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Abstract: Aurantiochytrium is a well-known long-chain polyunsaturated fatty acids (PUFAs) producer,
especially docosahexaenoic acid (DHA). In order to reduce the cost or improve the productivity of
DHA, many researchers are focusing on exploring the high-yield strain, reducing production costs,
changing culture conditions, and other measures. In this study, DHA production was improved by
a two-stage fermentation. In the first stage, efficient and cheap soybean powder was used instead
of conventional peptone, and the optimization of fermentation conditions (optimal fermentation
conditions: temperature 28.7 ◦C, salinity 10.7‰, nitrogen source concentration 1.01 g/L, and two-
nitrogen ratio of yeast extract to soybean powder 2:1) based on response surface methodology resulted
in a 1.68-fold increase in biomass concentration. In the second stage, the addition of 2.5 mM sesamol
increased the production of fatty acid and DHA by 93.49% and 98.22%, respectively, as compared
to the optimal culture condition with unadded sesamol. Transcriptome analyses revealed that the
addition of sesamol resulted in the upregulation of some genes related to fatty acid synthesis and
antioxidant enzymes in Aurantiochytrium. This research provides a low-cost and effective culture
method for the commercial production of DHA by Aurantiochytrium sp.

Keywords: Aurantiochytrium; DHA; thraustochytrid; two-stage fermentation; transcriptomics

1. Introduction

Docosahexaenoic acid (DHA, C22:6) belongs to omega-3 long-chain polyunsaturated
fatty acids (PUFAs), and it is an essential structural element of the brain, retina, and neuron
cell membrane [1]. DHA has demonstrably beneficial effects on depression [2], lowering
cardiovascular risk [3], suppressing inflammation [4] and atherosclerosis [5], improving
nervous system and retina development [6], and decreasing cancer risk [7]. The human
body is unable to produce DHA; hence, it must come from food. Since marine fish and fish
oil is cheap and contains a lot of DHA, it is generally thought to be the greatest source of
DHA in the human diet [8]. However, marine pollution and overfishing limit the increasing
demand for DHA [9]. Creating substitute sources to fulfill the demand for DHA is a signifi-
cant task. Marine oleaginous microorganisms, as the original source of DHA production in
marine fish, have garnered significant attention globally in the search for the sustainable
production of DHA because of their potential applications in the biopharmaceutical and
nutraceutical sectors [10,11]. The single-celled eukaryotic thraustochytrid, which includes
the Thraustochytrium, Aurantiochytrium, and Schizochytrium, is currently the main focus of
research. These organisms are typically found in marine environments and are capable of
synthesizing large levels of lipids and carotenoids. Among them, it has been previously
documented that Aurantiochytrium sp. can accumulate significant lipid content, particularly
DHA [12,13].
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Thraustochytrids are a prospective new market for DHA synthesis, and increasing
DHA production is now a focus of intense study. The optimization of fermentation con-
ditions (such as varying the source of nitrogen, C/N ratio, temperature, salinity etc.) as a
crucial tactic to boost biomass and fatty acids production has been an important focus for
thraustochytrid biotechnological research [14]. Fermentation costs are largely influenced by
the carbon and nitrogen substrates used, and since nitrogen sources are often more expen-
sive than carbon sources, less expensive options are being considered. Both organic (such
as soybean meal hydrolysate, yeast extract, peptone, and monosodium glutamate) and
inorganic (such as nitrate and ammonium) nitrogen can be used by thraustochytrids [15].
To reduce production costs, traditional nitrogen sources may be replaced with agricultural
products and the food industry by-products [16]. The two-stage strategy, which divides
the biomass growth phase from the lipid accumulation phase, is an efficient cultivation
system [17]. The purpose of the first stage is to produce as much biomass as possible when
nutrition is adequate, while the second stage—which is typically nitrogen-starved but has
an excess of the carbon source—is meant to accumulate lipids [18].

An increasing number of research studies have shown that incorporating antioxidants
such as vitamin C, plant hormone, and melatonin into the culture medium could enhance
the ability of oleaginous microorganisms to produce lipids [19]. In a prior investigation, the
utilization of Dioscorea zingiberensis’s phenolic-rich starch saccharification liquid markedly
enhanced Schizochytrium sp.’s DHA yield and antioxidant capability [20]. One of the pri-
mary naturally occurring phenols in sesame, sesamol, has a potent antioxidant capacity
and enhancement of radical scavenging [21], and it is frequently employed as an inex-
pensive, non-toxic antioxidant to stop lipid peroxidation in food and medicine. Sesamol
supplementation has shown increased DHA production in Schizochytrium. The addition
of 1 mM sesamol exogenously to the fermentation medium increased Schizochytrium sp.
H016’s yield of DHA and lipids by 53.52% and 78.30%, respectively [22].

This study optimizes the type of nitrogen source in the culture medium in terms
of cost and utilization efficiency. According to the four factors of temperature, salinity,
nitrogen source concentration and the ratio of two nitrogen sources (yeast extract and
soybean powder), the best level was selected by a one-factor test. And then the culture
conditions of four factors and three levels were optimized to enhance the biomass yield
of Aurantiochytrium sp. DECR-KO (2,4-dienyl-CoA reductase-knockout) [23] on response
surface methodology (RSM). The effects of various sesamol concentrations on the biomass,
lipid accumulation, and the synthesis of fatty acids of Aurantiochytrium sp. DECR-KO were
examined in this study. This study elucidated the possible mechanisms of lipid metabolism
regulation through antioxidant supplementation through transcriptome analysis.

2. Results
2.1. Screening of Different Nitrogen Source Components

The N content of the six nitrogen source components was determined by an elemental
analyzer, and the results are shown in Table S1. All six nitrogen sources had more than 10%
of N content, among which the peptone contained the highest N, up to 13.35%. In order
to reflect the types of nitrogen sources that can be efficiently utilized by Aurantiochytrium
sp. DECR-KO, we added the six nitrogen sources at an addition rate of 2.5 g/L into the
M4 medium without yeast extract and peptone to examine the effects of various nitrogen
source components on the biomass concentration of Aurantiochytrium sp. DECR-KO.

The results of the initial screening of nitrogen source types are shown in Figure 1.
Among the biomass concentration results from the 65 h incubation under the same nitrogen
source addition concentration, the best biomass concentration was obtained from the culture
by yeast extract, which amounted to 5.28 ± 0.07 g/L, and the second one was obtained
from the soybean powder, with the obtained biomass concentration of 4.13 ± 0.12 g/L. The
lowest biomass concentration obtained in culture was peptones, only 2.69 ± 0.06 g/L, which
was 0.51 times that of yeast extract and 0.65 times that of soybean powder. Combining
the effects of the six nitrogen sources on the biomass concentration of Aurantiochytrium
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sp. DECR-KO and its market price, the low-cost and high-efficiency soybean powder was
selected to replace the original high-cost and low-utility peptone. The two nitrogen sources,
yeast extract and soybean powder, will be used in subsequent studies for the compounding
and optimization of culture conditions.
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Figure 1. Effects of various nitrogen sources on the biomass concentration of Aurantiochytrium sp.
DECR-KO. Cell dry weight (DCW) was obtained by culture for 65 h with 2.5 g/L different
nitrogen source.

2.2. Response Surface Methodology (RSM) to Optimize the Biomass Yield

Using a single-factor experiment and an RSM central composite design based on the
fermentation factors of Aurantiochytrium sp. DECR-KO, the fermentation factors were
optimized in this study to increase the biomass concentration on the first stage. The results
show that the temperature of 26 ◦C, salinity 10‰, nitrogen source concentration 0.90 g/L
and N ratio 2:1 (yeast extract:soybean powder) were the optimal single factor levels for
biomass concentration (Figure 2A–D). The Box–Behnken experiment designed a total of
29 sites, including 5 central sites and 24 factorial points (Table 1). The central experimental
point is the central point of the partition, which can be used as the calibration of the points.
With cell dry weight (DCW) as the response value (Y), and temperature (A), salinity (B), the
ratio of two nitrogen sources (C), and the nitrogen source concentration (D) as independent
variables, the response surface data as follows:

DCW (g/L) = 5.61313 − 0.12102 × A + 0.134542 × B + 0.0265687 × C + 0.134915 × D + 0.121345 × AB + 0.21728
× AC − 0.0554881 × AD − 0.309067 × A2 − 0.604891 × B2 − 0.14348 × C2 − 0.128604 × D2

The model was built using the software Design Expert 12 to obtain a multiple quadratic
regression response surface model for biomass yield, and the model obtained from fitting
the experimental results was subjected to ANOVA (Table 2) to verify the usability of
the regression model. The ANOVA yielded a model with a p-value of <0.0001, which is
extremely significant; where the lack of fit had a p-value of 0.1640, which is greater than 0.05,
and the lack of fit was not significant. These two items indicate that the model obtained
by fitting this response surface analysis is accurate in its predictions. The contour plots
and response surface curves of the interaction terms were obtained by simulation with
Design Expert 12 software (Figure 2E–J). According to the F-value of each factor, the order
of influence on biomass concentration of Aurantiochytrium sp. DECR-KO was D (nitrogen
concentration) > B (salinity) > A (temperature) > C (ratio of two nitrogen sources). In
this experiment, the differences in the effects on biomass concentration were extremely



Mar. Drugs 2024, 22, 371 4 of 16

significant for the secondary term B2, highly significant for the secondary term A2, and
reached significance for the primary terms A, B, D, and the interaction term AC.
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sources (yeast extract: soybean powder). Contour plots showing the effect of (E) temperature and salt
(F), temperature and nitrogen ratio (G), temperature and nitrogen source concentration to dry cell
weight (DCW). Response surface plots show the effect of (H) temperature and salt, (I) temperature
and N ratio, (J) temperature and nitrogen source concentration to DCW.

Table 1. The Box–Behnken design matrix for real values and coded values (in parentheses).

Run A: Temperature (◦C) B: Salinity (%) C: N Ratio D: N Concentration (g/L) DCW (g/L)

1 26 (−1) 10 (0) 3 (+1) 0.9 (0) 5.12
2 29 (0) 20 (+1) 1 (−1) 0.9 (0) 5.20
3 32 (+1) 10 (0) 1 (−1) 0.9 (0) 4.92
4 29 (0) 0 (−1) 2 (0) 0.7 (−1) 4.73
5 29 (0) 10 (0) 2 (0) 0.9 (0) 5.75
6 29 (0) 20 (+1) 3 (+1) 0.9 (0) 4.79
7 29 (0) 10 (0) 2 (0) 0.9 (0) 5.49
8 29 (0) 0 (−1) 2 (0) 1.1 (+1) 5.17
9 29 (0) 0 (−1) 1 (−1) 0.9 (0) 4.58

10 29 (0) 20 (+1) 2 (0) 0.7 (−1) 4.90
11 26 (−1) 10 (0) 2 (0) 1.1 (+1) 5.33
12 29 (0) 10 (0) 2 (0) 0.9 (0) 5.69
13 32 (+1) 0 (−1) 2 (0) 0.9 (0) 4.22
14 29 (0) 10 (0) 2 (0) 0.9 (0) 5.49
15 29 (0) 10 (0) 3 (+1) 1.1 (+1) 5.79
16 32 (+1) 10 (0) 2 (0) 1.1 (+1) 4.92
17 26 (−1) 0 (−1) 2 (0) 0.9 (0) 4.78
18 29 (0) 0 (−1) 3 (+1) 0.9 (0) 4.59
19 29 (0) 10 (0) 1 (−1) 0.7 (−1) 5.03
20 29 (0) 20 (+1) 2 (0) 1.1 (+1) 5.01
21 32 (+1) 10 (0) 3 (+1) 0.9 (0) 5.44
22 29 (0) 10 (0) 2 (0) 0.9 (0) 5.65
23 26 (−1) 20 (+1) 2 (0) 0.9 (0) 4.94
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Table 1. Cont.

Run A: Temperature (◦C) B: Salinity (%) C: N Ratio D: N Concentration (g/L) DCW (g/L)

24 29 (0) 10 (0) 3 (+1) 0.7 (−1) 5.17
25 32 (+1) 20 (+1) 2 (0) 0.9 (0) 4.86
26 26 (−1) 10 (0) 1 (−1) 0.9 (0) 5.47
27 26 (−1) 10 (0) 2 (0) 0.7 (−1) 5.17
28 32 (+1) 10 (0) 2 (0) 0.7 (−1) 4.99
29 29 (0) 10 (0) 1 (−1) 1.1 (+1) 5.38

Table 2. ANOVA analysis of response surface experiment.

Source Sum of Squares df Mean
Square F-Value p-Value

Model 3.5100 11 0.3191 9.45 <0.0001 significant
A—temperature 0.1757 1 0.1757 5.20 0.0357

B—salinity 0.2172 1 0.2172 6.43 0.0213
C—the ratio of two nitrogen sources 0.0085 1 0.0085 0.2508 0.6229

D—nitrogen source concentration 0.2184 1 0.2184 6.47 0.0210
AB 0.0589 1 0.0589 1.74 0.2042
AC 0.1888 1 0.1888 5.59 0.0302
AD 0.0123 1 0.0123 0.3646 0.5539
A2 0.6196 1 0.6196 18.34 0.0005
B2 2.3700 1 2.37 70.27 <0.0001
C2 0.1335 1 0.1335 3.95 0.0631
D2 0.1073 1 0.1073 3.18 0.0926

Residual 0.5742 17 0.0338
Lack of Fit 0.5176 13 0.0398 2.82 0.1640 not significant
Pure Error 0.0566 4 0.0141
Cor Total 4.0800 28

Meanwhile, the reliability analysis of the BBD model was also obtained through the
fitting and analysis of the software. As shown in Table 2, the coefficient of variation in the
model fitted in this experiment is 3.59, which is within the normal range. The regression
coefficient R2 is 85.94% > 85%, which indicates that the equation created by the fitted model
fits well. Adjusted R2 is the correction coefficient, and its value is 0.7684. Predicted R2 is
the prediction coefficient, and its value is 0.5766. The difference between the correction
coefficient and prediction coefficient is less than 0.2, which is within a reasonable range.
The signal-to-noise ratio of this model is 10.919 according to “Adeq Precision”, which is
greater than 4, indicating that the signal is sufficient and the model is reliable.

The culture conditions for the highest biomass yield were fitted by Design-Expert 12
software as follows: temperature 28.7 ◦C, salinity 10.7‰, nitrogen source concentration
1.01 g/L, and two-nitrogen ratio of yeast extract to soybean powder 2:1 (i.e., 11.62 g/L
artificial sea salt, 3.16 g/L yeast extract, and 1.58 g/L water-soluble soybean powder).
The predicted biomass yield that could be obtained under this optimal condition was 5.66
g/L of DCW. Three parallel experiments were conducted to validate under the predicted
optimal culture conditions. The DCW results of the experiments were 5.56 g/L, 5.34 g/L,
and 5.05 g/L, with an average value of 5.32 g/L, which was approximately 6% different
from the predicted value.

The experimental group which was cultured using response surface methodology was
named YS (yeast extract–soybean powder, Figure 3A). As shown in Figure 3B, the biomass
yields of the different culture methods of YS and M4 were investigated at three time points
including the exponential growth period (42 h), stationary period (63 h), and decline period
(90 h) of the culture [23]. It can be observed that the difference in biomass concentration
of YS and M4 cultures at the mid-late stage of the culture decreased gradually with the
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gradually decreasing with increasing incubation time: at 42 h, the biomass concentration
of the YS culture was 1.68 times more than that of the M4 culture; at 63 h, the biomass
concentration of the YS culture was 1.51 times more than that of the M4 culture; and at
90 h, the biomass concentration of the YS culture was 1.23 times higher than that of the
M4 culture. At the decline period of the Aurantiochytrium sp. DECR-KO, the biomass
concentration of the M4 cultures was still rising, while the YS cultures declined, but the
biomass yields obtained from the YS cultures were greater than those obtained from the
M4 cultures throughout the mid-late phase of the culture.
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Figure 3. (A) Schematic diagram of enhancing lipid production in Aurantiochytrium sp. DECR-KO.
(B) The difference of biomass concentration in YS and M4 culture after exponential phase. (C) Effects
of DMSO and ethanol on cell concentration and neutral lipid content of Aurantiochytrium sp. DECR-
KO at different volume concentrations. Solvent addition amount is expressed as volume concentration
(v/v), and YS culture without adding any solvent was used as the control group. Cell concentration
was shown as the number of cells per milliliter of culture medium, and neutral lipid content was
represented by the relative fluorescence intensity of Nile red in each cell. (D,E): Effects of varying
sesamol concentrations on DECR-KO strains’ fatty acid yield and DHA synthesis. M4: experimental
group before fermentation optimization; YS: experimental group cultured with yeast extract and
soybean powder after fermentation optimization; YS-S: experimental group YS treated with 2.5 mM
sesamol. DHA: docosahexaenoic acid; UFAs: unsaturated fatty acids; SFAs: saturated fatty acids.
ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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2.3. Effect of Sesamol on the Fatty Acid Production Capacity of Aurantiochytrium sp. DECR-KO

As sesamol is insoluble in water, pre-experiments were carried out on both DMSO and
ethanol in order to rule out the impact of the solvents on the biomass concentration and neutral
lipid content of Aurantiochytrium sp. DECR-KO. There was no significant difference between
the 0.5‰ (v/v) addition of DMSO and the control (Figure 3C), indicating that 0.5‰ of DMSO
had no effect on the cell concentration of Aurantiochytrium sp. DECR-KO as well as the neutral
lipid content. On the other hand, the neutral lipid content or cell concentration was significantly
impacted by the volume ratio of 1‰ of DMSO and the ethanol of 0.5‰ and 1‰. Therefore,
the subsequent sesamol will be solubilized using DMSO, and the volume ratio of the added
solution will be controlled to be less than or equal to 0.5‰.

The addition of 0.5 mM to 2.5 mM sesamol had no visible effect on DCW compared to
the control group (Figure 3D). The fatty acid yield of Aurantiochytrium sp. DECR-KO increased
as the concentration of sesamol increased under 0.5–2.5 mM sesamol treatment (Figure 3D).
However, in contrast to the control group, the fatty acid production decreased slightly when
treated with low concentrations (0.5 to 1 mM) of sesamol, indicating that low concentrations of
sesamol inhibited the production of fatty acids. When the concentration of sesamol treatment
was greater than 1 mM, the fatty acid production was more than the control group. With the
increase in the concentration of sesamol, the total fatty acid production (including saturated
fatty acids and unsaturated fatty acids) also increased gradually. The DHA yield showed the
same trend as the total fatty acid production (Figure 3E). Based on the results of the 0.5–2.5 mM
sesamol treatments explored in this experiment, 2.5 mM was the optimal sesamol treatment
concentration that most improved fatty acid yield. Compared to the control group, the 2.5 mM
sesamol-treated group showed a 78.79% increase in total fatty acid yield and 69.83% increase in
DHA yield.

2.4. Biomass Concentration and Fatty Production Analysis of Fermentation-Optimized

In order to better compare the optimization effect produced by fermentation optimization,
the experimental group before fermentation optimization was named as M4, the experimental
group using response surface methodology to optimize the biomass culture was named as YS
(yeast extract and soybean powder), and the group treated with 2.5 mM sesamol was named
as YSS (YS with sesamol treatment) (Figure 3A). Figure 4 displays the results of a comparison
of the biomass concentration, fatty acid yield, and DHA yield of the three culture conditions.
Compared with the M4 group, the biomass concentrations of the YS and YSS groups were
increased by 50.06% and 49.85%, respectively. The addition of 2.5 mM sesamol treatment did
not significantly affect the biomass concentration in the YS group during the stationary period
(Figure 4A). Fatty acid production is shown in Figure 4B, and it can be seen that although the
YS group increased the biomass concentration, its total fatty acid production was only increased
by 8.23% compared to that of the M4 group. The addition of 2.5 mM sesamol increased the
total fatty acid yield by 93.49% and 78.79% compared to the M4 and YS groups, respectively.
A comparison of DHA yields among the three groups is shown in Figure 4C, which showed
an increase of 16.71% and 98.22% in the YS and YSS groups, respectively, compared to the M4
group. The addition of 2.5 mM sesamol treatment to the experimental group increased DHA
production by 69.83% compared to no sesamol addition.
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2.5. Transcriptome Profiling of Aurantiochytrium sp. DECR-KO with Sesamol Treatment

The mechanism of Aurantiochytrium sp. DECR-KO’s response to sesamol treatment
was ascertained by utilizing the Illumina RNA-seq method. There were 2677 differentially
expressed genes (DEGs) in total identified (p-adjust < 0.05 and |log2FC| ≥ 1). A total of
1411 genes were upregulated and 1266 genes were downregulated in the YSS compared
to the YS group. KEGG was used to examine the biological roles and interactions of
the discovered DEGs. According to KEGG, notable enrichment pathways involved in
lipid metabolism include fatty acid degradation and elongation, fatty acid metabolism,
peroxisome and the biosynthesis of unsaturated fatty acids (Figure S1).

In oleaginous microorganisms, acetyl-CoA is an important central metabolite of carbon
metabolism and one of the key precursors for fatty acid synthesis [24]. The process of
glycolysis is one of the sources of acetyl coenzyme A. In glycolysis, 6-phosphofructokinase
(PFK) is the rate-limiting enzyme, and PFK was upregulated by 1.07-fold in the YSS group
(Table 3). Additionally, other key enzyme genes, including triosephosphate isomerase
(TPI) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were upregulated by
1.00-fold and 1.21-fold, respectively. In pyruvate metabolism, malate dehydrogenase was
upregulated by 1.00-fold, which catalyzes the conversion of malate to pyruvate. Increasing
the expression of the above genes results in more pyruvate production, and pyruvate
produces acetyl-CoA through pyruvate dehydrogenase.

Table 3. Transcriptomics of the expression of genes under sesamol treatment.

Gene ID Name Description YSS vs. YS
(log2 Fold Change)

Fatty Acid Synthesis

TRINITY_DN338_c0_g1_i2-SM4 ACC acetyl-CoA carboxylase 0.81

TRINITY_DN7076_c0_g1_i1-SM4 MCAT malonyl-CoA:ACP transacylase 1.07

TRINITY_DN14219_c0_g1_i1-SM4 ME malate dehydrogenase
(oxaloacetate-decarboxylating) 1.00

TRINITY_DN11008_c0_g1_i1-YS FAS fatty acid synthase 0.92

TRINITY_DN15725_c0_g1_i1-YSS KS 3-ketoacyl-synthase 0.68

TRINITY_DN4969_c0_g2_i1-YS KR ketoreductase 1.33

TRINITY_DN2556_c0_g1_i1-YSS PFK 6-phosphofructokinase 1.07

TRINITY_DN897_c2_g1_i1-YSS TPI triosephosphate isomerase 1.00

TRINITY_DN10506_c0_g1_i1-YSS GAPDH glyceraldehyde 3-phosphate dehydrogenase 1.21

Fatty Acid Degradation

TRINITY_DN2005_c6_g1_i1-YSS HADH 3-hydroxyacyl-CoA dehydrogenase 1.45

TRINITY_DN13554_c0_g1_i1-AM4 ECH enoyl-CoA hydratase 1.38

TRINITY_DN11028_c0_g1_i1-YS ACD acyl-CoA dehydrogenase 1.17

TRINITY_DN2439_c0_g1_i1-YSS KAT 3-ketoacyl-CoA thiolase 0.90

antioxidant system

TRINITY_DN12527_c0_g1_i1-YSS GST glutathione S-transferase 1.18

TRINITY_DN11074_c0_g1_i1-AM4 SOD superoxide dismutase 1.27

Acetyl-CoA carboxylase (ACC) catalyzes the conversion of acetyl-CoA to malonyl-
CoA, a direct substrate for the synthesis of fatty acids, limiting the rate of fatty acid
synthesis [25]. Acetyl-CoA carboxylase was upregulated by 0.81-fold in the YSS group.
Malonyl-CoA:ACP transacylase (MCAT) was upregulated by 1.07-fold in the YSS group,
converting malonyl-CoA to malonyl-ACP to initiate the elongation cycle. Concentrations
of both SFA and UFA increased under sesamol treatment. In the fatty acid synthase (FAS)
pathway, FAS was upregulated by 0.92-fold in the YSS group, which led to the accumulation
of the SFA. In the polyketide synthase (PKS) pathway, 3-ketoacyl-CoA synthase (KS) and
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ketoreductase (KR) were upregulated by 0.68-fold and 1.33-fold. However, other co-
catalyzing enzymes associated with the PKS pathway, dehydrase/isomerase (DH/I) and
enoyl reductase (ER), were not identified in this study, which were similarly not identified
in previous studies [26]. The above results indicated that fatty acid synthesis was enhanced
under 2.5 mM sesamol treatment, which was in agreement with the experimental results.
Except for fatty acid synthesis, fatty acid degradation is an important factor affecting
lipid content. The fatty acid β-oxidation pathway is an important pathway for fatty acid
degradation [24]. In the fatty acid β-oxidation pathway, acyl-CoA dehydrogenase (ACD),
enoyl-CoA hydratase (ECH), 3-hydroxyacyl-CoA dehydrogenase (HADH), and 3-ketoacyl-
CoA thiolase (KAT) were significantly more expressed in the YSS group than in the YS
group (Table 3).

Superoxide dismutase (SOD) is one of the major intracellular enzymes that protects
cells from oxidative damage [27]. SOD was upregulated 1.27-fold in the YSS group.
Glutathione S-transferase (GST) further enhances the antioxidant capacity by catalyz-
ing the binding of glutathione to electrophilic substrates [28], which was upregulated
1.18-fold in YSS. Therefore, sesamol treatment improved the total antioxidant capacity of
Aurantiochytrium sp. DECR-KO, which was beneficial for accumulating more PUFAs.

2.6. Detection of the Gene Expression through qRT-PCR

The expression profiles of eight genes related to fatty acid synthesis were analyzed
to validate the transcriptome analysis data (Figure 5). The results of reverse transcrip-
tase quantitative PCR (RT-qPCR) were consistent with the transcriptome sequencing
(RNA-Seq) results.
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3. Discussion
3.1. Effect of Fermentation Optimization for Growth

The results of elemental N content showed a different trend from that of biomass
concentration obtained from culture, which may be related to the solubility rate of each
organic nitrogen source, and the efficiency of its availability to Aurantiochytrium sp. DECR-
KO. The phenomenon that peptone had the highest N content but the least biomass
concentration obtained from culture may be due to the fact that peptone was least consistent
with the amino acid composition of Aurantiochytrium sp. DECR-KO, and it is difficult to be
utilized by Aurantiochytrium sp. DECR-KO in the pre- and mid-fermentation stages, which
led to its accumulation of less biomass concentration [29].

Medium composition and fermentation conditions significantly affect fatty acid ac-
cumulation in Aurantiochytrium. Influential factors include the selection of carbon and
nitrogen sources, culture strategy, dissolved oxygen concentration, salinity, pH and tem-
perature [30]. To improve the lipid production capacity of Aurantiochytrium, a thorough
evaluation of the effects of different fermentation conditions on it is required. The Auranti-
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ochytrium’s development and metabolism are significantly impacted by temperature. The
temperature between 20 and 30 ◦C seems to be the optimum incubation temperature [31].
Low temperature had been shown to stimulate DHA production to maintain membrane
fluidity and permeability, but at the expense of biomass, resulting in lower overall DHA
production [32]. Aurantiochytrium is found from mangroves and other sea areas, while
the average salinity of natural seawater is 35‰, and the optimal salinity for growth and
tolerance level varies according to the strains [33]. High salinity stress can stimulate lipid
accumulation in thraustochytrids [32], while high salinity can corrode equipment and
increase costs. In Schizochytrium limacinum OUC88, the lipid content and biomass was
significantly reduced when the salinity was less than 18 g/L (51% of seawater). Both inor-
ganic (such as nitrate and ammonium) and organic nitrogen (such as yeast extract, peptone
and corn steep liquor) can be utilized by Aurantiochytrium [34–36]. The combination of
organic nitrogen proved to be more supportive of production because of the non-specific
growth factors (vitamins, trace elements) it provided [15]. For thraustochytrids, balancing
the relationship between biomass concentration and lipid content per cell is important to
increase the total lipid yield. A single increase in lipid content may lead to a reduction in
biomass concentration [17]. Therefore, a staged culture strategy was used to separate the
biomass increase stage from the lipid accumulation stage, increasing the final lipid yield.
Response surface methodology allows for the identification of optimal culture conditions
that will improve the growth of Aurantiochytrium [37]. In this study, the optimal condi-
tions for maximum growth under the first phase were determined by response surface
methodology optimization.

3.2. The Effect of Sesamol Additionon Lipid Accumulation

Sesamol is a naturally occurring phenolic molecule that is added to foods and medicines
as a cheap and safe antioxidant [38]. Despite the antioxidant activity of sesamol, the presence of
0.5 mM sesamol decreased the fatty acids content of Crypthecodinium cohnii by 25.24% [39]. In
Schizochytrium sp., the addition of 1 mM sesamol caused a 59.06% increase in lipid yield [22].
The fatty acid content of Aurantiochytrium was also significantly reduced in this study by
0.5 mM sesamol. When sesamol was added at a concentration greater than 1 mM, the yield
of total fatty acids increased with increasing concentration. Compared to other oil-producing
microorganisms, sesamol induces lipid synthesis in Aurantiochytrium sp. possibly due to the
presence of a specific fatty acid synthesis system in Aurantiochytrium sp.

Two independent pathways for polyunsaturated fatty acid (PUFA) synthesis pathways
were reported in Aurantiochytrium. In the fatty acid synthase (FAS) pathway, firstly in the ac-
tion of fatty acid synthase, acetyl-CoA and malonyl-CoA are used to produce palmitic acid
(C16:0), and then PUFAs are produced from C16:0 through a sequence of desaturases and
elongases [40]. In the polyketide synthase (PKS) pathway, PUFAs can be generated more
efficiently starting from acetyl-ACP without oxygen dependence [41]. In fatty acid produc-
tion, NADPH is the crucial precursor in the FAS and PKS pathway [12]. ME (malic enzyme)
and G6PD(glucose-6-phosphate 1-dehydrogenase) are crucial enzymes in the production
of NADPH. The overexpression of G6PD and ME increased NADPH supply, resulting in
a 10.6% and >105% increase in PUFA and SFA, respectively [42,43]. Sesamol can reduce
NADPH supply by inhibiting ME, leading to a reduction in lipid accumulation in oleagi-
nous microorganisms [44]. Previous studies have shown that the addition of sesamol leads
to a decrease in ME activity and an increase in G6PD activity in Schizochytrium sp.H016 [22].
However, there was no significant difference in the expression of G6PD by the addition of
sesamol in the present study, while ME was upregulated 1.00-fold in the YSS group. The
increase in ME expression may have compensated for the decrease in its activity to ensure
the supply of NADPH. For the production of another precursor, acetyl-CoA, there was no
ATP citrate lyase (ACL) identified in this study. In the FAS pathway, fatty acid synthase
was upregulated, leading to the accumulation of SFA (Figure 6). In the PKS pathway,
the synergistic activity of β-ketoacyl synthase (KS), β-ketoreductase (KR), dehydration,
and enoyl-reductase (ER) lead to the synthesis of PUFA [45]. The overexpression of PKS
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pathway genes increased the accumulation of DHA in the YSS group. Interestingly, genes
associated with fatty acid degradation were significantly upregulated. The β-oxidation
of fatty acids is generally considered to be detrimental to fatty acid accumulation. How-
ever, β-oxidation provides acetyl coenzyme A and ATP, which are also necessary for the
synthesis of fatty acid. The upregulation of the fatty acid degradation pathway may result
from the consumption of large amounts of short-chain fatty acids for cell division and other
life activities [46]. Acetyl coenzyme A generated from the breakdown of short-chain fatty
acids can enter the TCA cycle or serve as a precursor substance for unsaturated fatty acids.
PUFAs have a high degree of unsaturation, which makes them easily oxidized. Due to
the increased accumulation of polyunsaturated fatty acids, there is an increased risk of
lipid peroxidation, which is accompanied by increased levels of ROS [47]. In this study,
the antioxidant system mitigates oxidative stress damage through enzymatic (superoxide
dismutase) and non-enzymatic mechanisms (glutathione S-transferase) [48]. Superoxide
dismutase (SOD) can catalyze superoxide anions, the precursors of most ROS, to oxygen
and hydrogen peroxide. Glutathione S-transferase (GST) quenches reactive molecules by
adding glutathione, assisting in the elimination of hydrogen peroxide and other oxidative
stress metabolites [49].
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4. Materials and Methods
4.1. Nitrogen Content Determination

The nitrogen elemental composition of six nitrogen sources (yeast extract, bacteriologi-
cal peptone, cottonseed powder, peanut powder, corn powder, and soybean powder) was
determined using an elemental analyzer and sulfanilamide as a standard.

4.2. Strain and Cultural Methods

The Aurantiochytrium sp. DECR knockout engineered strain (Aurantiochytrium sp.
DECR-KO) is stored in the China Center for Type Culture Collection (CCTCC M 2022545)
and obtained from prior study [23,50]. Routine culture conditions are as follows: M4 culture
medium (1 g/L yeast extract, 20 g/L glucose, 0.025 g/L potassium dihydrogen phosphate
and 1.5 g/L peptone dissolved in artificial seawater with a salinity of 30‰), 23 ◦C and
200 rpm. The strain was cultured in a 250 mL shake flask with 100 mL M4 culture medium.
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4.3. Determination of Cell Dry Weight and Neutral Lipids

Cultured cells were collected by centrifugation at 8000 rpm for 10 min and then freeze-
drying using a freeze-dryer for 48 h. The cell dry weight (DCW) was used as the biomass.

Neutral lipids were stained with Nile red fluorescent dye (Rhawn, Shanghai, China).
First, 0.1 mg/mL Nile red (in acetone) is used for staining 200 mL of cells. After 20 min
of a dark incubation at 200 rpm, Nile red fluorescence was measured using a fluorescence
microplate reader (Synergy H1, Bio-Tek, Winooski, VT, USA) with an excitation wavelength
of 488 nm and emission wavelength of 592 nm [51].

4.4. Experimental Design

To maximize the biomass production of Aurantiochytrium sp. DECR-KO by optimiz-
ing culture conditions, this study selected four factors (temperature, salinity, nitrogen
concentration and nitrogen ratio) to carry out a one-way experimental design to observe
their effects on the biomass production. Aurantiochytrium sp. DECR-KO was inoculated
into 250 mL shake flasks with 100 mL of M4 medium and incubated at 23 ◦C and 200 rpm
for 42 h as a seed culture. For temperature, the seed culture was inoculated into M4 medium
at six temperatures: 17 ◦C, 20 ◦C, 23 ◦C, 26 ◦C, 29 ◦C, and 32 ◦C. For salinity, seed culture
was inoculated into M4 medium with different salinities (0‰, 10‰, 20‰, 30‰, 40‰, 50‰)
at 23 ◦C. The nitrogen source concentration of the M4 medium was calculated to be about
0.31 g/L by the percentage of N content. For nitrogen concentration, the medium with
different nitrogen source concentrations (0.1, 0.3, 0.5, 0.7, 0.9, and 1.1 g/L) was prepared at
a ratio of 1:1.5 between yeast extract and soya bean powder, respectively. The seed culture
was inoculated into M4 medium with different concentrations of nitrogen sources at 23 ◦C.
The medium with different ratios of yeast extract and soybean flour (3:1, 2:1, 1:1, 1:1.5, 1:2,
1:3) was prepared separately. Seed culture was inoculated into M4 medium with different
nitrogen source ratios at 23 ◦C. All experiments were inoculated into 250 mL culture flasks
containing 100 mL of medium and incubated at 200 rpm with shaking for 42 h. Cells
were collected by centrifugation and weighed after freeze-drying. Then, we carried out a
Box–Behnken design (BBD) of experiments based on the results and finally obtained the
optimized culture conditions with the highest biomass production.

A Box–Behnken experimental design with four factors, namely, temperature (A),
salinity (B), nitrogen concentration (C) and nitrogen ratio (D), as independent variables,
with −1, 0, and +1 levels for each factor, and cell dry weight (DCW) as the response value
was carried out as shown in Table 4. The experimental design was assisted by Design-
Expert 12 software. The design of the central experimental site was 5, which required a
total of 29 experiments, and each experiment was incubated for 42 h. The experimental
results were entered into Design-Expert software for response surface analysis.

Table 4. Factors and levels of Box–Behnken for the optimization of the culture conditions of the
Aurantiochytrium sp. DECR-KO.

A B C D

Level Temperature
(◦C) Salinity (‰) nitrogen concentration

(g/L) nitrogen ratio *

−1 26 0 0.7 1:1
0 29 10 0.9 2:1
1 32 20 1.1 3:1

* The nitrogen ratio is the weight ratio of yeast extract to water-soluble soybean powder.

DMSO and ethanol were used as solvents, and 1‰ and 0.5‰ (v/v) of different solvents
were added to the strain culture medium that had been cultured for 42 h. The dry cell
weight and Nile red relative fluorescence intensity were determined after 24 h of incubation.
A gradient concentration of 0, 0.5, 1, 1.5, 2, and 2.5 mM sesamol was supplemented into
the Aurantiochytrium sp. DECR-KO that had been cultured for 42 h in optimized culture
conditions (temperature 28.7 ◦C, 11.62 g/L artificial sea salt (salinity of 10.7‰), 3.16 g/L
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yeast extract, 1.58 g/L water-soluble soybean powder, 20 g/L glucose, 0.025 g/L potassium
dihydrogen phosphate). The culture was continued under optimized culture conditions for
21 h to stationary phase (63 h) [23].

4.5. Lipid Extraction and Fatty Acid Analysis

Lipids were extracted by a chloroform–methanol (2:1, v/v) method as previously de-
scribed [52,53]. First, 500 mg of the freeze-dried cells was mixed with chloroform–methanol
and extracted for 72 h at 65 ◦C in a Soxhlet extractor (AG-SXT-06, OUGE, Shanghai, China).
The crude total lipids were obtained by evaporating the solvent at 65 ◦C. To the crude total
lipids, 4 mL of 4% sulfuric acid in methanol was added to obtain fatty acid methyl esters
(FAMEs) at 65 ◦C for 1 h. The FAMEs were treated with hexane and deionized water, which
was followed by volatilization of the hexane off in a stream of nitrogen to gain the methyl
esterified fatty acids (MEFs). Then, 1 mL of dichloromethane was used for the dissolu-
tion of the MEFs. Compositional and content analyses of MEFs were performed by gas
chromatography–mass spectrometry (GC-MS, 7890-5975 Agilent, Santa Clara, CA, USA).
Chromatographic conditions were set as claimed in previous studies [53]. The mass spec-
trometry library of the National Institute of Standards and Technology (NIST) was used
to identify the fatty acids. Methyl nonadecylate (Solarbio, Beijing, China) was used as an
internal standard, and the content was determined by comparing the internal standard
peak areas.

4.6. RNA Extraction, Transcriptomic Analysis, and Real-Time Quantitative PCR (RT-qPCR) Analysis

For transcriptome analysis, samples were collected at 63 h for RNA extraction. Then,
samples were sent to the BioTechnology Genomics Institute, Shenzhen, China for transcrip-
tome sequencing. Under the condition of fold change ≥ 2 and adjusted p-value ≤ 0.001,
DEseq2 was used to conduct differential gene analysis between groups [54]. According to
the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annota-
tion results and official classification, the differentially expressed genes were functionally
classified, and the phyper in R software was used for KEGG enrichment analysis. Genes
satisfying Q-value ≤ 0.05 were defined as significantly enriched.

The total RNA was extracted and collected from both the experimental and control
sample using a Trizol reagent. RNA concentration and purity measurements were per-
formed by NanoDrop2000 (Thermo Scientific, Waltham, MA, USA). The PrimeScript™
RT reagent Kit was used for cDNA synthesis. According to the manufacturer’s protocol,
TB Green® Premix Ex Taq™ II and ABI QuantStudio 6 Flex (Applied Biosystems, Foster,
CA, USA) were used for RT-qPCR. Primer sequences used for RT-qPCR (Table S2) were
designed by Primer Premier 5.0. The relative gene expression was calculated as 2−∆∆ct

using 18S rDNA as the internal standard [26].

4.7. Statistical Analysis

All the experimental data were expressed as the mean ± standard deviation (S.D.) of
at least three independent experiments. Design Expert 12 software was used to perform
response surface experiments. GraphPad Prism (version 8.0.2) was used to analyze data.
Two-way ANOVA and t-tests were used to determine differences between groups at a
confidence level of p < 0.05. A different number of asterisks (*) on each column indicates
the significance of the difference, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

5. Conclusions

In the present study, the lipid production of Aurantiochytrium sp. DECR-KO was
enhanced by a two-phase strategy. In the first stage, the biomass concentration of Auran-
tiochytrium sp. DECR-KO was significantly increased by response surface methodology
optimization. In the second stage, the fatty acid yield was increased by adding the antiox-
idant sesamol. Compared to the M4 culture condition, the biomass concentration, total
fatty acid yield and DHA yield of 2.5 mM sesamol treatment were increased by 49.85%,
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93.49% and 98.22%, respectively. The treatment of sesamol induced the gene expression
related to fatty acid synthesis (FAS, KS, KR) and the antioxidant system (SOD, GST). This
research provides a methodological basis for the use of Aurantiochytrium sp. DECR-KO as a
feedstock for the industrial production of DHA.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/md22080371/s1, Figure S1: Differential gene KEGG path-
way enrichment bubble map; Table S1: Nitrogen content of different nitrogen sources; Table S2: The
primer pairs used in the cloning experiment.
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