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Abstract: A chemical investigation of the extracts from the soft coral Litophyton brassicum led to the
isolation and identification of four new meroterpenes, brassihydroxybenzoquinone A and B (1 and 2)
and brassinaphthoquinone A and B (3 and 4), along with two known related meroterpenes (5 and 6).
Their structures were elucidated using high-resolution electrospray ionization mass spectrometry
(HRESIMS), nuclear magnetic resonance (NMR) spectroscopy, and a comparison with the literature
data. All compounds were evaluated for antibacterial activity against six pathogenic bacterial strains
and for cytotoxic activity against three cancer cell lines. In the cytotoxic assay, all compounds were
inactive at 10 µM against the A549, HeLa, and MDA-MB-231 cell lines. In the antibacterial assay,
compounds 1 and 2 exhibited moderate inhibitory activity with minimum inhibitory concentrations
(MIC) ranging from 8 to 64 µg/mL.

Keywords: soft coral; Litophyton brassicum; meroterpenes; antibacterial activity

1. Introduction

The marine soft coral genus Litophyton belongs to the family Nephtheidae, order Alcy-
onacea, subclass Octocorallia. Currently, Litophyton comprises nearly 100 species, widely
distributed throughout tropical and temperate waters such as the South China Sea, the Red
Sea, and other regions of the Indo-Pacific Ocean [1]. Chemical investigations on Litophyton
soft corals have revealed them to be prolific producers of bioactive secondary metabo-
lites. Since the early 1970s, when novel cembrane diterpenes were first reported from
L. viridis [2], numerous research groups worldwide have conducted chemical investigations
on Litophyton, leading to significant discoveries. To date, nearly 200 secondary metabolites
have been isolated and characterized from Litophyton corals over 50 years of research [1,3].
These compounds include sesquiterpenes, sesquiterpene dimers, diterpenes, norditerpenes,
tetraterpenes, meroterpenes, steroids, ceramides, pyrimidines, and peptides [1]. A broad
spectrum of pharmacological activities has been evaluated, including cytotoxic [4–7], an-
tiviral [5], antibacterial [8], antifungal [9], antimalarial [10], anti-inflammatory [11], PTP1B
inhibitory [12,13].

Meroterpenes, a class of compounds found in Litophyton, are relatively rare in the
literature. For example, four meroterpenes isolated from the Red Sea soft coral Nephthea
sp. were identified as potential SARS-CoV-2 main protease inhibitors [14]. Nine new
meroditerpenoid-related metabolites were isolated from the Formosan soft coral Nephthea
chabrolii, with proposed biosynthetic pathways [15]. Then, the next year, eight new
meroditerpenoid-related metabolites were isolated from the organic extract of a Taiwanese
soft coral Nephthea chabrolii [16]. It is noteworthy that the genus Nephthea was synonymized
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with Litophyton in 2016 due to their identical characteristics [1]. As part of our ongoing
efforts to discover bioactive marine natural products from soft corals, specimens of Litophy-
ton brassicum were collected from the South China Sea. Herein, we report the isolation and
identification of six meroterpenes. The antibacterial activities of these compounds were
evaluated against six pathogenic bacteria, and their antiproliferative effects were tested on
three cancer cell lines.

2. Results

The acetone extract of soft coral Litophyton brassicum was subjected to repeated silica gel
and reversed-phase silica gel column chromatography, followed by semipreparative HPLC,
to afford four new meroterpenes (1–4) and two known compounds (5 and 6) (Figure 1).
The known compounds were identified as chabrolohydroxybenzoquinone G [16] and
chabrolohydroxybenzoquinone B [15].
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Figure 1. Chemical structures of compounds 1–6. 

Compound 1 was obtained as an optically active colorless oil. Its molecular formula 
was determined to be C26H38O4 based on HRESIMS analysis [M-H2O + H]+ m/z 397.2755, 
calcd. for C26H37O3, 397.2742), indicating eight degrees of unsaturation. In the 1H NMR 
spectrum, two aromatic signals resonating at δH 6.55 (1H, br. s) and 6.42 (1H, br. s) indi-
cated the presence of a 1, 2, 4, 5-tetrasubstituted benzene system. Four olefinic protons δH 
6.25 (1H, d, J = 9.8 Hz), 5.52 (1H, d, J = 9.8 Hz), 5.09 (1H, tq, J = 7.2, 1.4 Hz), and 5.05 (1H, 
tq, J = 7.4, 1.4 Hz), indicated the presence of regular prenyl moieties. The 1H, 13C NMR, 
DEPT, and HSQC spectra data confirmed the presence of 26 carbons, including a ketone 
carbonyl at δC 211.4, a benzene system, one disubstituted double bond [δC 122.6 (C-1), δC 
129.9 (C-2)], two trisubstituted double bonds [δC 125.0 (C-6), δC 134.7 (C-7), δC 123.0 (C-14), 
and δC 132.8 (C-15)], an oxygenated quaternary carbon (δC 78.1), seven methylenes, and 

Figure 1. Chemical structures of compounds 1–6.

Compound 1 was obtained as an optically active colorless oil. Its molecular for-
mula was determined to be C26H38O4 based on HRESIMS analysis [M-H2O + H]+ m/z
397.2755, calcd. for C26H37O3, 397.2742), indicating eight degrees of unsaturation. In the 1H
NMR spectrum, two aromatic signals resonating at δH 6.55 (1H, br. s) and 6.42 (1H, br. s)
indicated the presence of a 1, 2, 4, 5-tetrasubstituted benzene system. Four olefinic pro-
tons δH 6.25 (1H, d, J = 9.8 Hz), 5.52 (1H, d, J = 9.8 Hz), 5.09 (1H, tq, J = 7.2, 1.4 Hz),
and 5.05 (1H, tq, J = 7.4, 1.4 Hz), indicated the presence of regular prenyl moieties. The
1H, 13C NMR, DEPT, and HSQC spectra data confirmed the presence of 26 carbons,
including a ketone carbonyl at δC 211.4, a benzene system, one disubstituted double
bond [δC 122.6 (C-1), δC 129.9 (C-2)], two trisubstituted double bonds [δC 125.0 (C-6), δC
134.7 (C-7), δC 123.0 (C-14), and δC 132.8 (C-15)], an oxygenated quaternary carbon (δC
78.1), seven methylenes, and five methyls [δC 2.18 (C-7′), δH 1.60 (C-16), δH 1.66 (C-17),
δH 1.55 (C-18), and δH 1.35 (C-19)]. The constitution of the side chain was elucidated
initially by the 1H-1H COSY correlations of H-1/H-2, H2-4/H2-5/H-6, H2-8/H2-9/H2-10,
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and H2-12/H2-13/H-14 (Figure 2). The spectroscopic data were similar to those of the
known compound chabrolohydroxybenzoquinones E [16], except for the missing of a
methyl group on C-11, and the ∆10,11 double bond was reduced and oxidized to a keto
group in 1. In addition, the HMBC correlations from H2-9, H2-10, H2-12, and H2-13 to C-11
implied the keto group was on C-11. The smaller coupling constant (J1,2 = 9.8 Hz) and
the 1D NOE correlation (Figure 3) from H-6 to H2-8 suggested the Z configuration of the
∆1,2 and E configuration of the ∆6,7 double bonds, respectively. Comprehensive HMBC
analysis allowed the complete assignment of the proton and carbon signals for 1 (Table 1
and Figure 2). As a result, the structure of 1 was elucidated as shown in Figure 1, named
brassihydroxybenzoquinone A.
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Compound 2 (brassihydroxybenzoquinone B) was also obtained as a colorless oil. The
molecular formula of C27H40O4 derived by the HR-ESI-MS ion peak of [M-2H2O + H]+ at
m/z 393.2798 (calcd. for C27H37O2, 393.2793) gave 8 degrees of unsaturation. The 1H and
13C NMR spectra of 2 (Table 1) were also similar to those of chabrolohydroxybenzoquinones
E [16], except that the oxygen-bearing methylene [δC 60.5 (C-18)/δH 4.10] attached at C-11
in 2 rather than the methyl group in chabrolohydroxybenzoquinones E, which was proven
by the HMBC correlations from H2-18 to C-10 (δC 128.8), C-11 (δC 138.4), and C-12 (δC 35.3).
The configuration of the ∆1,2 double bond was also assigned as Z, based on the same method
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as for 1. The E geometry of ∆6,7 and Z geometry of ∆10,11 double bonds in 2 were supported
by the 1D NOE enhancements of H-6/H2-8 and H-10/H2-12, respectively. We attempted
to utilize the TDDFT-ECD calculation method to establish the absolute configuration of
the C-3 position in compounds 1 and 2. However, the experimental ECD spectrum did not
exhibit a clear Cotton effect (Figures S36 and S37), which is likely due to the C-3 position
being located on the side chain, leading to its flexibility. As far as we know, determining
the absolute configuration of C-3 in compounds 1 and 2 remains a challenging task.

Table 1. 1H NMR and 13CNMR data for compounds 1 to 4 at 600 MHz in CDCl3.

Position
1 2 3 4

δH Mult (J, Hz) δC, Type δH Mult (J, Hz) δC, Type δH Mult (J, Hz) δC, Type δH Mult (J, Hz) δC, Type

1′ 146.8, C 146.8, C 185.1, C 185.2, C
2′ 119.7, C 119.7, C 130.5, C 130.4, C
3′ 6.42, s 112.6, CH 6.42, s 112.6, CH 132.3, C 132.0, C
4′ 147.6, C 147.6, C 186.1, C 186.1, C
5′ 124.7, C 124. 7, C 148.1, C 148.1, C
6′ 6.55, s 118.3, CH 6.55, s 118.3, CH 6.81, br.s 135.9, CH 6.81, q (1.6) 135.9, CH
7′ 2.18, s 16.1, CH3 2.17, s 16.1, CH3 2.18, br.s 16.4, CH3 2.18, d (1,6) 16.6, CH3
1 6.25, d (9.8) 122.6, CH 6.25, d (9.8) 122.6, CH 7.96, d (7.9) 126.5, CH 7.96, d (7.9) 126.4, CH
2 5.52, d (9.8) 129.9, CH 5.52, d (9.8) 129.9, CH 7.52, dd (7.9, 1.8) 134.0, CH 7.52, dd (7.9, 1.8) 134.1, CH
3 78.1, C 78.1, C 148.8, C 149.1, C
4 1.63, m; 1.69, m 41.1, CH2 1.68, m; 1.62, m 41.0, CH2 2.80, t (7.6) 36.1, CH2 2.77, t (7.6) 36.3, CH2
5 2.10, m 22.8, CH2 2.10, m 22.8, CH2 2.40, q (7.4) 29.5, CH2 2.35, q (7.5) 29.4, CH2
6 5.09, tq (7.2, 1.4) 125.0, CH 5.10, tq (5.7, 1.4) 124.86, CH 5.26, m 126.6, CH 5.15, td (7.2,1.4) 123.2, CH
7 134.7, C 134.9, C 133.6, C 136.5, C
8 1.93, t (7.2) 39.1, CH2 1.98, t (7.5) 40.0, CH2 2.13, m 48.2, CH2 1.99, m 40.0, CH2
9 1.64, m 21.9, CH2 2.14, m; 2.10, m 26.3, CH2 4.42, m 66.1, CH 2.14, m 26.4, CH2
10 2.32, t (7.4) 42.3, CH2 5.28, t (7.3) 128.8, CH 5.15, d (8.2) 127.3, CH 5.27, t (7.3) 128.6 CH
11 211.4, C 138.4, C 138.5, C 138.6, C
12 2.40, t (7.4) 43.0, CH2 2.11, m 35.3, CH2 2.00, t (7.7) 39.7, CH2 2.11, m 35.4, CH2
13 2.23, q (7.4) 22. 7, CH2 2.10, m 27.2, CH2 2.07, m 26.5, CH2 2.11, m 27.2, CH2
14 5.05, tp (7.2, 1.4) 123.0, CH 5.10, tq (5.7, 1.4) 124.3, CH 5.07, tq (6.9, 1.4) 124.1, CH 5.10, tq (5.4, 1.2) 124.3, CH
15 132. 8, C 131.9, C 131.8, C 131.2, C
16 1.60, s 17.8, CH3 1.68, s 25.9, CH3 1.59, s 17.8, CH3 1.60, s 17.9, CH3
17 1.66, s 25.8, CH3 1.60, s 17.9, CH3 1.67, s 25.8, CH3 1.68, s 25.9, CH3
18 1.55, s 15.8, CH3 4.10, s 60.5, CH2 1.66, s 16.6, CH3 4.11, s 60.5, CH2
19 1.35, s 26.2, CH3 1.57, s 16.1, CH3 1.59, s 16.7, CH3 1.52, s 16.2, CH3
20 1.35, s 26.2, CH3 7.91, d (1.8) 126.5, CH 7.90, d (1.8) 126.6, CH

Compound 3 (brassinaphthoquinone A) was a yellow oil. The molecular formula
of C27H34O3, giving 11 degrees of unsaturation, was established by the HR-ESI-MS ion
peak at m/z 389.2484 [M-H2O + H]+ (calcd. for C27H33O2, 389.2480). From the 1H NMR
spectrum of 3, the resonances of three aromatic protons δH 7.96 (1H, d, J = 9.8 Hz),
7.90 (1H, d, J = 1.8 Hz), and 7.52 (1H, dd, J = 9.8, 1.8 Hz) indicated the presence of a 1,
2, 4-trisubstituted benzene system. One additional aromatic proton 6.81 (1H, br.s) was
also observed. From the 1H and 13C NMR spectral data (Table 1), together with the HSQC
data, 27 signals were assigned to two carbonyls, seven sp2 quaternary olefinic carbons,
seven sp2 methine, an oxygenated sp3 methine [δC 66.1 (C-9)/δH 4.42], five sp3 methylene,
and five methyls. The NMR data of 3 closely resembled those of chabrolonaphthoquinone
A [15], a meroditerpenoid with a naphthoquinone moiety obtained from the Formosan soft
coral Nephthea chabrolii. The differences were one more methyl group (C-18) on 3 rather
than the carboxyl group on chabrolonaphthoquinone A, and C-9 was hydroxylated on 3.
The different side chain was elucidated by the 1H-1H COSY correlations of H2-8/H-9/H-10
and the HMBC correlations from H-9 to C-7, C-10, and C-11. The key 1D NOE correlations
(Figure 3) from H-6 to H2-8 and from H-10 to H2-12 established the E configuration of
the ∆6,7 and ∆10,11 double bonds, respectively. Thus, the structure of 3 was elucidated, as
shown in Figure 2.

Brassinaphthoquinone B (4) was also isolated as a yellow oil with a molecular formula
of C27H34O3 on the basis of HR-ESI-MS ion peak at m/z 389.2471 [M-H2O + H]+ (calcd.
for C27H33O2, 389.2480), which is the structural isomer of 3. The 1H and 13C NMR data
(Table 1) of 4 were extremely similar to those of 3, except that the absence of hydroxyl group
at C-9 in 4, and the oxygenated sp3 carbon [δC 60.5 (C-18)/δH 4.11] was a methylene in 4
rather than a methine in 3. It was deduced by analysis of the 1H-1H COSY correlations of
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H2-8/H2-9/H-10 and the HMBC correlations from H2-18 to C-10, C-11, and C-12. The 1D
NOE enhancements between H-6/H2-8 and H-10/H2-12 indicated the E geometry of the
∆6,7 and ∆10,11 double bonds, respectively.

Compounds 1–6 were evaluated for cytotoxicity and antibacterial activities. In the
cytotoxic assay, all compounds were inactive at 10 µM against the cell lines of A549, HeLa,
and MDA-MB-231. An evaluation of the antibacterial activity against six pathogenic bacte-
rial strains (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis,
Vibrio parahaemolyticus, and Vibrio harveyi) showed that compounds 1 and 2 displayed
moderate inhibitory activity (MIC 8–64 µg/mL) (Table 2). Interestingly, compound 2 may
have potential as an antibiotic agent for controlling aquatic pathogens in the future.

Table 2. Inhibitory effects of 1–6 on six kinds of pathogenic bacteria.

MIC (µg/mL)

Compounds S. Aureus B. Subtilis V. Harveyi V. Parahaemolyticus E. coli P. Aeruginosa

1 32 32 >64 32 64 16
2 >64 8 16 16 16 16
3 >64 >64 >64 >64 >64 >64
4 >64 >64 >64 >64 >64 >64
5 >64 32 >64 64 32 32
6 >64 >64 >64 >64 >64 >64

Penicillin a <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
a Positive control.

3. Materials and Methods
3.1. General Chemical Experimental Procedures

NMR spectra were recorded on a Bruker AVANCE NEO 600 spectrometer (Bruker-
Biospin AG, Fällanden, Germany). 1H chemical shifts were referenced to the residual
CDCl3 (7.26 ppm), and 13C chemical shifts were referenced to the CDCl3 (77.2 ppm) solvent
peaks. High-resolution electrospray ionization mass spectra (HRESIMS) were performed on
an ultra-high-performance liquid chromatograph (UPLC) and TIMS-QTOF high-resolution
mass spectrometry (Waters, MA, USA). The purification was performed by reversed-phase
high-performance liquid chromatography using a Shimadzu LC-20AT system (Shimadzu
Corporation, Tokyo, Japan). The solvents used for HPLC were all Fisher HPLC grade.
A Cosmosil C18-MS-II column (250 mm × 20.0 mm, id, 5 µm, Cosmosil, Nakalai Tesque
Co., Ltd., Kyoto, Japan) was used for the preparative HPLC separation. Column chro-
matography was performed using silica gel (300–400 mesh, Qingdao Ocean Chemical Co.,
Ltd., Qingdao, China) and C18 reversed-phase silica gel (75 µm, Nakalai Tesque Co., Ltd.,
Kyoto, Japan).

3.2. Animal Material

Soft coral Litophyton brassicum was sampled off the coast of Xisha Islands, South China
Sea, 12 m underwater, with a wet weight of 5.07 kg, and it was frozen immediately after
collection. The specimens (XSSC201906) were deposited at the Li Dak Sum Yip Yio Chin
Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo
University, China.

3.3. Extraction and Isolation

The soft coral samples were vacuum freeze-dried with a freeze-dryer, crushed in a
pulverizer, and fully soaked in acetone at room temperature for 2 days each time, followed
by ultrasonic extraction for 1 h, repeated soaking ultrasonic extraction for 4–5 times. The
extract was filtered to remove the sample residue, and the extract was concentrated under
reduced pressure. The extract was partitioned three times with Et2O and water (1:1,
v:v), and the Et2O layer extract was concentrated under reduced pressure to obtain 80 g
brown residue.
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The 80 g of the extract was separated by gradient elution on a normal-phase silica
gel column, yielding 11 fractions (FrA–FrK). Fr.G (1.8 g) was eluted with MeOH/H2O
(75:15 to 100:0, v/v) on reversed-phase column chromatography to obtain five subfractions
(Fr.G.1–Fr.G.5). Purification of Fr.G.3 by semi-preparative HPLC (MeCN/H2O, 72:18,
2 mL/min) gave compounds 1 (6.8 mg, tR = 62 min) and 3 (5.8 mg, tR = 71 min). Separation
of Fr.H (1.54 g) on a reversed-phase column with MeOH/H2O (75:15~100:0, v/v) afforded
seven subfractions (Fr.H.1~Fr.H.6). Fr.H.5 was purified by semipreparative reversed-phase
HPLC (MeCN/H2O, 75: 15, 2 mL/min) to provide compounds 2 (5.7 mg, tR = 60 min)
and 4 (7.8 mg, tR = 40 min). Separation of Fr.J (1.4334 g) on a reversed-phase column
with MeOH/H2O (80:20~100:0, v/v) provided seven subfractions (Fr.J.1~Fr.J.6). Fr.J.6 was
purified by semipreparative reversed-phase HPLC (MeCN/H2O, 80:20, 2 mL/min) to
provide compounds 5 (6.7 mg, tR = 53 min) and 6 (8.8 mg, tR = 62 min).

Brassihydroxybenzoquinone A (1): colorless oil; {[α]25
D −17.40 (c 0.5, MeOH)}; UV

(MeOH): 221 (3.38), 270 (2.51), 330 (2.57); IR (KBr) ν = 3400, 3100, 1766, 1651, 1261, 1079, 888,
630 cm−1; 1H and 13C NMR data, Table 1; HRESIMS m/z 397.2755 [M-H2O + H]+ (calcd.
for C26H37O3, 397.2742).

Brassihydroxybenzoquinone B (2): colorless oil; {[α]25
D −18.67 (c 0.5, MeOH)}; UV

(MeOH): 220 (3.27), 270 (2.48), 330 (2.55); IR (KBr) ν = 3574, 3154, 1436, 1261, 1037, 951,
710 cm−1; 1H and 13C NMR data, Table 1; HRESIMS m/z 393.2798 [M-2H2O + H]+ (calcd.
for C27H37O2, 393.2793).

Brassinaphthoquinone A (3): yellow oil; {[α]25
D −23.47 (c 0.5, MeOH)}; UV (MeOH):

204 (3.39), 237 (3.23), 270 (3.05); IR (KBr) ν = 3582, 3088, 1765, 1692, 1450, 1139, 916,
749 cm−1; 1H and 13C NMR data, Table 1; HRESIMS m/z 389.2484 [M-H2O + H]+ (calcd.
for C27H33O2, 389.2480).

Brassinaphthoquinone B (4): yellow oil; {[α]25
D −23.73 (c 0.5, MeOH)}; UV (MeOH):

204 (3.34), 245 (3.13), 270 (2.90); IR (KBr) ν = 3583, 2928, 1759, 1692, 1470, 1138, 915,
749 cm−1; 1H and 13C NMR data, Table 1; HRESIMS m/z 389.2480 [M-H2O + H]+ (calcd.
for C27H33O2, 389.2481).

3.4. Antibacterial Assays

All isolated compounds were tested for antibacterial activities according to established
methods [17]. Six bacterial strains were selected: S. aureus [CMCC (B) 26003], B. subtilis
[CMCC (B) 63501], V. harveyi 1708B04 (accession number: MZ333451), V. parahaemolyticus
(accession number: OL636376), P. aeruginosa [CMCC (B) 10104], and E. coli [CMCC (B)
44102], with penicillin G serving as the positive control. Compounds 1–6 were dissolved in
DMSO and tested at concentrations of 128, 64, 32, 16, 8, 4, and 2 µg/mL. Briefly, bacteria
were grown in Mueller–Hinton (MH) medium for 24 h at 28 ◦C with agitation (180 rpm),
then diluted with sterile MH medium to match the 0.5 McFarland standard. One hundred
microliters of each bacterial suspension and 100 µL of MH medium containing 0.002%
2,3,5-triphenyltetrazolium chloride, along with test or control compounds, were incubated.
Inhibition data were recorded optically.

3.5. Cytotoxic Activity Assays

MDA-MB-231, HeLa, and A549 cells were cultured in DMEM (Gibco, Thermo Fisher
Scientific, Inc., Waltham, MA, USA) supplemented with 10% FBS (Gibco, Thermo Fisher
Scientific, Inc.). These cell lines were obtained from the Shanghai Cell Bank, Chinese
Academy of Sciences. The cells were incubated at 37 ◦C in a humidified atmosphere
containing 5% CO2. MTT assays were performed as described by Zhang et al. (2011) [18].
Briefly, cells were seeded into 96-well plates at a density of 5 × 103 cells/well and incubated
for 12 h, followed by exposure to various test compounds at different concentrations for
48 h. Subsequently, the cells were stained with 20 µL of MTT solution (5 mg/mL) for 4 h.
The medium and MTT solution were then removed, and 150 µL of DMSO was added to
dissolve the formazan crystals. The plates were shaken at low speed for 10 min. Absorbance
was measured at 490 nm using a microplate reader.
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4. Conclusions

In summary, the chemical study of the soft coral Litophyton brassicum from the South
China Sea led to the identification of four novel meroterpenes, brassihydroxybenzoquinone
A and B and brassinaphthoquinone A and B, along with two known related meroterpenes.
The structures of these compounds were elucidated using HRESIMS and NMR spectroscopy
and corroborated with the existing literature. Compounds 1 and 2 exhibited moderate
antibacterial activity, with minimum inhibitory concentrations (MIC) ranging from 8 to
64 µg/mL. The isolation of these novel terpenoids from marine soft corals underscores the
rich chemical diversity of the Litophyton genus. These newly characterized compounds, with
their unique structures, hold promise for developing innovative antimicrobial therapies,
particularly amid escalating antibiotic resistance. Exploring their antimicrobial properties
is, therefore, a critical endeavor for public health.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md22090392/s1, Figures S1–S35: HRESIMS, IR, 1D and 2D NMR spectra
of all new compounds 1–4; Figures S36 and S37: Experimental ECD spectra of compounds 1 and 2.
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