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Abstract: The actinomycete genus Rhodococcus is known for its diverse biosynthetic enzymes, with
potential in pollutant degradation, chemical biocatalysis, and natural product exploration. Com-
parative genomics have analyzed the distribution patterns of non-ribosomal peptide synthetases
(NRPSs) in Rhodococcus. The diversity and specificity of its secondary metabolism offer valuable
insights for exploring natural products, yet remain understudied. In the present study, we analyzed
the distribution patterns of biosynthetic gene clusters (BGCs) in the most comprehensive Rhodococcus
genome data to date. The results show that 86.5% of the gene cluster families (GCFs) are only
distributed in a specific phylogenomic-clade of Rhodococcus, with the most predominant types of
gene clusters being NRPS and ribosomally synthesized and post-translationally modified peptides
(RiPPs). In-depth mining of RiPP gene clusters revealed that Rhodococcus encodes many clade-specific
novel RiPPs, with thirteen core peptides showing antibacterial potential. High-throughput elicitor
screening (HiTES) and non-targeted metabolomics revealed that a marine-derived Rhodococcus strain
produces a large number of new aurachin-like compounds when exposed to specific elicitors. The
present study highlights the diversity and specificity of secondary biosynthetic potential in Rhodococ-
cus, and provides valuable information for the targeted exploration of novel natural products from
Rhodococcus, especially for phylogenomic-clade-specific metabolites.

Keywords: Rhodococcus; biosynthetic gene clusters; comparative genomics; high-throughput elicitor
screening; non-targeted metabolomics

1. Introduction

Actinobacteria is the major source of natural products in bacteria, with well-known
genera such as Streptomyces, Micromonospora, Nocardia, and Saccharothrix [1,2]. The genus
Rhodococcus was first proposed by Zopf in 1891 and contains 55 species with validly
published and correct names nowadays [3]. Rhodococcus has received widespread attention
for its pivotal role in degrading a wide range of natural and xenobiotic compounds, but has
received less attention in the discovery of natural products [4]. Currently, only 24 secondary
metabolites have been reported to be derived from Rhodococcus, including rhodopeptins [5],
lariatins [6], aurachins [7], rhodostreptomycin [8], rhodochelin [9], and saframycin [10];
however, these compounds showed excellent and diverse biological activities, such as
antibacterial, antifungal, antitrypanosomal, anticancer, and siderophores [4].

McLeod et al. sequenced the complete genome of the first Rhodococcus strain (Rhodococ-
cus jostii RHA1), and found that the strain encodes up to 24 nonribosomal peptide syn-
thetases (NRPSs) and 7 polyketide synthases (PKSs) [11]. In addition, two recent large-scale
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genome mining studies have revealed that Rhodococcus encodes numerous novel biosyn-
thetic gene clusters (BGCs) for secondary metabolites, highlighting its significant potential
in producing novel natural products [12,13]. However, more than 1000 genomes of Rhodococ-
cus have been publicly released, and it is crucial to choose the appropriate Rhodococcus
strain for the exploration of novel secondary metabolites. Our previous research has shown
that the distribution patterns of BGCs encoded by multiple genera, such as Bacillus, Al-
lokutzneria, and Kibdelosporangium, exhibit species or genus specificity [14,15]. Furthermore,
in-depth exploration of these genomes can help in the targeted discovery of specific types
of natural products.

Rhodococcus has been isolated from a wide range of environments, including marine,
aquatic, soil, animals, plants, and insects [16]. Based on the study by Agustina Undabarrena
et al., phylogenomic analysis of 110 Rhodococcus strains indicates that the distribution of
Rhodococcus species in the evolutionary tree correlates to some extent with their isolation
sources. However, eight Rhodococcus strains from marine sources are randomly distributed
across all four clades of the evolutionary tree [13]. A marine-derived strain, Rhodococcus
sp. H-CA8f was found to possess a unique BGC distribution within its phylogenomic
clade [13]. These findings highlight that Rhodococcus strains from marine sources possess
greater genetic diversity and more unique secondary metabolite potential.

Therefore, in the present study, we conducted a systematic analysis of the distribution
patterns of BGCs and gene cluster families (GCFs) within the most comprehensive Rhodococ-
cus genome dataset to date, which were classified into distinct phylogenomic clades. While
Undabarrena et al. [13] primarily focused on an in-depth analysis of nonribosomal pep-
tide synthetase (NRPS) GCFs and highlighted the phylogenomic-dependent patterns of
NRPS GCFs in Rhodococcus, our research expands on this by analyzing the clade-specific
distribution of all major BGC types—eight in total. This comprehensive approach provides
a broader understanding of the biosynthetic potential within the Rhodococcus genus, ex-
tending beyond just NRPS clusters. Additionally, we conducted a detailed analysis of the
composition of ribosomally synthesized and post-translationally modified peptide (RiPP)
GCFs and the metabolite scaffolds they encode. By utilizing deep-learning algorithms,
we rapidly identified dozens of novel antimicrobial peptides from the core peptides en-
coded by RiPP gene clusters. Furthermore, we explored the secondary metabolites of a
marine-derived Rhodococcus strain through a combined strategy of high-throughput elicitor
screening (HiTES) [17] and non-targeted metabolomics. This approach led to intriguing
discoveries, including the production of a series of aurachin-like compounds, which have
not been previously reported.

2. Results
2.1. The Overall Distribution of BGCs in Rhodococcus

To investigate the diversity and distribution patterns of BGCs in Rhodococcus, we
retrieved and submitted for bioinformatics analysis all 616 Rhodococcus genomes from
the NCBI genome database that passed quality filtering. In total, 48% of these genomes
have been classified into 37 Rhodococcus species levels, while the species information of
the other genomes has not been accurately identified. Therefore, the average nucleotide
identity (ANI) of pairwise genomes was calculated and used to classify them into different
phylogenomic-clades. By optimizing the ANI threshold, we found that at a value of 90,
most different Rhodococcus species could be classified into distinct phylogenomic clades.
At this threshold, the majority of genomes (597 out of 616) were grouped into 29 clades,
while the remaining 19 genomes existed as singletons. Subsequently, the hierarchical
dendrogram of these genomes was constructed based on the pairwise ANI values, and
the genomic features and the number of different classes of BGCs in these genomes were
also displayed on the outer ring of the dendrogram. As shown in Figure 1 and Table S1,
genomes from different phylogenomic clades are mostly clustered together, and the top
ten largest clades contain 494 genomes, accounting for 80.2% of all genomes. Among
them, 131 genomes are completely assembled, 257 genomes are assembled at the scaffold
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level, and 228 genomes are assembled at the contig level. Despite originating from the
same genus, these Rhodococcus genomes exhibit significant size variation, ranging from
approximately 3.7 Mb to 11.7 Mb. For instance, genomes within clade 6 exhibit larger
genome sizes, with nearly all surpassing 8 Mb in clade 6, while genomes within clade 4
have smaller genome sizes, generally less than 5 Mb. Additionally, the completeness of
the Rhodococcus genomes is relatively high, with 85% containing fewer than 100 contigs,
indicating a substantial degree of assembly quality.
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Figure 1. Heatmap and hierarchical clustering based on pairwise ANI values of 616 Rhodococcus
genomes. Representation of the data (inner to outer layers): phylogenomic clade, assembly level,
genome size, contig count, and the numbers of each class of BGCs. The proportions of each subcate-
gory are presented in the figure legends.

All the 616 genomes yield a total of 12,455 BGCs, with lengths ranging from 1.0
to 183.6 kb, resulting in an average of 20 BGCs per Rhodococcus genome. The top three
dominant classes of BGCs in Rhodococcus are NRPS (5374, 43.1%), RiPPs (1251, 10.0%),
and Terpene (1156, 9.3%). It is worth noting that the average genome size of clade 6 is
significantly larger than that of other clades (9.0 vs. 6.0 Mb), resulting in a notably higher
number of BGCs encoded compared to other clades (31.6 vs. 20.2). Interestingly, Rhodococcus
exhibits significant clade-specificity in gene cluster composition. For instance, the number of
terpene gene clusters encoded by strains in clade 1 is significantly lower than those in clade
2 and 3, while the number of RiPP gene clusters is notably higher. Furthermore, genomes in
clades 4 contain a higher abundance of PKSother BGCs compared to other clades, whereas
genomes in clade 8 stand out for their possession of PKS-NRP_hybrid BGCs.

2.2. The Distribution Pattern of GCFs in Rhodococcus

To accurately assess the specificity of secondary biosynthetic potential in Rhodococcus,
all the predicted 12,455 BGCs were organized into a gene cluster network comprising
1677 GCFs at the established threshold of 0.3 using BIG-SCAPE. The hierarchical dendro-
gram of the resulting 1677 GCFs is presented in Figure 2 and Table S2, revealing that
86.5% of GCFs are only distributed in a specific phylogenomic clade of Rhodococcus, with
the most predominant types of GCFs being NRPS and RiPPs. In total, 762 of these GCFs
(45.4%) showed an average cumulative BLAST score of 0 to characterized BGCs from
MiBIG and only 491 of GCFs (29.3%) showed an average cumulative BLAST score larger
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than 1000. In addition, only five GCFs contain BGCs from MiBIG, further implying the
novelty of the GCFs encoded by Rhodococcus. The network analysis reveals that the GCFs
containing BGCs responsible for synthesizing heterobactins, corynecins, rhodochelins, and
aurachins include 9, 19, 32, and 4 gene clusters, respectively [13,18–20]. In addition to these,
several GCFs exhibit a high degree of similarity to BGCs known to encode compounds
such as ectoine and erythrochelin, indicating the potential for the production of similar
compounds. Despite including all 616 genomes data from the same genus in this study,
only 30 GCFs contained more than 50 BGCs, while 320 GCFs contained between 10 and
50 BGCs. These findings indicate significant diversity and variation in BGCs encoded by
Rhodococcus species across different strains. The average length of BGCs in about 88% of
GCFs was greater than 10 kb, with 25.9% being longer than 50 kb. Additionally, the shorter
gene clusters were primarily found in singleton GCFs, indicating that GCFs containing
two or more gene clusters had relatively higher completeness and quality. Notably, 40.1%
(673 out of 1677) of the representative BGCs were located at the edge of the corresponding
contigs and were mainly observed in NRPS GCFs, demonstrating that the fragmentation
of genome sequences has significant implications for the mining of NRPS GCFs. Further
analysis revealed that the proportion of clade-specific GCFs among the seven categories
ranged from 38% to 89%. Specifically, the PKSother category had a higher proportion
of clade-specific GCFs at 89%. These findings provide an important reference value for
studying the evolutionary patterns of Rhodococcus and its secondary metabolic functions.
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Figure 2. Hierarchical clustering of the 1677 GCFs in Rhodococcus genomes. Representation of the
data (inner to outer layers): phylogenomic clade, GCF class, the novelty of GCFs, GCF containing
BGCs from MiBIG or not, and BGC counts in each GCF. The outer two layers indicate the length and
completeness of the representative BGC in each GCF. The proportions of each subcategory of GCFs
are presented in the figure legends.
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The diversity and specificity of BGCs in Rhodococcus were visually demonstrated
through the BIG-SCAPE sequence similarity network under mix mode (Figure 3). The
NRPS category comprised 53.9% (498) of the total GCFs (≥2 BGCs) in the network, followed
by 26.3% (243) others and 8.4% (78) of RiPP GCFs. The distribution of GCF in the top ten
phylogenomic clades can be visually distinguished from the network, and the numbers of
clade-specific GCFs of different types are also summarized. The results indicate that there
is a significant difference in the number of clade-specific GCF encoded by the genomes
in these seven categories of GCF. Among them, clades 6 and 1 have the highest number
of clade-specific GCFs, mainly distributed in NRPS, others, and RiPP classes of GCFs.
In the top ten clades, three lack clade-specific PKSI class GCFs, while six do not encode
clade-specific terpene class GCFs, highlighting substantial evolutionary rate disparities
among these GCFs.
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616 Rhodococcus genomes. Each node represents one BGC, connected by edges when sharing a raw
distance ≤0.3. The network is organized by different categories and the BGCs are colored according
to the phylogenomic clade of its source genome.
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2.3. Clade Specificity of Rhodococcus in RiPP Biosynthesis

Given that Rhodococcus encodes a large number of RiPP gene clusters, which are
important sources of antimicrobial peptides, this study further analyzed the diversity
and clade-specificity of Rhodococcus in RiPP biosynthesis. As shown in Figure 4A, the
RiPP category gene clusters defined by BiG-SCAPE exhibit significant diversity and can
be classified into subcategories such as RiPP-like (420), Redox cofactor (396), LAP (179),
lanthipeptide-class-III (136), lassopeptide (31), and RRE containing (14), with the dominant
subcategory being RiPP-like (24.8%). The core peptides of all the 1251 RiPP category gene
clusters were predicted by antiSMASH or DeepRiPP, leading to the discovery of 891 core
peptides from 459 BGCs, which mainly come from categories such as lanthipeptide-class-III
(130), Redox cofactor (117), and RiPP-like (92), lassopeptide (31), LAP (17), RRE containing
(11). It is worth noting that all the 460 RiPP gene clusters with predictable core pep-
tides are distributed among 90 GCFs, with 78 being clade-specific, such as GCF_7291 and
GCF_7679, which are only observed in Rhodococcus genomes of clade 4 (Figure 4B). Among
the 78 clade-specific GCFs, 30 of them contain more than two BGCs, with the largest GCF
containing 120 lassopeptide gene clusters that are solely distributed in clade 1. All 26 gene
clusters in GCF_7291 encoded a single lassopeptide, with the core peptide predicted as
APGKSGGKTDGAVFNNIPLGGELTFS. This core peptide exhibited only 42.3% sequence
identity to predicted lasso peptides from antiSMASH-DB 3.0, demonstrating the high
potential to be a novel lasso peptide. All the 11 gene clusters in GCF_7679 encoded two
lassopeptides, with the core peptide predicted as EFIGPNTEAILPFEDHSKE and YGIG-
GQAEGWNP, respectively. In addition, this gene cluster is probably capable of producing
two macrolactams, EFIGPNTE and YGIGGQAE. Both of these two GCFs encode the ABC
transporter, asparagine synthetase, and transglutaminase (PF13471), which are essential
for lassopeptide biosynthesis. The specific distribution of these gene clusters suggests that
Rhodococcus strains at similar evolutionary statuses may use different natural weapons for
environmental adaptation or defense. To further investigate these core peptides, we utilized
two recently reported deep-learning algorithms to predict their activity. These algorithms
combine multiple natural language processing neural network models, including LSTM,
attention mechanisms, BERT, and XGBoost [21,22]. Consequently, we identified thirteen
potential antimicrobial peptides from these core peptides (Table S3), whose antimicrobial
activity merits further research and validation.
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Figure 4. (A) A sequence similarity network was constructed for 1251 RiPP gene clusters predicted
from 616 Rhodococcus genomes. The network also included 442 gene clusters categorized as ‘Others’ as
they exhibit distances below the threshold to RiPP gene clusters. The subclasses of these biosynthetic
gene clusters (BGCs) were annotated using the analysis results from antiSMASH, along with the
annotation of BGCs predicted with core peptides using DeepRiPP. (B) BGC architecture and core
peptide sequence logo of two clade-specific gene cluster families (GCF_7291 and GCF_7679).

2.4. Secondary Metabolites of a Marine-Derived Rhodococcus Isolate

Strain 3Y1 was isolated from seawater at a depth of 3000 m in the Massau Trench
in the Pacific Ocean at coordinates 148◦53.3246′ E, 00◦53.8546′ N. The 16S rRNA gene
sequence of strain 3Y1 was found to be identical to that of Rhodococcus qingshengii JCM
15477T [23]. According to Lee and Kim [24], this species is a later heterotypic synonym
of Rhodococcus erythropolis. Therefore, the strain was identified as Rhodococcus sp. 3Y1.
Secondary metabolites of this strain cultivated under seven different culture media in
the presence or absence of six chemical elicitors were comprehensively analyzed using
high-resolution liquid chromatography-mass spectrometry. The resulting mass spectra
were analyzed using the Global Natural Products Social Molecular Networking (GNPS,
https://gnps.ucsd.edu/, accessed on 15 May 2024) workflow, with annotation performed
through the Feature-Based Molecular Networking (FBMN) workflow and Dereplicator+.
Chemical features detected in the blank samples (culture media) were excluded from
the analysis. Using FBMN analysis, a molecular network comprising 1139 features and
451 molecular families was generated. As showed in Figure 5A and Table S4, Dereplicator+
identified a series of aurachin-like compounds. Due to the high structural similarity of
these compounds, it was challenging to accurately identify them using solely in silico
MS/MS methods. Therefore, unreliable matches were discarded, and manual comparisons
were performed to preliminarily identify certain compounds. Additionally, over 90% of the
features remained uncharacterized, indicating the presence of potentially novel compounds
in Rhodococcus that warrant further investigation.

https://gnps.ucsd.edu/
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Figure 5. (A) Molecular network of crude extracts of Rhodococcus sp. 3Y1 cultured under different
culture conditions. The pie chart colors on the nodes represent the distribution across different
elicitor groups. Node color reflects whether the metabolites could be annotated as Aurachins.
(B) The putative biosynthetic gene cluster responsible for the biosynthesis of aurachins. (C) Chemical
structures and biosynthetic pathways of Aurachins, and “?” indicates unknown enzyme. (D) A
molecular family annotated as Aurachins.

We utilized six different elicitors with various induction mechanisms [25]: lanthanum
chloride and scandium chloride as rare metals, N-acetylglucosamine as a oligosaccharides
source, sodium butyrate as an HDAC inhibitor, and three antibiotics as competitive agents.
Interestingly, under all elicitor conditions, we discovered that the strain Rhodococcus sp.
3Y1 produced a series of aurachin-like compounds: Aurachin Q (1), Aurachin D 8′,9′-
Didehydro (2), Aurachin D (3), Aurachin RE (4), 9′-hydroxy-Aurachin D (5), Aurachin C
4′,5′-Didehydro (6), Aurachin C (7), 4′-hydroxy-Aurachin D (8), Aurachin B (9) and Au-
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rachin K (10). Figure 5D showed a molecular family of aurachin-like compounds, compris-
ing a total of 32 features. Among these, two features have been identified as aurachin-like
compounds. One feature was identified as Aurachin C, and another feature was identified
as Aurachin D 8′,9′-Didehydro. Several features directly connected to the identified ones
may be novel analogs (probably hydrogenation or dehydrogenation) of these identified
aurachins. Aurachins and related compounds have been recognized as potent inhibitors of
mitochondrial respiration, primarily by blocking NADH oxidation. This inhibitory action is
likely attributed to their structural similarity to vitamin K [26]. Aurachin RE, a prenylated
quinoline antibiotic first isolated from the genus Rhodococcus [27], is biosynthesized by
BGC0001075 [19]. Using antiSMASH analysis, we successfully identified the biosynthetic
gene cluster responsible for producing aurachins in Rhodococcus sp. 3Y1. This BGC shows a
high degree of similarity to the previously reported BGC0001075 (Figure 5B). As depicted
in Figure 5C, the biosynthetic pathways for compounds 2, 3, 4, 5, and 6 are relatively well
understood and reported [19,28,29]. However, the biosynthetic pathways for compounds
1 and 7 have not yet been clearly identified. Further investigation and exploration into
the biosynthetic pathways of these compounds are warranted. Furthermore, under the
conditions of sodium butyrate and N-acetylglucosamine, several unique molecular families
were detected (Figure 5A). These molecular families have not been annotated, suggesting
they may represent novel compounds.

3. Discussion

Rhodococcus is a versatile genus of Gram-stain-positive bacteria known for its remark-
able metabolic diversity and ability to thrive in various environments, including soil, water,
and even extreme habitats like deep-sea sediments [13]. This genus is of significant interest
in the field of natural products due to its extensive secondary metabolite production, which
includes antibiotics and other bioactive compounds. With the continuous accumulation of
Rhodococcus strain resources and microbial natural products, efficiently discovering novel
and highly active natural products from Rhodococcus has become a significant challenge.
This study aims to analyze the diversity and specificity of the secondary biosynthetic po-
tential of Rhodococcus from a phylogenomic similarity perspective rather than at the species
level, with a particular focus on the potential for synthesizing phylogenomic clade-specific
antimicrobial peptides from RiPP gene clusters. Using a deep-sea-derived Rhodococcus
strain as an example, this study illustrates the discovery of unique and potential novel
natural products using LC-MS and HiTES strategies.

Increasing evidence suggests that closely related strains can encode significantly differ-
ent biosynthetic gene clusters or exhibit substantial differences in the composition of these
biosynthetic gene clusters [12–15]. Two recent studies have reported the phylogenomic-
dependent patterns of NRPS gene clusters in 30 and 110 Rhodococcus genomes, respectively,
especially for BGCs predicted to encode the biosynthesis of lipopeptides [12,13]. The present
study is the first to systematically and comprehensively analyze the distribution specificity
of all eight classes of BGCs in 616 Rhodococcus genomes of 48 different phylogenomic-clades.
The Rhodococcus genome dataset used in this study is about six times larger than those in
previous studies. It also provides a detailed revelation of the clade-specific BGCs in the top
ten phylogenomic clades of Rhodococcus, revealing that Rhodococcus may possess various
chemical weapons for environmental adaptation or survival maintenance. These findings
provide important clues for the targeted discovery of specific types of natural products
and offer significant reference value for studying the genetic evolution and metabolic
adaptability of Rhodococcus.

The quality of genome assembly and the algorithms used for BGC detection signifi-
cantly impact the accuracy of identifying BGCs. Fragmented genome assemblies can result
in the dispersion of genes from the same BGC across different contigs, potentially leading to
an overestimation of BGC numbers. Conversely, if a BGC is excessively fragmented, predic-
tion tools may fail to detect it, leading to an underestimation. In recent years, advancements
in sequencing and bioinformatics technologies have substantially improved the accuracy
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and speed of BGC prediction in microorganisms. The most commonly used algorithms
for BGC detection involve BLAST and Hidden Markov Model (HMM) comparisons. For
instance, the widely utilized tool, antiSMASH [30], employs these methods to efficiently
identify BGCs homologous to known clusters through database searches. We reanalyzed
the complete genome of the first Rhodococcus strain, Rhodococcus jostii RHA1 [11], using the
latest antiSMASH 7 tool. Our analysis identified 16 NRPS and 2 PKS BGCs, which contrasts
with the previously reported 24 NRPS and 7 PKS BGCs. This discrepancy highlights the
improvements in tools like antiSMASH, which have greatly enhanced the efficiency and
accuracy of BGC prediction, particularly in high-quality genome assemblies. The combina-
tion of genome mining techniques and deep-learning algorithms has enabled the targeted
discovery of numerous novel and highly active antimicrobial peptides [21,22]. In this study,
deep-learning algorithms were used to rapidly predict 13 novel potential antimicrobial
peptides from core peptides encoded by RiPP gene clusters of Rhodococcus. The activity
of these putative antimicrobial peptides awaits experimental validation in future studies.
Additionally, the post-translational modification processes of these core peptides may
significantly impact the structure and activity of the final metabolites. Therefore, accurate
prediction of the products encoded by specific RiPP gene clusters must consider the effects
of these modifications.

In this study, we utilized a deep-sea-derived Rhodococcus sp. 3Y1 as an example to ex-
plore clade-specific natural products through the combination of LC-MS-based untargeted
metabolomics with HiTES strategies. We identified a series of aurachin-like compounds
and predicted their biosynthetic pathways through genome mining. Aurachins (Aurachin
A–L) were first isolated from the myxobacterium Stigmatella aurantiaca Sg a15 [28], but
their complete biosynthetic pathways remain unclear. Aurachin RE, a prenylated quinoline
antibiotic, was first isolated from the genus Rhodococcus and exhibits potent antibacterial
activity against a variety of Gram-positive bacteria [19]. Further studies isolated two addi-
tional aurachin-like compounds (Aurachin Q and Aurachin R) from Rhodococcus strains [7].
Aurachin R showed moderate antibacterial activity against Staphylococcus epidermidis DSM
20044, Bacillus subtilis DSM 347, and Propionibacterium acnes DSM 1897, while Aurachin
Q did not exhibit antibacterial activity. The present study provides evidence for the tar-
geted discovery of novel aurachin-like compounds, and highlights the structural diversity
of aurachins.

4. Materials and Methods
4.1. Genome Collection and Phylogenomic Analysis

Rhodococcus genomes were downloaded from the NCBI web servers, with data up
to date as of May 2024. After filtering for genomes with completeness greater than 90%,
contamination less than 5%, and fewer than 200 contigs, 616 genomes were retained for
further analysis. Assembly information and other relevant details were obtained and
organized via FTP from NCBI. The average nucleotide identity between genomes was
calculated using the pyANI package [31] to group phylogenomic-close genomes into clades,
with an ANI threshold greater than 90%. Based on the ANI similarity matrix of all genomes,
a dendrogram of these genomes was constructed using hierarchical clustering in R [32] and
visualized with ITOL [33].

4.2. Diversity and Specificity of Biosynthetic Gene Clusters in Rhodococcus

Similar to our previous study [34], all genomes were processed using the command-
line version of antiSMASH v7.0.1 with the bacterial setting and default parameters [30].
The number of each class of BGCs and relevant information regarding their architecture
were extracted from the HTML files (antiSMASH outputs) using a customized Python
toolkit (https://github.com/BioGavin/wlabkit, accessed on 15 May 2024). The diversity
and novelty of all eight classes of BGCs were compared with known BGCs in the MiBIG
v3.1 database using BIG-SCAPE at the default cut-off of 0.3 [35]. Each node in the network
represents a BGC, and BGCs with similar Pfam domain units are connected by edges. Using

https://github.com/BioGavin/wlabkit
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the parameter -mix, the final analysis produced eight separate networks for each class
of BGCs, as well as a mixed network combining all classes. All network was visualized
using Cytoscape 3.10.2 [36]. The novelty of GCFs was assessed by calculating the average
cumulative BLAST score against known BGCs in the MiBIG database using the antiSMASH
function knownclusterblast [30]. For each of the 1677 GCFs, the BGC with the highest
total BLAST score and the longest length was selected as the representative BGC. The
class of the representative BGC, along with relevant information about them, was used for
GCF clustering.

4.3. Diversity and Specificity of Rhodococcus in RiPP Biosynthesis

The putative core peptides of RiPP gene clusters were obtained using the software
tools DeepRiPP v1.0.0 [37] and antiSMASH v7.0.1, and used to evaluate the diversity and
specificity of Rhodococcus in RiPP biosynthesis. The predicted core peptide sequences of
RiPP gene clusters in all Rhodococcus genomes were extracted from the DeepRiPP output
and GBK files (antiSMASH outputs) using a customized Python toolkit (https://github.
com/BioGavin/wlabkit, accessed on 15 May 2024). The sequence logo of predicted RiPP
core sequence was constructed using TBtools [38]. This antimicrobial activity of the core
peptides was predicted using two recently released deep-learning algorithms with the
default settings [21,22].

4.4. High-Throughput Elicitor Screening (HiTES)

Rhodococcus sp. 3Y1 was isolated from a depth of 3000 m in the Massau Trench in the
Pacific Ocean at coordinates 148◦53.3246′ E, 00◦53.8546′ N in January 2017. After sampling,
1 L of seawater was stored at 4 ◦C in a temperature-controlled cold storage. The strain
was isolated using B1 isolation medium (0.5 g/L glucose, 0.05 g/L yeast extract, 0.1 g/L
K2HPO4, 0.005 g/L MgSO4·7H2O, 3% sea salt, 1.5% agar, and 100 mg/L nystatin). The
seawater samples were plated and incubated at 28 ◦C, and single colonies were obtained
and stored in 40% glycerol at −80 ◦C. Genomic DNA was extracted using the Genomic
DNA Mini Preparation Kit (Beyotime Institute of Biotechnology, Shanghai, China). The 16S
rDNA gene sequence fragment of Rhodococcus sp. 3Y1 was amplified using polymerase
chain reaction (PCR) with the primer 27F (5′-AGAGTTTGATCCTGGCTCAG-3′). The
complete genome was subsequently obtained using a combination of third-generation
sequencing with the Oxford Nanopore platform and second-generation sequencing with
Illumina. To enhance the reliability of data processing, raw data from both the NovaSeq
and GridION X5 platforms were first trimmed using Canu v1.8 [39] to produce high-quality
clean reads. The paired-end Illumina reads from second-generation sequencing and the
long reads from Nanopore were then assembled using Unicycler v0.4.5 [40], resulting in a
high-quality complete genome assembly. The secondary metabolic potential of this strain
was comprehensively investigated using a combined strategy of untargeted LC-MS-based
metabolomic analysis and high-throughput elicitor screening. The HiTES experiments were
conducted under 49 different laboratory culture conditions using seven distinct culture
media: M1 (peptone 10 g, yeast extract 5 g, NaCl 10 g for 1 L; pH 7.2), M2 (peptone 5 g,
yeast extract 1 g, Fe(III) citrate 0.1 g, NaCl 19.45 g, MgCl2 5.9 g Na2SO4 3.24 g, CaCl2 1.8 g,
KCl 0.55 g, NaHCO3 0.16 g, KBr 0.08 g, SrCl2 34 mg, H3BO3 22 mg, Na-silicate 2.4 mg, NaF
2.4 mg, (NH4)NO3 1.6 mg, Na2HPO4 8 mg for 1 L; pH 7.2), M3 (yeast extract 0.5 g, glucose
2 g for 1 L; pH 5–6), M4 (tryptone 5 g, beef extract 3 g, NaCl 5 g for 1 L; pH 7.0), M5 (tryptone
2 g, yeast extract 1 g, glucose 2 g for 1 L; pH 5–6), M6 (peptone 0.5 g, yeast extract 0.5 g,
casein peptone 0.5 g, glucose 0.5 g, Soluble amylose 0.5 g, KH2PO4 0.3 g, MgSO4·7H2O
24 mg, sodium pyruvate 0.3 g for 1 L; pH 7.2), M7 (yeast extract 1 g, MgSO4·7H2O 0.2 g,
NaCl 0.4 g, mannitol 10 g for 1 L; pH 7.4). The pre-culture was performed in medium 2216E
for 3 days, after which the strain was inoculated into seven different liquid media (M1~M7).
Fermentations were carried out in 12 mL cell culture tubes containing 6 mL of medium at
30 ◦C with shaking at 150 rpm for 3 days. Subsequently, six different elicitors—LaCl3·H2O
(2 mM), ScCl3·6H2O (200 µM), N-acetylglucosamine (100 mM), sodium butyrate (100 mM),

https://github.com/BioGavin/wlabkit
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streptomycin with trimethoprim (33 µM), and triclosan (5 µM)—were added and the
cultures were incubated for an additional 7 days. Blank and control groups were set up for
subsequent analysis.

For the extraction of the liquid cultures, 6 mL of culture broth was ultrasonicated
and extracted twice with an equal volume of ethyl acetate (EtOAc). The combined EtOAc
layers were transferred to a 10 mL sample bottle and dried under vacuum. The resulting
crude extracts were re-dissolved in 0.5 mL of methanol (MeOH) and transferred to 1.5 mL
centrifuge tubes. These tubes were then concentrated using a termovap sample concentrator.
The concentrated extracts were re-dissolved in 50 µL of MeOH and transferred to 1.5 mL
vials. The dissolved extracts were centrifuged at 12,000 rpm for 10 min, and the supernatant
was filtered through a 0.22 µm nylon syringe filter before injection.

4.5. UPLC-QTOF-MS/MS Analysis

Similar to our recent study [34], the crude extract was analyzed using a SCIEX X500B
Q-TOF spectrometer coupled to an ExionLC AC system under the following LC conditions:
1–2 min (10% methanol in H2O), 2–18 min (10–100% methanol), 18–22 min (100% methanol),
and 22.01–25 min (10% methanol) at a flow rate of 0.3 mL/min and a column temperature
of 40 ◦C. The QTOF MS settings during the LC gradient were as follows: positive ion mode
mass range 200–1500 m/z, total scan time 0.495 s, maximum candidate ions 5, and ion
source temperature 600 ◦C. MS2 fragmentation was performed with a QTOF mass range of
50–1000 m/z, fixed collision energy of 30 V, fixed collision energy spread of 10 V, and an
ion spray voltage of 5.5 kV.

The raw LC-MS data files were converted to mzML format using MSConvert software
v3.0.24109 [41] and subsequently processed using MZmine2 software v2.53 [42]. Feature
detection, isotope grouping, and alignment were performed following the feature-based
molecular networking (FBMN) documentation [43]. The data were filtered by remov-
ing all MS/MS peaks from blank media. A CSV file and an MGF file were generated
from MZmine2 and uploaded to the FBMN workflow in GNPS (http://gnps.ucsd.edu,
accessed on 15 May 2024). Molecular networks were generated with default parame-
ters. Additionally, the MGF file was uploaded to the Dereplicator+ workflow in GNPS
(http://gnps.ucsd.edu, accessed on 15 May 2024) with default parameters [44]. The molec-
ular network from FBMN was also visualized using Cytoscape 3.10.2.

5. Conclusions

In conclusion, the current study uncovered that 87.7% of GCFs are uniquely found
in a specific phylogenomic clade of Rhodococcus, with NRPS and RiPPs being the most
prevalent types of gene clusters. Through extensive genome mining and deep-learning
analysis, it was revealed that Rhodococcus harbors a substantial number of clade-specific
novel RiPPs, some of which could exhibit antibacterial properties. The HiTES investigation
indicate that certain elicitors can stimulate a marine-derived Rhodococcus strain to produce
a plethora of potentially new aurachin-like compounds. This study offers valuable insights
for targeted exploration of novel natural products from Rhodococcus, particularly focusing
on clade-specific metabolites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md22090409/s1, Table S1: Genomic features and the antiSMASH
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Information about the RiPPs, BGCs and core peptides; Table S4: Metabolite annotation in metabolomic
data of Rhodococcus sp. 3Y1.
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