderón-Zamora, Luis Adrián De Jesús-González, José Manuel Reyes-Ruiz, Carlos Noe Farfan-Morales, Alejandra Romero-Utrilla, and et al. 2024. "Antiviral Effect of Microalgae Phaeodactylum tricornutum Protein Hydrolysates against Dengue Virus Serotype 2" Marine Drugs 22, no. 8: 369. https://doi.org/10.3390/md22080369
APA StyleRivera-Serrano, B. V., Cabanillas-Salcido, S. L., Cordero-Rivera, C. D., Jiménez-Camacho, R., Norzagaray-Valenzuela, C. D., Calderón-Zamora, L., De Jesús-González, L. A., Reyes-Ruiz, J. M., Farfan-Morales, C. N., Romero-Utrilla, A., Ruíz-Ruelas, V. M., Camberos-Barraza, J., Camacho-Zamora, A., De la Herrán-Arita, A. K., Angulo-Rojo, C., Guadrón-Llanos, A. M., Rábago-Monzón, Á. R., Perales-Sánchez, J. X. K., Valdez-Flores, M. A., ... Osuna-Ramos, J. F. (2024). Antiviral Effect of Microalgae Phaeodactylum tricornutum Protein Hydrolysates against Dengue Virus Serotype 2. Marine Drugs, 22(8), 369. https://doi.org/10.3390/md22080369