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Abstract: The rapid evolution of drug resistance is one of the greatest health issues of the 21st
century. There is an alarming situation to find new therapeutic strategies or candidate drugs to
tackle ongoing multi-drug resistance development. The marine environment is one of the prime
natural ecosystems on Earth, the majority of which is still unexplored, especially when it comes to
the microbes. A wide variety of bioactive compounds have been obtained from a varied range of
marine organisms; however, marine bacteria-produced bacteriocins are still undermined. Owing
to the distinct environmental stresses that marine bacterial communities encounter, their bioactive
compounds frequently undergo distinct adaptations that confer on them a variety of shapes and
functions, setting them apart from their terrestrial counterparts. Bacterially produced ribosomally
synthesized and posttranslationally modified peptides (RiPPs), known as bacteriocins, are one of
the special interests to be considered as an alternative to conventional antibiotics because of their
variety in structure and diverse potential biological activities. Additionally, the gut microbiome
of marine creatures are a largely unexplored source of new bacteriocins with promising activities.
There is a huge possibility of novel bacteriocins from marine bacterial communities that might come
out as efficient candidates to fight against antibiotic resistance, especially in light of the growing
pressure from antibiotic-resistant diseases and industrial desire for innovative treatments. The
present review summarizes known and fully characterized marine bacteriocins, their evolutionary
aspects, challenges, and the huge possibilities of unexplored novel bacteriocins from marine bacterial
communities present in diverse marine ecosystems.

Keywords: marine organisms; bacteriocins; lanthipeptides; RiPPs; evolution; drug resistance; marine
ecosystem

1. Introduction

The rapid emergence of drug resistance in pathogenic bacteria poses a catastrophic
threat all around the world. At the same time, the unavailability of new drugs or anti-
infective therapies creates an alarming situation concerning global health in the battle
against drug resistance [1]. Overall, there is an urgent need for new antimicrobial or al-
ternative strategies to combat drug-resistant pathogens. Microbial secondary metabolites
consist of structurally diverse natural products which are essential phenomena of microbial
communities, playing a diverse role in biotic and abiotic interactions [2]. Bacteriocins
are one such secondary metabolite produced by bacterial communities in competitive
complex environments such as soil, human gut, or marine sediments [3–5]. Bacteriocins
are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that have
already been suggested as a viable alternative to conventional antibiotics [6,7]. As bacte-
rial communities are highly diverse considering their intra- or inter-species interactions,
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bacteriocins are a rapidly evolving group of antimicrobial peptides (AMPs); however, a
universal classification to accommodate all is yet to come. There are some proposed classifi-
cations available; however, many of the bacteriocins do not fit into them due to their novel
and diverse structural properties [8,9]. Commonly, there are two types of bacteriocins,
one containing an N-terminal leader sequence, and another one is leaderless bacteriocins.
Leaderless bacteriocins are secreted in matured form, while the leader sequence containing
bacteriocins are posttranslationally modified with conserved enzymes such as lanthionine
synthetases where the leader sequence is cleaved off during the maturation process for
the secretion of matured bacteriocins. Lanthionine-containing bacteriocins are designated
as lanthipeptides, characterized by the presence of intramolecular thioether bridges, and
turn out into complex polycyclic structures. Lanthipeptides are usually synthesized as a
precursor peptide consisting of an N-terminal leader peptide and a C-terminal core peptide
that serves as a substrate for the specific lanthionine synthetases. The posttranslational
modification of lanthipeptides involves the dehydration of the selected serine and threo-
nine residues to dehydroalanines (Dha) and dehydrobutyrines (Dhb) and a subsequent,
intramolecular cyclization of nearby Cys thiols to the dehydrated residues (Dha or Dhb),
forming lanthionine and methyl-lanthionine bridges, respectively, through a Michael-type
addition. Finally, the posttranslationally modified precursor peptide moves to the cell
membrane where the N-terminal leader sequence is cleaved off by the C39 protease do-
main of the ABC transporter and the matured modified core peptide is released to the
extracellular space [10]. Interestingly, oligotrophic oceans are the largest ecosystem on
Earth estimated to have 3.28 × 104 to 2.46 × 106 bacteria as amplicon sequence variants;
however, little has been explored yet [11]. Enormous and unexplored bacterial diversity
associated with diverse marine ecosystems suggested a huge potential for the availability
of novel bacteriocins to fight against rapidly evolving drug-resistant bacteria. Therefore, in
the present review, we have summarized the structural and physiochemical diversity of
known and fully characterized marine bacteriocins along with their antimicrobial spectrum.
Additionally, we have also discussed the possible evolutionary aspect of the relationship
between lanthipeptides (lanthionine) and leaderless bacteriocins (non-lanthionine). Our
sequence-based analysis suggested that marine bacteriocins are driven under a possible
evolutionary pressure contributed by extreme marine conditions. Further, experimental
pieces of evidence are required; however, the present analysis and review of available
marine bacteriocins at least suggested a huge possibility of having new bacteriocins to
payoff antibiotic resistance.

2. Diverse Bacteriocins from Marine Bacteria
2.1. Leaderless Bacteriocins
2.1.1. Piscicocin

Piscicocins V1a (44 aa) and V1b (43 aa) are leaderless (non-lanthionine) bacteriocins
belonging to class IIa. Piscicocins are produced by a lactic acid bacteria (LAB) Carnobac-
terium piscicola strain V1 which was originally isolated from fish [12]. Both V1a and V1b are
reported to be produced in the cell-free supernatant of the same bacteria; however, their
genetic organization is not known. V1a is reported as a novel bacteriocin while V1b is found
similar to carnobacteriocin BM1, produced by C. piscicola LV17B; however, both contain the
conserved motif YGNGV. Interestingly, V1a contained two cysteine residues at positions 9
and 14 that were confirmed to form a disulfide bond (Figure 1A,E) [13]. Piscicocins V1a
displayed 100 times more potent activity than piscicocin V1b against the Gram-positive
bacteria, though the activity spectrum was the same for both.

Piscicocin CS526 is another class IIa bacteriocin produced by C. piscicola CS526 isolated
from surimi (a fish-based product). It showed high similarity to piscicocin while the N-
terminal conserved sequence is YGNGL rather than YGNGV where valine is replaced by
leucine. It displayed activity against Gram-positive bacteria including Enterococcus, Listeria,
Pediococcus, and Leuconostoc (Table 1) [14]. Different variants of piscicocins produced by
different bacterial strains with a single amino acid mutation suggested an evolutionary force
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behind the production of distinct bacteriocins that suggests the possibility of having new
bacteriocins as well. It will be interesting to explore and compare the genetic organization
of piscicocins to further understand the evolutionary process.
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Figure 1. Marine bacteriocins (non-lanthionine) belonging to class IIa. (A) Piscicocin V1a. (B) Mund-
ticin KS. (C) Divercin V41. (D) Divergicin M35. The left side of each panel shows solid ribbon struc-
tures and the left panel shows the overall surface charge of respective bacteriocins. Cysteine residues 
are numbered (italics) and highlighted in yellow color. N and C represent the N-terminal and C-
terminal, respectively. Structures are predicted by using the SWISS-MODEL server. (E) Multiple 
sequences alignment (CLUSTALW) of class IIa marine bacteriocins. The conserved sequence at the 
N-terminal is highlighted in red color. The cysteine residues are highlighted in yellow color while 
the connecting black lines indicate the disulfide bonds. Nearby serine and threonine residues are 
highlighted in green color. 
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L. sake 
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Figure 1. Marine bacteriocins (non-lanthionine) belonging to class IIa. (A) Piscicocin V1a.
(B) Mundticin KS. (C) Divercin V41. (D) Divergicin M35. The left side of each panel shows solid rib-
bon structures and the left panel shows the overall surface charge of respective bacteriocins. Cysteine
residues are numbered (italics) and highlighted in yellow color. N and C represent the N-terminal and
C-terminal, respectively. Structures are predicted by using the SWISS-MODEL server. (E) Multiple
sequences alignment (CLUSTALW) of class IIa marine bacteriocins. The conserved sequence at the
N-terminal is highlighted in red color. The cysteine residues are highlighted in yellow color while
the connecting black lines indicate the disulfide bonds. Nearby serine and threonine residues are
highlighted in green color.

Table 1. Details of known and fully characterized marine bacteriocins along with their respective
class, producer bacterial strains, sources, and activity spectrum.

AMP Class Producer Bacteria Source Activity Spectrum References

Leaderless

Piscicocins V1a
Piscicocin CS526 Class IIa C. piscicola V1

C. piscicola CS526

Fresh fish, smoked
and marinated fish,
fish intestinal tract

L. monocytogenes
L. sake
L. curvatus
L. plantarum
L. mesenteroıdes
P. acidilactici
E. faecalis

[12,14]
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Table 1. Cont.

AMP Class Producer Bacteria Source Activity Spectrum References

Mundticin KS Class IIa E. mundtii NFRI 7393 Silverside (Odontesthes
platensis)

E. faecium
L. plantarum
L. lactis
L. curvatus
L. monocytogenes
P. pentosaceus
S. thermophiles
S. pyogenes
P. aeruginosa
S. putrefaciens

[15,16]

Diversin V41 Class IIa C. divergens V41 Fish viscera Gram-positive bacteria [12,17]

Divergicin M35 Class IIa C. divergens M35 Frozen smoked
mussels L. monocytogenes [18]

BaCf3 Not assigned B. amyloliquefaciens
BTSS3

Deep-sea shark
(Centroscyllium fabricii)

Bacillus sp.
S. warnie
M. luteus
G. stearothermophilus
S. typhimurium
C. perfringens
E. faecalis

[19]

Sonorensin Not assigned B. sonorensis MT93 Marine

L. monocytogenes
V. vulnificus
B. subtilis
S. aureus
P. aeruginosa
E. coli

[20]

CAMT6 Not assigned E. durans YQ-6 Marine fish
(Larimichthys polyactis)

S. aureus
B. subtilis
B. equi
B. cereus
S. haemolyticus
P. acnes
S.paratyphi
V. parahaemolyticus
P. foulis
E. aerogenes
L. monocytogenes

[21]

Lanthipeptides

Nisin Z Type I lantibiotic L. lactic NIZO 22186 Marine fish (Olive
flounder)

S. iniae
L. garvieae [22,23]

Subtilomycin Type I lantibiotic B. subtilis MMA7 Marine sponge
(Haliclona simulans)

Bacillus sp.
Clostridium
L. monocytogenes
S. aureus
P. aeruginosa
VISA
MRSA
Candida sp.

[24]

Viridisin Type I lantibiotic T. viridans XOM25 Marine Not determined [25]
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Table 1. Cont.

AMP Class Producer Bacteria Source Activity Spectrum References

Thalassomonasin
A and B Type I lantibiotic T. actiniarum NBRC

104231 Marine

B. subtilis
S. aureus
M. luteus
E. coli
P. aeruginosa

[26]

Formicin Type II lantibiotic B. paralicheniformis
APC 1576

Atlantic mackerel
(Scomber scombrus)

L. monocytogenes
S. aureus
S. mutans
C. difficile
Clostridia
Enterococcus sp.

[27]

Mathermycin Type II lantibiotic
Marinactinospora
thermotolerans SCSIO
00652

Marine sediments B. subtilis [28]

Prochlorosins Type II lantibiotic Prochlorococcus
Synechococcus Marine Not determined [29]

VISA: vancomycin-intermediate S. aureus, MRSA: methicillin-resistant S. aureus.

2.1.2. Mundticin KS

Mundticin KS is a class IIa bacteriocin that was first reported to be produced by Entero-
coccus mundtii NFRI 7393, isolated from grass silage [15]. Later, Schelegueda et al. isolated
and purified the same bacteriocins from E. mundtii Tw56, isolated from the intestine of a
cold water marine fish, silverside (Odontesthes platensis) [16]. Mundticin KS is a leaderless,
non-lanthionine bacteriocin with the motif YGNGV at the N-terminal, similar to other
class IIa bacteriocins. Additionally, mundticin KS contains one disulfide bond between
Cys9 and Cys14, which is well conserved among other class IIa bacteriocins (Figure 1B,E).
Mundticin KS was found active against Gram-positive bacteria including different strains
of E. faecium, Lactobacillus plantarum, L. lactis, L. curvatus, and Listeria monocytogenes; how-
ever, Schelegueda et al. reported later that the cell-free supernatant of E. mundtii Tw56
was also active against Pediococcus pentosaceus, Streptococcus thermophiles, S. pyogenes, and
some Gram-negative bacteria, including Pseudomonas aeruginosa and Shewanella putrefaciens
(Table 1) [15,16].

2.1.3. Divercin V41

Divercin V41 is produced by C. divergens V41, isolated from fish viscera [12]. Divercin
V41 is a non-lanthionine bacteriocin, belonging to class IIa; however, it is reported to have a
23 amino acid-long N-terminal sequence which has to be cleaved off to generate a 43 amino
acid-long mature bacteriocin. Interestingly, the divercin V41 gene cluster was revealed to
have two components of a lantibiotic-type signal transduction system at the same time
and also have multiple cysteine residues along with adjacent serine or threonine residues
(Figure 1C,E). This all provides a template for the synthesis of lanthionine bridges; however,
lanthionine dehydrates and cyclases are absent in the gene cluster of divercin V41 [17]. This
suggests an evolutionary position of divercin V41 between lanthipeptides and leaderless
bacteriocins. Further, divercin V41 was confirmed to have two disulfide bonds between
Cys10-Cys15 and Cys25-Cys43. Interestingly, divercin V41 demonstrates specific activity
against Gram-positive bacteria (Table 1).

2.1.4. Divergicin M35

Divergicin M35 is a class IIa bacteriocin (leaderless and non-lanthionine) produced
by C. divergens M35 which is isolated from frozen smoked mussels. Divergicin M35 was
revealed to have a molecular weight of 4518.75 Da (43 amino acids) consisting of 4 cysteine
residues that are involved in disulfide bond formation (Cys10-Cys15 and Cys25-Cys43)
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while the conserved sequence YGNGV is present at the N-terminal like the other bacte-
riocins of the same class (Figure 1D,E). It is reported to have specifically strong activity
against L. monocytogenes and could be potentially useful in food preservation (Table 1) [18].

2.1.5. BaCf3

BaCf3 is a 27 amino acid-long, leaderless, non-lanthionine marine bacteriocin produced
by Bacillus amyloliquefaciens BTSS3 isolated from the gut of deep-sea shark (Centroscyllium
fabricii). BaCf3 was confirmed to have a molecular weight of 3028.42 Da with the presence
of three cysteine residues while Cys6 and Cys13 formed a disulfide bond. Interestingly,
the structure prediction of BaCf3 showed a high resemblance with laterosporulin that
are highly similar to human beta-defensins [30]. Furthermore, BaCf3 also showed anti-
cancer activities similar to laterosporulin10 [31]. BaCf3 was reported to inhibit the biofilm
formation by different Gram-positive bacteria including different Bacillus sp., S. warnie,
Micrococcus luteus, Geobacillus stearothermophilus. Additionally, it displayed potential activ-
ity against food pathogens including Salmonella typhimurium, Clostridium perfringens, and
E. faecalis (Table 1) [19]. Interestingly, BaCf3 did not show any similarities with any existing
class of bacteriocins that suggests the presence and possibilities of new bacteriocins in
marine ecosystems.

2.1.6. Sonorensin

Sonorensin is a 57 amino acid-long, non-lanthionine, cysteine-rich bacteriocin pro-
duced by a marine bacterial isolate B. sonorensis MT93. The characterization of sonorensin
does not provide sufficient proof to categorize it into any designated class of bacteri-
ocins, while it have 53 amino acid-long leader sequence which is cleaved off during the
production of the mature peptide. Unusually, sonorensin contains 15 cysteine residues,
however, not characterized to be involved in any disulfide bond formation (Figure 2).
Interestingly, sonorensin showed a broad activity spectrum against both Gram-positive
and Gram-negative bacteria including L. monocytogenes, V. vulnificus, B. subtilis, S. aureus,
P. aeruginosa, and E. coli (Table 1) [20]. Interestingly, sonorensin suggests a distinct class
of bacteriocins with the presence of an unusually high number of cysteine residues. It
seems interesting to explore the marine bacterial genomes to find out the sonorensin-like
bacteriocins or new classes of related bacteriocins with potential bioactivities.
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residues are numbered (italics) and highlighted in yellow color. N and C represent the N-terminal 

Figure 2. Sonorensin is an unusual marine bacteriocin with no class designation. The left side shows
a solid ribbon structure and the left panel shows the overall surface charge of sonorensin. Cysteine
residues are numbered (italics) and highlighted in yellow color. N and C represent the N-terminal
and C-terminal of the sonorensin. The structure is predicted by using the SWISS-MODEL server. The
cysteine residues are highlighted with yellow color in the amino acid sequence while the solid and
dotted black lines under the amino acid sequence show the repeated motifs.
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2.1.7. CAMT6

CAMT6 is a small (12 amino acids), leaderless, non-lanthionine bacteriocin produced
by E. durans strain YQ-6, isolated from a marine fish, Larimichthys polyactis. Interestingly,
CAMT6 is a unique bacteriocin itself that does not show similarity with other bacteriocins
and thus represents a new class of bacteriocins. Additionally, it shows a poor similarity
with surfactant-associated anionic peptides from sheep. CAMT6 shows the potential
antimicrobial activities against both Gram-positive and Gram-negative bacteria including
S. aureus, B. subtilis, B. equi, B. cereus, S. haemolyticus, Propionibacterium acnes, S. paratyphi,
V. parahaemolyticus, P. foulis, and Enterobacter aerogenes. Interestingly, CAMT6 was also
reported to disrupt biofilm formation by L. monocytogenes showing its potential applications
in the food industry (Table 1) [21]. It is worth mentioning here that CAMT6 is extremely
short and the only known marine bacteriocin with no cysteine residues.

2.2. Lanthipeptides
2.2.1. Nisin Z

Nisin Z (34 amino acids) belongs to class I bacteriocins (Type I lantibiotic), and was
originally isolated from Lactococcus lactic NIZO 22186. Nisin Z turned out as a natural
variant of nisin A, with a single mutation from histidine to asparagine at position 27 [32].
In the recent past, nisin Z production has also been reported by the bacterial isolates from
the gut of marine fish [22,23]. Nisin Z contains 23 amino acid-long leader peptides which
are cleaved off by peptidase (NisP) while mature nisin Z is released after the formation
of lanthionine and methyllanthionine bridges by the respective class-specific lanthionine
dehydratase (LanB) and lanthionine cyclases (Figure 3A) (LanC) [32]. It is reported that
nisin Z produced by a bacterial isolate (L. lactis sub sp. lactis) from marine fish (olive floun-
der) showed efficient antimicrobial activity against S. iniae when prepared in 3.5% (w/v)
NaCl (equivalent to seawater) [23]. Another study demonstrated that nisin Z produced
by L. lactis TW34 (isolated from marine fish) effectively kills the fish pathogen L. garvieae
(Table 1) [22]. Overall, it suggested that nisin Z is more adapted to its original habitat
concerning the displayed antimicrobial activity and thus could be a potential candidate for
seafood preservation or aquaculture pathogens.
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Figure 3. Known and characterized marine bacteriocins of class I (Type I lanthipeptides). Multiple
sequence alignment (CLUSTALW) of type I lanthipeptides produced by Gram-positive bacteria (A),
and (B) by Gram-negative bacteria. The cysteine residues are highlighted in yellow color while the
serine and threonine residues are highlighted in green color. The connecting black lines indicate the
ring topologies of lanthionine bonds.

2.2.2. Subtilomycin

Subtilomycin is a 32 amino acid-long, class I bacteriocin (Type I lantibiotic) produced
by a marine bacteria B. subtilis MMA7, isolated from the marine sponge Haliclona simulans.
It possesses a 24 amino acid-long N-terminal leader peptide which is cleaved off during
the peptide maturation by a peptidase present within the gene cluster. Subtilomycin
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contained five cysteine residues which all are involved in the formation of five lanthionine
or mehthylanthionine rings subsequently after dehydration and cyclization by LanB and
LanC, respectively (Figure 3A). Subtilomycin displayed potent activity against both Gram-
positive and Gram-negative bacteria including different species of Bacillus and Clostridium,
L. monocytogenes, S. aureus, and P. aeruginosa. Interestingly, subtilomycin has also been
reported to inhibit the growth of vancomycin-intermediate S. aureus (VISA), methicillin-
resistant S. aureus (MRSA), vancomycin-resistant E. coli, and different pathogenic Candida
species (Table 1) [24].

2.2.3. Viridisin

Viridisin is a class I bacteriocin (Type I lantibiotic) produced by marine bacteria
Thalassomonas viridans XOM25. Viridisin is an unusual lanthipeptide as it consists of three
core lanthipeptides in the gene cluster, VdsA1, VdsA2, and VdsA3 which have four, two,
and two cysteine residues, respectively (Figure 3B). While corresponding lanthipeptides
for VdsA1 (25 amino acids) and VdsA2 (25 amino acids) are cloned, expressed, and fully
characterized for their lanthionine and methlyllanthione ring patterns, their antimicrobial
activities are still needed to be explored [25]. The presence of three different core peptides
in a single gene cluster suggests the preparedness of bacteriocins to compete with other
close or distant organisms in adverse conditions. It will be interesting to further investigate
the antimicrobial properties of different viridisins concerning structural variations.

2.2.4. Thalassomonasin

Thalassomonasin is produced by a marine proteobacterium T. actiniarum NBRC 104231
and belongs to class I bacteriocins (Type I lantibiotic). Thalassomonasin is a two-component
lanthipeptide consisting of two core lanthipeptide precursor genes, tln A1 (thalassomonasin
A) and tln A2 (thalassomonasin B) in its gene cluster. Thalassomonasin A (25 amino acids)
and Thalassomonasin B (26 amino acids) consist of three and two cysteine residues, respec-
tively, which all are involved in the formation of lanthionine rings. Both thalassomonasin
A and B have an N-terminal leader sequence of 29 amino acids that differ from each
other, however, having characteristic conserved motifs for type I lanthipeptide leader se-
quences (Figure 3B). Interestingly, thalassomonasin A showed efficient activity against both
Gram-positive and Gram-negative bacteria including B. subtilis, S. aureus, M. luteus, E. coli,
and P. aeruginosa while Thalassomonasin B showed minor activity and thus was not ex-
plored further (Table 1) [26]. Thalassomonasin is another example of bacteriocin structural
variation within the single gene cluster oriented for better survival in adverse conditions.

2.2.5. Formicin

Formicin is a two-component bacteriocin (Type II lantibiotic) that belongs to class I bac-
teriocins. Formicin is produced by an antimicrobial-producing bacteria, B. paralicheniformis
strain APC 1576, isolated from the intestine of Atlantic mackerel (Scomber scombrus), a ma-
rine fish. Formicin contains a 40 amino acid N-terminal leader sequence which is cleaved by
LanP, residing within the gene cluster itself. As formicin is a type II lanthipeptide, its gene
cluster consists of a bifunctional enzyme that performs both dehydration and cyclization
subsequently during the maturation process of lanthipeptide before the cleavage of the
leader peptide. Additionally, an overall +2 positive charge along with less hydrophobicity
make formicin unique among all the type II lanthipeptides (Figure 4A). Interestingly, two
core peptides within the single gene cluster, formicin α and formicin β, consisted of five
and four cysteine residues, respectively, and were structurally different from each other,
suggesting an evolutionary force shaping the bacteriocins according to the surrounding
environment. Formicin showed potential antimicrobial activity against Gram-positive
pathogenic strains including L. monocytogenes, S. aureus, S. mutans, Clostridioides difficile,
Clostridia, and different species of Enterococcus (Table 1) [27].
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2.2.6. Mathermycin

Mathermycin is produced by marine actinomycete Marinactinospora thermotolerans
SCSIO 00652 (isolated from sea marine sediments), a 19 amino acid-long class I bacteriocin
(Type II lantibiotic). It contains a 60 amino acid-long N-terminal leader sequence and 3 cys-
teine residues that all are involved in the formation of lanthionine and methyllanthionine
rings with nearby serine and threonine residues (Figure 4A). Mathermycin showed a closed
structural homology with cinnamycin and duramycin. Also, mathermycin was revealed
to have a similar activity spectrum against Gram-positive bacteria such as B. subtilis, like
cinnamycin (Table 1) [28].

2.2.7. Prochlorosins

Prochlorosins are a structurally diverse set of class I bacteriocins (Type II lantibiotic)
produced by marine picocyanobacteria, Prochlorococcus, and Synechococcus. Surprisingly,
picocyanobacteria employed an unusual mechanism that was able to produce structurally
diverse lanthipeptides abundantly using a single lanthionine synthetase. Using a deep
sequencing methodology, 50 Prochlorococcus and 26 Synechococcus genomes were analyzed
for the presence of lanthionine synthetases and lantibiotic precursor peptides. Out of all,
Prochlorococcus MIT0701, Prochlorococcus MIT1327, Prochlorococcus MIT9303, and Prochlorococ-
cus MIT9313 are found to have 9, 13, 13, and 29 while Synechococcus WH8016, Synechococcus
RS9916, Synechococcus KORDI100, Synechococcus MITS9508, and Synechococcus MITS9504 are
found to have 1, 19, 9, 8, and 80 core lantibiotic sequences. In total, these 9 genomes were
revealed to have 181 diverse core lanthipeptide genes which are almost double the total
other lanthipeptides (~90) that have been reported from other different bacterial species [29].
The most structurally diverse lanthipeptides are observed in Prochlorococcus MIT9313 and
seven of them have been fully characterized for their ring topologies (Figure 4B). Overall
studies suggested an unexplored treasure of bacteriocins in marine cyanobacteria going
under a huge evolutionary pressure and could have been provided a large number of novel
bacteriocins with potential therapeutic properties.
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3. Evolutionary Diversity of Marine Bacteriocins

As the marine ecosystem is enormously diverse, a huge diversity of the marine
bacterial communities and thus the marine bacteriocins is also anticipated. However,
only a few bacteriocins belonging to defined classes have been reported from the marine
ecosystem, representing a diverse group of AMPs (Figures 1–4). Moreover, some of the
bacteriocins did not fit into any defined class of bacteriocins which suggested the possibility
of having novel classes of bacteriocins from the marine environment in the future. For
example, BaCf3 is characterized as a leaderless bacteriocin with the unusual presence
of three cysteine residues [19]. BaCf3 did not have any conserved sequence or show
similarity with a known class of bacteriocins; however, structural resemblance showed some
similarities with laterosporulins, a class IId bacteriocins produced by the different strains of
Brevibacillus laterosporus [30,33]. Next, sonorensin contains 15 cysteine residues that make
it unusually unique on its own and do not fit into any existing class of bacteriocins [20].
Additionally, CAMT6 is a small marine bacteriocin with no cysteine residues that do not
resemble any existing class of bacteriocins [21]. These are just three bacteriocins with
distinct structural features when compared to the existing classes of bacteriocins while the
marine bacterial diversity is almost unexplored yet. The possibility of having multiple
novel bacteriocins of new classes from the marine ecosystem can be easily estimated.

Other four marine bacteriocins (piscicocin V1a, mundticin KS, divercin V41, and di-
vergicin M35) belong to class IIa of bacteriocins and all have a disulfide bond followed
by characteristic conserved sequence YGNGV at N-terminal. Notably, divercin V41 and
divergicin M35 consist of two additional cysteine residues involved in disulfide formation
(Figure 1). It seems there is an evolutionary pressure for the addition of an extra disulfide
bond to make these bacteriocins more stable in adverse marine conditions for better sur-
vival of the producer. Additionally, the presence of two disulfide bonds further makes
them structurally closer to eukaryotic defensins that have characteristic three disulfide
bonds. Interestingly, divercin V41 was reported to have an N-terminal leader sequence that
cleaved off during the maturation process. An N-terminal leader sequence, double glycine
motif at the cleavage site, and presence of four cysteine residues along with serine and thre-
onine residues suggest divercin V41 resemblance with lanthipeptides, where lanthionine
synthetases are absent (Figure 5).

Other than class IIa bacteriocins, six type I lanthipeptides (nisin Z, subtilomycin, viri-
disin A1, viridisin A2, thalassomonasin A, and thalassomonasin B) belonging to class I
bacteriocins have been characterized from the marine bacteria. These bacteriocins contained
2 to 5 cysteine residues which all are involved in lanthionine ring formation with different
topologies, making them structurally diverse (Figure 3). Next, formicin and mathermycin
(type II lanthipeptides) were reported from the marine bacteria and consisted of 3 to 5 cys-
teine residues that involved different ring topologies (Figure 4). Additionally, 181 type II
lanthipeptide genes were identified from gnome mining of the 9 cyanobacteria genomes
isolated from the deep sea [29]. This provides a glimpse of the huge unexplored diversity
of marine ecosystems and the possibility of having plenty of novel and diverse bacteriocins
from the underexplored marine ecosystem. Out of all, Prochlorococcus MIT9313 alone was
reported to have 29 lanthipeptide gene clusters, out of which 7 most interesting and diverse
lanthipeptides have been characterized from the genome (Figure 4). Surprisingly, ring
topologies of these seven peptides were highly dissimilar to all the other known lanthipep-
tides and even with each other as all of the serine, threonine, or cysteine (2 to 3) residues
followed unique positioning patterns while the leader sequences were highly conserved.
This suggested an advanced evolutionary mechanism in marine cyanobacteria that can
generate such a high extent of structural diversity of lanthipeptides. Overall, this indicates
marine bacterial communities are residing under an ongoing evolutionary pressure that
guides a unique mechanism of the structural diversification of marine bacteriocins. It can be
hypothesized that with this huge diversity of different life domains and associated diverse
bacterial communities under different physiological and physical conditions within marine
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ecosystems, what would be the extent of bacteriocin novelty and structural diversity which
has been only a little bit explored yet?
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4. Challenges and Future Directions

Marine habitats are the largest and one of the most diverse ecosystems on the Earth
which has only been explored a little bit yet and much is still far away from human in-
terference. One of the biggest challenges is to access or analyze the vast marine diversity
and thus the biodiscovery of its associated bacterial communities and bacteriocins. Also,
marine bacterial communities represent a dilute habitat which is an unusual place for the
action of bacteriocins. Next, whatever marine bacterial communities we have explored
yet are incomplete as many of them are uncultivable in lab conditions unless created in
very similar conditions to their native marine habitats. This is why the bacteriocins biosyn-
thetic gene clusters of marine bacteria are not fully expressed in the in vitro lab conditions
and remain inaccessible [34]. Additionally, marine habitats are physically diverse such
as sea cost subsurface soil, sea cost sediments, and deep-sea sediments; moreover, the
marine ecosystem is divided into five different zones based on different environment
pressures, light levels, temperatures, and dissolved oxygen concentration, and thus results
in diverse microbial communities [35]. Especially low oxygen levels in the deep-sea envi-
ronment create anaerobic conditions that significantly affect the antimicrobial production
by the deep-sea bacteria [36,37]. All these various factors play essential roles and affect
the secondary metabolites and bacteriocins produced by marine bacterial communities
(Figure 6) [38,39]. The design and development of more sophisticated culture conditions or
strategies are required to recover the uncultivable marine bacterial communities and thus
the diversity of diverse unexplored bacteriocins. Most of the reported marine bacteriocins
are from bacterial species isolated either from the gut or in association with the other marine
organisms that again suggested the little-known information about the marine bacteriocins.
Additionally, each organism has its specific gut microbiome, where bacteriocin-producing
bacteria interact with the other prokaryotic organisms within the gut and the eukaryotic
host as well [40]. These diverse interactions between different microbial communities
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from different sea organisms under the diverse conditions of different marine habitats
generate a huge evolutionary pressure for the resulting structural diversity of bacteriocins
or other secondary metabolites that still need to be explored. Moreover, lanthipeptide (class
I bacteriocins) modifying enzymes lanthionine synthetases are known to play a role as sig-
naling molecules in bacterial communities that suggest their diverse functions in bacterial
cross-talk and might be a factor regulating the production of specific bacteriocins [41].
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Next, in the recent past, culture-independent techniques such as genome mining,
metagenomics, next-generation sequencing, metagenomic library preparation, and metabol-
omics have been employed to explore inaccessible microbial communities including the
discovery of new bacteriocins [42]. Thanks to the advancement of technology, however,
sample collection itself is a big challenge in marine habitats such as the deep sea. Next, there
are a few interesting genome mining tools available including BAGEL and antiSMASH,
which can find out bacteriocins gene clusters based on the similarity basis of the available
data sets that include conserved modifying enzymes and motif sequences within the
leader or sometimes in core peptides [43,44]. Additionally, DeepRiPP and RODEO are
other machine learning-based bioinformatics tools that can perform the high-throughput
identification and classification of RiPPs [45,46]. Although genome mining tools have
proven their potential in finding novel bacteriocins, the search is based on the similarities of
the earlier identified RiPPs and might fail to detect novel posttranslational modification in
the RiPPs, which are still need to be studied in detail while not available in data sets [47,48].
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Even after, the identification and mining of bacteriocin-producing gene clusters using
in silico genome mining, the gene cluster should be expressed in the native host for the
subsequent production and purification of the respective bacteriocins, which is challenging.
Moreover, it is reported that many of the bacteriocin gene clusters are “silently” present
in the genomes, while the gene can be identified by metagenomic approaches but the
biological activity is missing during experimental culture conditions [49,50]. Heterologous
gene expression is one of the reliable and economical strategies for the controlled expression
of these silent bacteriocins gene clusters [51]. Another strategy is the chemical synthesis
of bacteriocins as peptidic in nature; however, chemical synthesis is expensive and not
suitable to achieve the desired posttranslational modification such as lanthionine rings and
disulfide bonds. As of the current scenario, a combination of various in silico and in vitro
experiments with a defined strategy is the most acceptable approach for the identification
and characterization of marine bacteriocins from free marine sediments as well as from the
gut of marine organisms residing within the marine ecosystem.

5. Conclusions

In the current scenario of rapidly evolving drug resistance and the scarcity of new
alternative drugs or strategies to fight against, there is a pressing need for novel bioactive
molecules with diverse and unique mechanisms of action. Marine bacteriocins are one of
the exciting and enormous groups for such bioactive molecules. Interestingly, due to its
huge diversity, physical conditions, and several other factors, marine ecology is profoundly
diverse, and so their bioactive compounds including bacteriocins; however, a little bit of it
has been explored yet. Other than the free marine bacterial communities, marine organism’s
gut microbiome is supposed to be more diverse due to interactions with marine hosts and
then the overall marine ecology that deals with the high salinity, low temperatures, low
oxygen or anaerobic conditions, and hydrostatic pressure. Overall, all of these factors create
a cumulative evolutionary pressure for the marine bacterial communities that is reflected
in the diverse structural and functional diversity of marine bacteriocins that largely remain
unexplored (Figure 6). Limited accessibility for sample collection and technological barriers
to analyzing the huge diversity are the major factors in the way of the true exploration of
marine bacteriocins. In conclusion, marine bacteriocins could be a promising alternative to
fight against drug-resistant pathogens; however, the true diversity and potential of marine
bacteriocins are yet to be explored.
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