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Abstract: Marine antimicrobial peptides (AMPs) represent a promising source for combating in-
fections, especially against antibiotic-resistant pathogens and traditionally challenging infections.
However, traditional drug discovery methods face challenges such as time-consuming processes and
high costs. Therefore, leveraging machine learning techniques to expedite the discovery of marine
AMPs holds significant promise. Our study applies machine learning to develop marine AMPs,
focusing on Crassostrea gigas mucus rich in antimicrobial components. We conducted proteome
sequencing of C. gigas mucous proteins, used the iAMPCN model for peptide activity prediction,
and evaluated the antimicrobial, hemolytic, and cytotoxic capabilities of six peptides. Proteomic
analysis identified 4490 proteins, yielding about 43,000 peptides (8–50 amino acids). Peptide ranking
based on length, hydrophobicity, and charge assessed antimicrobial potential, predicting 23 biological
activities. Six peptides, distinguished by their high relative scores and promising biological activities,
were chosen for bactericidal assay. Peptides P1 to P4 showed antimicrobial activity against E. coli,
with P2 and P4 being particularly effective. All peptides inhibited S. aureus growth. P2 and P4 also
exhibited significant anti-V. parahaemolyticus effects, while P1 and P3 were non-cytotoxic to HEK293T
cells at detectable concentrations. Minimal hemolytic activity was observed for all peptides even at
high concentrations. This study highlights the potent antimicrobial properties of naturally occurring
oyster mucus peptides, emphasizing their low cytotoxicity and lack of hemolytic effects. Machine
learning accurately predicted biological activity, showcasing its potential in peptide drug discovery.

Keywords: machine learning; bioactive prediction; marine antimicrobial peptides; oyster mucus
proteome

1. Introduction

The escalating threat of antimicrobial resistance presents a significant public health
challenge in the 21st century [1]. Addressing this pressing issue, molecules of natural
origin, such as antimicrobial peptides (AMPs), have emerged as promising candidates for
antimicrobial agents. AMPs play pivotal roles in the innate immune systems of diverse
organisms, exhibiting potent, rapid, and broad-spectrum antimicrobial activity against
bacteria, viruses, fungi, and parasites [2–5]. Notable examples include gramicidin, sourced
from the Brevibacillus soil bacterium [6]; purothionin from wheat (Triticum aestivum L.)
endosperm [7]; bombinin from frogs [8]; and cecropins from insects [9]. The current
Antimicrobial Peptide Database (https://aps.unmc.edu/AP/, accessed on 12 June 2024)
contains records of over 3900 such peptides, underscoring their substantial potential for
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therapeutic applications targeting microbial infections, cancer, inflammatory conditions,
and metabolic disorders [10].

Ocean creatures represent more than half of the biodiversity worldwide. One of
the most significant advantages of marine antimicrobial peptides (AMPs) is their low
cytotoxicity and lack of hemolytic properties, making them highly attractive for marine
drug development [11]. The field of marine drug research dates back to the 1950s with
the discovery of the antiviral and anticancer drugs Ara-A and Ara-C from the sponge
Cryptotethya crypta [12]. A notable milestone in this field is Et-743 (Trabectedin), derived
from the ascidian Ecteinascidia turbinata, which is celebrated for its complex molecular
structure and favorable therapeutic efficacy [13]. AMPs found in fish mucus, including fam-
ilies such as hepcidins, β-defensins, histone-derived peptides, cathelicidins, and piscidins,
have shown potential as immunostimulants in aquaculture [14,15]. In marine arthropods,
shrimp anti-lipopolysaccharide factor (SALF) and crab tachyplesin exhibit both antimi-
crobial and anticancer activities [16,17]. Among molluscs, mussels have been identified
as rich source of antimicrobial compounds, yielding over 10 AMPs in the past decade.
Noteworthy examples include peptides from Perna canaliculus, which possess antioxidant
and angiotensin-converting enzyme (ACE) inhibitory properties [18].

The pursuit of bioactive peptides has also garnered considerable scientific interest
in oysters [19,20]. Mucus analysis of Crassostrea gigas and Ostrea edulis revealed the pres-
ence of proteins implicated in microbe neutralization or detoxification processes, such
as bactericidal/permeability-increasing protein [21,22]. For instance, in C. gigas mucus,
DM9CP acts as a pattern recognition receptor, binding to a range of microbial entities [23].
Defensin, synthesized in C. virginica gill epithelial cells, was found in moderate levels in
mucus, and demonstrates potent antibacterial activity against both Gram-positive and
Gram-negative bacteria including Staphylococcus aureus and Vibrio parahemolyticus [24–26].
The proteomic analysis of the mucous proteins in C. virginica identified 1514 proteins, of
which over 200 were categorically defined with specific functions such as immune activation
and cell signaling. However, the majority of these proteins remain functionally unchar-
acterized. Mucous proteins, as reservoirs for antimicrobial peptides, yield proteolytically
derived peptides with antimicrobial properties. However, the variability in physiological
conditions leads to differences in these peptide products, making it challenging to precisely
identify the specific peptides generated through enzymatic degradation or proteolysis.
Recently, a study in directly predicting active peptides employed bioinformatics algorithms
to unveil 2603 polypeptides with antimicrobial properties within the human proteome,
originating predominantly from proteins encompassing diverse biological functions or
peptide hormones with undisclosed functionalities [27], which provides us a promising
train of thought for further mining active peptides from oyster mucous proteome.

Herein, we identified over 4000 proteins from the mucus of oysters. To investigate
unknown antimicrobial components in the mucus, we extracted a dataset comprising more
than 40,000 peptide sequences ranging from 8 to 50 amino acids in length from the mucous
protein pool. These peptides were preliminarily ranked based on hydrophobicity, charge,
and other properties of amino acids for their antimicrobial potential. Subsequently, follow-
ing the approach of Jing et al. [28], we employed machine learning techniques to study and
predict the antimicrobial activity, hemolytic activity, toxicity, and other characteristics of
these peptide sets. We further screened polypeptides with broad-spectrum antibacterial
activity, low toxicity, and low hemolytic activity and conducted in vitro functional analysis
of six polypeptide sequences. The results highlight the potential of machine learning in
mining antimicrobial peptides from shellfish and lay a solid theoretical foundation for
screening marine drug candidates.

2. Results
2.1. Mucus Proteome Functional Enrichment Analysis

Using mass spectrometry analysis of mucus samples from healthy oysters, we identi-
fied 18,642 peptide segments and 4490 proteins, applying a stringent filtering criterion of
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FDR (False Discovery Rate) ≤ 1% (Table 1). Based on this proteomic dataset, we conducted
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment
analyses to gain deeper insights into the complex biological processes and signaling path-
ways within the mucus. The GO analysis revealed that over 1700 proteins exhibit binding
and catalytic activities, with fewer proteins involved in the regulation of protein translation
and toxicity. Additionally, approximately 1318 proteins participate in metabolic processes,
and around 1500 proteins function within specific cellular structures or tissues, including
about 500 proteins acting on cell membranes and 200 proteins performing extracellular
functions (Figure 1A). In the KEGG enrichment analysis, proteins were significantly en-
riched in categories related to the immune system and signal transduction, highlighting
their crucial roles in mucosal immunity (Figure 1B).

Table 1. Summary of protein identification results.

Sample Name Total
Spectra Spectra Unique

Spectra Peptide Unique
Peptide Protein

Crassostrea_gigas 388,065 39,974 29,987 18,642 15,113 4490
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Figure 1. GO and KEGG enrichment analysis of Crassostrea gigas mucous proteins. (A) GO enrich-
ment analysis shows three main categories of significant enrichment. Three colors illustrate the en-
richment outcomes: blue, molecular function; green, cellular component; red, biological process. 
Categories are presented in descending order based on the number of enriched protein counts. (B) 
KEGG enrichment analysis. The six colors depict different categories: red, cellular processes; yellow, 
environmental information processing; green, genetic information processing; light blue, human 

Figure 1. GO and KEGG enrichment analysis of Crassostrea gigas mucous proteins. (A) GO enrichment
analysis shows three main categories of significant enrichment. Three colors illustrate the enrichment
outcomes: blue, molecular function; green, cellular component; red, biological process. Categories are
presented in descending order based on the number of enriched protein counts. (B) KEGG enrichment
analysis. The six colors depict different categories: red, cellular processes; yellow, environmental
information processing; green, genetic information processing; light blue, human diseases; dark
blue, metabolism; purple, organismal systems. Pathways are listed in descending order based on the
number of enriched peptide counts.

2.2. The Hydrophobicity Scales of Peptides and the Correlation of Length and Relative Scores

Following the method of Katia et al. [29], we determined amino acid scores using an
algorithm that considered sequence length, net charge, average hydrophobicity, and other
physicochemical properties. We randomly selected peptides ranging from eight to 50 amino
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acids in length from mucous proteins, obtaining 1000 peptides of each length category. In
total, we generated 43,000 peptide sequences. We computed absolute and relative scores for
all 43,000 peptides, categorizing them based on their relative scores, which predominantly
fell within the range of 0.2 to 1.0. Notably, there were 10 peptides with scores between
0.9 and 1.0, all of which were eight to 10 amino acids long. The majority of peptides fell
into the score ranges of 0.2–0.3 (15,718 peptides) and 0.3–0.4 (12,705 peptides), with longer
lengths (Figure 2A). Subsequently, we conducted a correlation analysis between peptide
length and relative scores, revealing a negative correlation where higher scores tended to
correspond with shorter peptides (Figure 2B).
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Figure 2. Amino acid physical and chemical properties score system, polypeptide fraction, and
length correlation analysis. (A) According to Katia’s method, higher amino acid scores correspond to
increased hydrophobicity, indicating stronger membrane affinity. The x-axis represents eight intervals
of amino acid scores, and the y-axis represents the count of mucous peptides. (B) The relative score
calculation formula incorporates the peptide’s net charge (C) and hydrophobic score (H), where
higher positive charges and increased hydrophobicity contribute to a higher RS, indicating stronger
membrane interaction capability. The x-axis represents peptide length (8–50 AAs) and the dots
represent relative scores. The trend line highlights the trend of decreasing RS with increasing peptide
length, emphasizing the impact of peptide size on its scoring metrics.

2.3. Performance of Peptide Sets Functional Activities According to iAMPCN

To further validate the antimicrobial activity of the peptides evaluated by aforemen-
tioned algorithm, we adopted the deep learning approach described by Jing et al. [28].
Utilizing the iAMPCN learning framework, we evaluated the 43,000 peptides to predict the
biological properties of bioactive peptides. The results showed that nearly 40,000 peptides
exhibited endotoxin activity, with a similar number of peptides identified as antimicrobial
peptides (AMPs). Approximately 1500 peptides exhibited hemolytic properties, with fewer
than 1500 peptides showing cytotoxic effects. Furthermore, nearly 60% of peptides demon-
strated chemotactic properties, while over 30% exhibited antibacterial, antifungal, antiviral,
anticancer, and antibiofilm activities. A small subset of peptides displayed antiprotozoal,
antimalarial, insecticidal, and anti-TB activities. Approximately 20,000 peptides showed
potential in treating diseases caused by plasmodia or Candida infections. Regarding com-
mon characteristics, nearly all peptides were ineffective in the anuran defense mechanism
and showed no activity against HIV (Figure 3). For detailed prediction results, please refer
to Supplementary File S2.
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Figure 3. Bioactive properties of Crassostrea gigas mucous protein-derived peptides. The predicted
functional activities encompassed AMP, antibacterial, anti-Gram-positive, anti-Gram-negative, anti-
fungal, antiviral, anti-mammalian cells, anti-HIV, antibiofilm, anticancer, anti-MRSA, antiparasitic,
hemolytic, chemotactic, anti-TB, anuran defense, cytotoxic, endotoxin, insecticidal, antimalarial,
anticandida, antiplasmodial, and antiprotozoal properties. Green indicates the number of peptides
possessing this functional characteristic, while grey indicates the number of peptides lacking the
corresponding function.

2.4. Characterization of Candidate Peptide Sequences

To representatively analyze the reliability of our method and to screen the valuable
peptides using optimal parameters, six peptides were arranged for synthesis and subse-
quent analysis, as shown in Table 2. The peptides with the top four highest relative scores
and exhibiting broad-spectrum antibacterial activity, low toxicity, and minimal hemolytic
activity were designated as P1 to P4. The two peptides achieving the highest RS were
named S1 and S2, with scores of 0.947085 and 0.927233, respectively. To understand the
antimicrobial mode of action, we performed three-dimensional structure predictions of
the peptides, confirming the formation of α-helices in all six peptides, as illustrated in
Figure 4A using the PEP-FOLD server. The projection of peptides P1, P2, P3, and P4
showed the distribution of hydrophobic and cationic residues. Positively charged amino
acids, specifically Lysines and Arginines (depicted in blue), were prominently localized.
Hydrophobic residues (shown in grey and yellow) were positioned on opposing sides of
the wheel, creating a distinct hydrophobic moment (indicated by the arrow) within the
peptide molecules (Figure 4B). However, HeliQuest was unable to predict the structure for
shorter peptides like S1 and S2, which have eight or fewer amino acid residues.

Table 2. Sequence information, amino acid score, and functional prediction results of six peptides
screened by machine learning.

Sequence Score AMP Antibacterial Anti-Gram-
Positive

Anti-
Gram-

Negative
Antifungal Antiviral

Anti-
Mammalian-

Cells
Hemolytic Cytotoxic Endotoxin

P1 FAKLLLRLPALR 0.602235 Yes Yes Yes Yes Yes No No No No No
P2 WKQIKFYVYNRILKKRK 0.565195 Yes Yes Yes Yes Yes No No No No No
P3 KVWQRVKVKML 0.564499 Yes Yes Yes Yes Yes No No No No No
P4 RRRAKKMRAIYLIMNRFKKYKI 0.562785 Yes Yes Yes Yes Yes No No No No No

S1 LLFRRRLL 0.947085 Yes Yes Yes Yes No No Yes No No Yes
S2 LLRRKFFF 0.927233 Yes Yes Yes Yes No No Yes No No Yes
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2.5. Antimicrobial Effects of Six Polypeptides against Escherichia coli, Staphylococcus aureus, and
Vibrio parahaemolyticus

To evaluate the antimicrobial activity of the six predictive peptides, we performed
bacterial clearance assays against Escherichia coli, Staphylococcus aureus, and Vibrio para-
haemolyticus. As depicted in Figure 5A, peptides P1 to P4 demonstrated significant effects
against E. coli, with peptides S1 and S2 exhibiting slightly antimicrobial activity. At higher
concentrations of P1 to P4, there was a substantial reduction in bacterial absorbance, partic-
ularly highlighting the pronounced antimicrobial effects of peptides P2 and P4. Concerning
S. aureus, increasing peptide concentrations moderately slowed bacterial growth, with
peptide P4 displaying the most substantial inhibitory effect among the tested peptides.
For V. parahaemolyticus, peptides P2 and P4 exhibited marked, dose-dependent bactericidal
effects, whereas the other four peptides showed minimal inhibitory effects on bacterial
growth. Gradient killing assays further delineated the minimal inhibitory concentrations
(MICs) of P2 and P4 (Figure 5B,C).

2.6. Evaluation of In Vitro Cytotoxicity and Hemolytic Activity

We tested the cytotoxicity of six peptides with HEK293T cells (Figure 6A). The signifi-
cance was compared with cell activity at 0 µM concentration. There was no cytotoxicity of
P1 and P3 within the concentration range detected. Peptides P2, P4, and S1 caused signifi-
cant cell death at high concentrations of 50 µM. Regarding peptide S2, cell viability did not
exceed 75% at concentrations of 10, 20, and 50 µM, indicating significant cytotoxic effects at
10 µM concentration. As shown in Figure 6B, we also evaluated the hemolytic activity of
all peptides, respectively. After co-incubation with red blood cell suspension for 30 min,
hemolytic rates of six peptides ranged from 0.1% to 1.5%, indicating low hemolytic activity.
Hemolytic rates of 1.4% and 1.3% were observed when red blood cells were incubated with
50µM of P4 peptide, 50 µM of P2 and S1, respectively.
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Figure 6. Cytotoxicity and hemolytic analysis of six peptides. (A) The cytotoxicity effects of antimicro-
bial peptides at different concentrations were tested on HEK293T cells. Peptide concentration (µM)
was plotted on the x-axis, and cell viability (%) on the y-axis (mean ± SD, n = 5). ns: no statistical
significance, *: p < 0.05. (B) Red blood cell hemolytic rates (%) measured at varying concentrations of
antimicrobial peptides (µM). Peptide concentration (µM) was plotted on the x-axis, and hemolysis
(%) on the y-axis (mean ± SD, n = 5).



Mar. Drugs 2024, 22, 385 8 of 14

3. Discussion

In our study, we identified 4490 mucous proteins in Pacific oysters, serving as a crucial
barrier against pathogens in marine organisms. Actually, the epidermal mucus of fish
serves as a primary source for extracting natural antimicrobial peptides [30,31]. Mucous
secretions of molluscs also contain active peptides directly involved in antimicrobial func-
tion; for instance, a novel cysteine-rich antimicrobial peptide (mytimacin-AF) characterized
from the mucus of the snail of Achatina fulica showed potent antimicrobial activity against
Staphylococcus aureus and the fungus Candida albicans [32]. Nevertheless, few antimicrobial
peptides were identified here in mucous proteins, which lead us to consider the possible
products of peptides from the degradation or enzymatic hydrolysis. Due to variations
in peptide detection sensitivity and enzymatic digestion-induced peptide diversity, con-
ventional mass spectrometry identification methods have limitations in screening and
discovering bioactive peptides in molluscs [33]. To address these issues, we integrated
amino acids’ hydrophobicity scores, relative scores calculation, and comprehensive antimi-
crobial peptide classification networks which are particularly well suited for the analysis of
large sets of sequences, including entire protein databases, enhancing our ability to predict
the component structure and biological activities of these peptides.

Herein, we employed deep learning algorithms to analyze the antimicrobial peptides
in Pacific oyster mucus and screened 43,000 peptides. A similar research approach was
utilized by Tachapuripunya, V et al. [34], who employed k-NN and Random Forest (RF)
algorithms to predict and analyze the function of trypsin peptides (1218 core peptides and
1600 variable peptides) extracted from the mucus of seven common gastropods. On this
basis, we intergrated iAMPCN deep-learning framework to identify and predict the potent
activity of the mucus-derived peptides in 23 functional indicators against pathogens to
enhance our drug development method of peptide therapeutics. Consequently, a series of
antimicrobial peptides were predicted and filtered, which offers the potential to test their
activities against microbes using a bactericidal assay.

Our research on six synthetic peptides, specifically P2 and P4, has shown promising re-
sults in inhibiting the growth of both E. coli and S. aureus. This broad-spectrum antibacterial
efficacy suggests potential applications in therapeutic settings where treatment of infections
caused by diverse bacterial pathogens is required. This is particularly significant consid-
ering the variability in the effectiveness of existing antimicrobial peptides, such as those
derived from Crassostrea gigas (Cg-Defs) [35]. Cg-Defs have been primarily effective against
Gram-positive bacteria, with minimal inhibitory concentrations ranging from 0.01 to 6 µM.
However, their efficacy diminishes against Gram-negative bacteria, with generally higher
MICs exceeding 10 µM. This limited activity can be attributed to the protective outer mem-
brane of Gram-negative bacteria that shields targets like peptidoglycan from the action
of these peptides [36]. In contrast, the broad-spectrum activity observed in our peptides
P2 and P4 could be due to a more versatile mechanism of action, potentially engaging
multiple bacterial targets or pathways, thereby enhancing their antimicrobial reach. This
versatility aligns with findings from other researchers like Louis et al. [37], who synthesized
five peptides that effectively targeted various strains within the Vibrio genus using a novel
PepTraq prediction tool combining transcriptomic differential analysis in the blood cells
of the common cuttlefish Sepia officinalis. Similar to peptide GK28 from their study [37],
which demonstrated high activity against Vibrio species without inducing hemolysis, our
peptides P2 and P4 also showed notable anti-V. parahaemolyticus activity combined with
safety. Therefore, our study highlights the potential for in-depth computational analysis
to uncover novel antimicrobial peptides, highlighting the potential application of these
peptides in future antimicrobial therapies.

The integration of machine learning techniques with experimental approaches can
significantly enhance the development of antimicrobial peptides [38]. The low toxicity
and safety predicted by deep learning have also been verified in actual experiments. Our
research exemplified this by combining in silico analyses with proteomic data. Notably, all
six peptides tested exhibited remarkably low hemolytic activity, maintaining levels below
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1.5% even at high concentrations, demonstrating a favorable safety profile. This observation
aligns with prior studies that searched for antimicrobial sequences in the cuttlefish (Sepia
officinalis) database by in silico analysis of a transcriptomic database. The result showed
that GR21, a peptide less than 25 amino acids in length, induced less than 10% hemolysis on
human blood cells at a concentration of 200 µM [39]. Moreover, peptides P1 and P3 in our
study demonstrated no cytotoxic effects on HEK293T cells across the tested concentration
range, which presented a comprehensive safety assessment proving the feasibility of
developing antimicrobial peptides derived from invertebrates by machine learning.

In summary, we have delineated promising research avenues concerning antimicrobial
peptides (AMPs) derived from oyster mucus, with prospects for further refinement in drug
design methodologies. Through proteomic analysis of Crassostrea gigas mucous proteins,
we have compiled a valuable database of bioactive peptides ranging from eight to 50 amino
acids in length. Employing the iAMPCN algorithm, we predicted biological properties
across 23 categories, identifying six peptide candidates characterized by α-helical structures
and favorable hydrophobic properties. Our approach integrated comprehensive amino acid
sequences analysis, iAMPCN modeling for activity prediction, and in vitro assays to screen
AMPs sourced from marine molluscs. Of the six candidates, four peptides demonstrated
antibacterial efficacy against E. coli strain, with P2 and P4 showed significant effects.
All peptides effectively inhibited the growth of S. aureus. Peptides P2 and P4 exhibited
notable anti-V. parahaemolyticus activity, while P1 and P3 showed no cytotoxic effects of
HEK293T cells within the concentration range detected. Importantly, all six peptides
displayed minimal hemolytic activity, remaining below 1.5% even at high concentrations,
indicating their potential suitability for clinical drug applications. Overall, the application
of machine learning in antimicrobial peptide research shows promising prospects across
biomedical sciences.

4. Materials and Methods
4.1. Animals Culture and Mucus Collection

Healthy Pacific oysters (Crassostrea gigas) were procured from Qingdao, Shandong
Province, China, and acclimated in a tank of seawater with a salinity of 27‰ at approxi-
mately 20 ◦C for nearly 1 week prior to experimentation. During the acclimation period, the
oysters were fed Isochrysis galbana twice daily to ensure their optimal health and readiness
for the study. Following the methodology described by Pales Espinosa et al. [40], oysters
were carefully opened, and their pallial organs were rinsed with sterile artificial seawater
(SAS; salinity 27‰, filtered through 0.22 µm membranes) for mucus extraction. Mucus from
the mantle, gills, and labial palps of each oyster was collected using sterile cotton swabs.
The swabs from three oysters were pooled into a single 15 mL plastic tube containing 10 mL
of ice-cold SAS and 100 µL of a protease inhibitor cocktail (Beyotime, Shanghai, China),
resulting in approximately 500 µL of mucus per sample. The tubes were gently agitated at
4 ◦C on a rotating shaker for 2 h and the collected fluid was then centrifuged at 4 ◦C for
20 min at 1000× g. The supernatant was filtered through 0.22 µm sterile syringe filters to
remove debris. Samples were maintained at 4 ◦C until use, which were conducted within
the following hour. Three samples were obtained for further exploration.

4.2. Protein Extraction

The samples were mixed with five volumes of cold acetone and left to precipitate
overnight. The fluid was then centrifuged at 4 ◦C for 15 min at 25,000× g. The resulting pel-
let was air-dried and redissolved in a solution containing 10 mM DTT (DL-Dithiothreitol).
They were then sonicated in an ice bath (frequency is 50 Hz, time is 3 min) and centrifuged
at 25,000× g, 4 ◦C for 15 min to collect the supernatant. DTT with a final concentration
of 10 mM was added again, 56 ◦C water bath for 1 h. Subsequently, 55 mM IAM (Iodoac-
etamide) was added to the mixture, which was then incubated in the dark for 45 min.
Following incubation, the mixture was centrifuged at 25,000× g, 4 ◦C for 15 min, and
the supernatant was collected as the protein solution. A 25 µL aliquot of each fluid was
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assessed for protein concentration using the Modified BCA Protein Assay Kit (Sangon
Biotech, Shanghai, China) following the manufacturer’s guidelines. The fluids were then
diluted with SAS to achieve a final protein concentration of 1 mg/mL [41].

4.3. Proteolysis and Peptide Fractionation

First, 100 µg protein was taken and added to a 1.5 mL centrifuge tube. Trypsin was
used to digest the proteins at a ratio of protein to trypsin of 20:1 at 37 ◦C for 4 h. After
digestion, the peptide liquid was taken out for desalting and then freeze-dried for further
analysis Next, the mixed 20 µg sample was taken for fractionation using the LC-20AB liquid
phase system (Shimadzu, Tokyo, Japan) which was equipped with a 5 µm 4.6 × 250 mm
Gemini C18 column. The dried peptide samples were redissolved in mobile phase A (5%
ACN, pH 9.8) and separated at a flow rate of 1 mL/min with the following gradient: 5%
mobile phase B (95% ACN, pH 9.8) for 10 min, 5% to 35% mobile phase B over 40 min,
35% to 95% mobile phase B over 1 min, 95% mobile phase B for 3 min, and 5% mobile
phase B for 10 min. The elution peak was monitored at a wavelength of 214 nm and one
component was collected per minute, and the samples were combined according to the
chromatographic elution peak map to obtain 20 fractions, which were then freeze dried.

4.4. LC-MS/MS

The freeze-dried peptide samples were redissolved with mobile phase A (2% ACN,
0.1% FA) and centrifuged at 20,000× g for 10 min, and the supernatant was taken for
injection. Separation was performed by UltiMate 3000 UHPLC (Thermo Scientific, Waltham,
MA, USA). The sample was first enriched in trap column and desalted, and then entered a
self-packed C18 column (75 µm internal diameter, 3 µm column size, 25 cm column length)
and separated at a flow rate of 300 nL/min. The nanoliter liquid phase separation end
was directly connected to the mass spectrometer. Subsequently, the peptides separated by
liquid phase chromatography were ionized by a nanoESI source followed by passing to a
tandem mass spectrometer Q-Exactive HF X (Thermo Fisher Scientific, San Jose, CA, USA)
for DDA (Data Dependent Acquisition) mode detection. The parameters for MS analysis
are as follows: ion source voltage was set to 1.9 kV, MS1 scanning range was 350~1500 m/z,
resolution was set to 60,000, MS2 starting m/z was fixed at 100, and resolution was 30,000.
The ion screening conditions for MS2 fragmentation were as follows: charge 2+ to 6+, and
the top 20 parent ions with the peak intensity exceeding 20,000. The ion fragmentation
mode was HCD, and the fragment ions were detected in Orbitrap. The dynamic exclusion
time was set to 30 s. The AGC was set to MS1 3E6, MS2 1E5.

4.5. Protein Identification and Bioinformatics Analysis

The raw MS/MS data were converted into MGF format by thermo scientific tool
Proteome Discoverer (version 2.5), and the proteins were searched using Mascot version
2.3.02 against the Uniprot database (https://www.uniprot.org/, accessed on 23 February
2023). In order to control the rate of false positive results at the protein level, 1% of protein
FDR, based on the picked protein FDR strategy, was also set as the criteria for protein
identification. As a result, proteins containing at least one unique set of spectra with
filtration of FDR ≤ 1% were served as downstream analysis. The identified peptides
were applied to GO annotation by Blast2GO (version 5.2). Pathway enrichment analysis
was performed by using a search pathway tool in the KEGG Mapper platform (https:
//www.genome.jp/kegg/, accessed on 10 March 2023).

4.6. Generation and Analysis of Oyster Mucus Peptide Libraries

The generation and analysis of oyster mucus peptide libraries referenced the method-
ology proposed by Katia et al. [29]. For the generation of peptide sets, the initial hydropho-
bicity scale of amino acids was obtained by measuring the retention time of peptide in
the column firstly. The amino acids “X” with the lowest hydrophobicity were selected as
reference, and the amino acid “Z” with the highest hydrophobicity score was found. Next,

https://www.uniprot.org/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
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the hydrophobicity fraction “H′
A” for any amino acid was calculated using a specified

formula, H′
A= (HA − HX)/(HZ − HX), in the newly generated scale, ensuring that the

overall hydrophobicity scores of the peptide were determined only by the amino acids with
higher hydrophobicity. Due to the enormous size of the mucosal protein-derived peptide
dataset from large-scale proteomic data, fully retrieving it exceeds current computational
capabilities. Consequently, the peptides used in this study represent a random sample of
the overall data. Given the importance of function and stability in antimicrobial peptides
(AMPs) ranging from eight to 50 amino acids, 1000 peptides of each length were selected for
a diverse analysis. This approach led to the examination of 43,000 polypeptides, ensuring a
broad representation while managing computational limits.

Based on the amino acids scores, the relative score (RS) for amino acids were deter-
mined using residues properties as parameters and the correlation with peptide sequence
length was established through absolute score. Specifically, “C” is the net charge of the
peptide, “H” is the sum of the hydrophobicity scores of all the peptide residues, “L” is the
number of peptide residues, and “MaxScore” is the highest CmHn value; the formula is
as follows:

Relative Score (RS) = (CmHn)/MaxScore

Absolute Score (AS) = RS × L

Antimicrobial scores for amino acids were computed, followed by an evaluation of
the antimicrobial potential of the peptides.

4.7. iAMPCN Model Prediction on Polypeptides Functional Activity

A novel deep-learning framework known as iAMPCN (identification of AMPs and
their functional activities based on Convolutional Neural Networks) was introduced by
Jing et al. [28]. The source code for iAMPCN can be found at (https://github.com/joy5
0706/iAMPCN/tree/master, accessed on 8 April 2024). This framework aims to enhance
the predictive accuracy of AMPs and their functional activities. Specifically, iAMPCN
utilizes one-hot coding to convert the amino acid sequences of antimicrobial peptides into
numerical representations that can be processed by computers. A CNN (Convolutional
Neural Network) model is constructed using convolutional and pooling layers to extract
features from antimicrobial peptide sequences. The model is capable of predicting the
functional activities of antimicrobial peptides and optimizing the results. Therefore, the
23 functional indicators, including antibacterial, antifungal, and antiviral properties were
predicted. Subsequently, polypeptides with the RS top four that concentrated in broad
antibacterial activity, low toxicity, and low hemolytic activity were selected and named
as P1–P4; the two highest RS of 43,000 peptides were named as S1 and S2 for subsequent
analysis. These peptides were selected as representative of the reliability of the analytical
method and these properties were the optimal parameters for screening valuable peptides.

4.8. Polypeptides Physicochemical Properties Prediction

The three-dimensional structure of peptides set size from eight to 50 amino acid
residues was predicted through the PEP-FOLD (https://bioserv.rpbs.univ-paris-diderot.
fr/services/PEP-FOLD3/, accessed on 21 June 2024) website [42] and subjected to analysis
by PyMOL software (version 2.60). The physicochemical properties of peptides were
accomplished by Heliquest (https://heliquest.ipmc.cnrs.fr/, accessed on 21 June 2024),
with regard to hydrophobicity, hydrophobic moment, and net charge [43].

4.9. Antimicrobial Activity Assay

Candidate peptides were assessed for antimicrobial activity against Escherichia coli
DH5α, Vibrio parahaemolyticus E151, and Staphylococcus aureus ATCC 29213 using the method
of Mao et al. [44] with some modifications. Minimum inhibitory concentrations (MICs)
were determined using broth microdilution in LB medium, starting with an inoculum of 1
× 105 cells in untreated polystyrene microtiter plates. LB broth without cells served as the

https://github.com/joy50706/iAMPCN/tree/master
https://github.com/joy50706/iAMPCN/tree/master
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
https://heliquest.ipmc.cnrs.fr/
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blank control. Peptides were tested at concentrations of 0, 1, 2, 5, 10, 20, and 50 µM in LB
broth with cells. Following a 12 h incubation at 37 ◦C, OD at 600 nm readings were taken
in a microplate reader to assess bacterial growth inhibition. Data were presented as a heat
map depicting antimicrobial efficacy against the three bacterial strains. Each experiment
was performed in triplicate for reliability, and heat map values represent the mean OD (600)
of replicates after normalization against the blank control.

4.10. Cytotoxicity Assay

HEK293T cells were cultured in DMEM (10% FBS, 1% penicillin–streptomycin solution)
in a 37 ◦C, 5% CO2 cell culture incubator until reaching the logarithmic growth phasein.
As previously described [45], cells were seeded into a 96-well plate at 100 µL per well
and pre-incubated for 48 h. After removing the medium, 10 µL of antimicrobial peptide
solutions (1, 2, 5, 10, 20, and 50 µM) were added to each well with five replicate wells
per concentration. The HEK293T cells cultured with DMEM (0 µM peptide) constituted
the untreated group and plates with no cells were as blank group. Plates were then
cultured for 24 h. Subsequently, 10 µL of CCK-8 solution was added to each well and
incubated for 3 h under the same conditions using the Cell Counting Kit-8 (CCK-8, K1018,
APE×BIO, Technology LLC, Houston, TX, USA). Absorbance at 450 nm was measured
using a microplate reader. Cell viability was calculated using the following formula: Cell
viability (%) = [Treated group OD (450) − Blank group OD (450)]/[Untreated group OD
(450) − Blank group OD (450)] × 100%.

4.11. Hemolysis Assay

We employed the method described by Sæbø et al. [46]. Blood from fiber sheep was
centrifuged at 1000 rpm for 10 min to isolate red blood cells (RBCs). The supernatant
was removed, and RBCs were washed with PBS until the supernatant cleared. RBCs
were resuspended in PBS at a 10-fold volume ratio to create a uniform RBC suspension.
Antimicrobial peptides were diluted in PBS to concentrations of 1, 2, 5, 10, 20, and 50 µM
using serial dilution. Subsequently, 10 µL of each peptide dilution was added to separate
wells of a 96-well plate for experimental groups. Negative controls received 10 µL PBS,
and positive controls contained 10% Triton X-100. Each well received 1 × 105 RBCs, with
five replicate wells per concentration. The plate was then incubated at 37 ◦C with 5% CO2
for 30 min. Following incubation, the plate was centrifuged at 1500 rpm for 10 min, and
the supernatant was transferred to a new 96-well plate. Optical density at 450 nm was
measured using a spectrophotometer. Hemolysis percentage was calculated using the
following formula: Hemolysis % = [Experimental group OD (450) − Negative control OD
(450)]/[Positive control OD (450) − Negative control OD (450)] × 100%.

4.12. Statistical Analysis

Statistical analysis was performed using GraphPad Prism (version 9.5.0) and was con-
ducted using one-way analysis of variance (ANOVA) followed by Tukey’s test. Statistical
significance values are indicated as *: p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md22090385/s1, We have provided two Excel files as supple-
mentary data. File S1 contains 8–50 amino acids peptide dataset. File S2 includes machine learning
prediction results. These files support the findings presented in our manuscript and can be accessed
for detailed data analysis.
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