Enantioselectivity in Vanadium-Dependent Haloperoxidases of Different Marine Sources for Sulfide Oxidation to Sulfoxides
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Enantioselectivity of Sulfoxidation of Methyl Phenyl Sulfide by VHPOs
2.1.1. Discovery of New VHPOs from Different Marine Sources
2.1.2. Sulfoxidation
2.2. The Enantioselective Sulfoxidation Pathway
2.2.1. Labeling Experiment with Labeled Hydrogen Peroxide
2.2.2. Molecular Docking
2.2.3. Molecular Dynamics Simulations
2.3. The Nonenantioselective Sufoxidation Pathway
3. Experimental
3.1. Materials and Methods
3.2. Gene Synthesis and Subcloning
3.3. Heterologous Expression and Purification
3.4. General Procedure for Sulfoxidation Catalyzed by VHPOs
3.5. Molecular Docking
3.6. Molecular Dynamics Simulation
3.7. General Procedure for Sulfoxidation Catalyzed by Na3VO4 and H2O2
3.8. General Procedure for Substrate Screening of Na3VO4 and H2O2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Z.H.; Tian, H.D.; Ni, S.F.; Wright, J.S.; Li, M.; Wen, L.R.; Zhang, L.B. Scalable selective electrochemical oxidation of sulfides to sulfoxides. Green Chem. 2022, 24, 4772–4777. [Google Scholar] [CrossRef]
- Park, J.K.; Lee, S. Sulfoxide and sulfone synthesis via electrochemical oxidation of sulfides. J. Org. Chem. 2021, 86, 13790–13799. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Shi, S.; Zhao, L.; Wang, M.; Zhu, G.; Zheng, X.; Gao, J.; Xu, J. Effective utilization of in situ generated hydroperoxide by a Co–SiO2@Ti–Si core–shell catalyst in the oxidation reactions. ACS Catal. 2018, 8, 683–691. [Google Scholar] [CrossRef]
- Han, J.; Soloshonok, V.A.; Klika, K.D.; Drabowicz, J.; Wzorek, A. Chiral sulfoxides: Advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem. Soc. Rev. 2018, 47, 1307–1350. [Google Scholar] [CrossRef]
- Wojaczyńska, E.; Wojaczyński, J. Modern stereoselective synthesis of chiral sulfinyl compounds. Chem. Rev. 2020, 120, 4578–4611. [Google Scholar] [CrossRef]
- Liu, K.; Meng, J.; Jiang, X. Gram-scale synthesis of sulfoxides via oxygen enabled by Fe(NO3)3·9H2O. Org. Process Res. Dev. 2023, 27, 1198–1202. [Google Scholar] [CrossRef]
- Fan, C.; Xie, Z.; Zheng, D.; Zhang, R.; Li, Y.; Shi, J.; Cheng, M.; Wang, Y.; Zhou, Y.; Zhan, Y.; et al. Overview of indigo biosynthesis by flavin-containing monooxygenases: History, industrialization challenges, and strategies. Biotechnol. Adv. 2024, 73, 108374. [Google Scholar] [CrossRef]
- Paul, C.E.; Eggerichs, D.; Westphal, A.H.; Tischler, D.; van Berkel, W.J.H. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol. Adv. 2021, 51, 107712. [Google Scholar] [CrossRef]
- Goundry, W.R.F.; Adams, B.; Benson, H.; Demeritt, J.; McKown, S.; Mulholland, K.; Robertson, A.; Siedlecki, P.; Tomlin, P.; Vare, K. Development and scale-up of a biocatalytic process to form a chiral sulfoxide. Org. Process Res. Dev. 2017, 21, 107–113. [Google Scholar] [CrossRef]
- Nikodinovic-Runic, J.; Coulombel, L.; Francuski, D.; Sharma, N.D.; Boyd, D.R.; Ferrall, R.M.O.; O’Connor, K.E. The oxidation of alkylaryl sulfides and benzobthiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3. Appl. Microbiol. Biotechnol. 2013, 97, 4849–4858. [Google Scholar] [CrossRef]
- Willrodt, C.; Gröning, J.A.D.; Nerke, P.; Koch, R.; Scholtissek, A.; Heine, T.; Schmid, A.; Bühler, B.; Tischler, D. Highly efficient access to (S)-Sulfoxides utilizing a promiscuous flavoprotein monooxygenase in a whole-cell biocatalyst format. ChemCatChem 2020, 12, 4664–4671. [Google Scholar] [CrossRef]
- Schallmey, A.; den Besten, G.; Teune, I.G.P.; Kembaren, R.F.; Janssen, D.B. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca. Appl. Microbiol. Biotechnol. 2011, 89, 1475–1485. [Google Scholar] [CrossRef]
- Bormann, S.; Baraibar, A.G.; Ni, Y.; Holtmann, D.; Hollmann, F. SpeCific oxyfunctionalisations catalysed by peroxygenases: Opportunities, challenges and solutions. Catal. Sci. Technol. 2015, 5, 2038–2052. [Google Scholar] [CrossRef]
- Bassanini, I.; Ferrandi, E.E.; Vanoni, M.; Ottolina, G.; Riva, S.; Crotti, M.; Brenna, E.; Monti, D. Peroxygenase-catalyzed enantioselective sulfoxidations. Eur. J. Org. Chem. 2017, 47, 7186–7189. [Google Scholar] [CrossRef]
- Sang, X.; Tong, F.; Zeng, Z.; Wu, M.; Yuan, B.; Sun, Z.; Sheng, X.; Qu, G.; Alcalde, M.; Hollmann, F.; et al. A biocatalytic platform for the synthesis of enantiopure propargylic alcohols and amines. Org. Lett. 2022, 24, 4252–4257. [Google Scholar] [CrossRef]
- ten Brink, H.; Schoemaker, H.E.; Wever, R. Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Eur. J. Biochem. 2001, 268, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Brink, H.B.T.; Tuynman, A.; Dekker, H.L.; Hemrika, W.; Izumi, Y.; Oshiro, T.; Schoemaker, H.E.; Wever, R. Enantioselective sulfoxidation catalyzed by vanadium haloperoxidases. Inorg. Chem. 1998, 37, 6780–6784. [Google Scholar] [CrossRef]
- Wang, P.; Han, X.; Liu, X.; Lin, R.; Chen, Y.; Sun, Z.; Zhang, W. Synthesis of enantioenriched sulfoxides by an oxidation- reduction enzymatic cascade. Chem. Eur. J. 2022, 28, e202201997. [Google Scholar] [CrossRef]
- Cochereau, B.; Le Strat, Y.; Ji, Q.; Pawtowski, A.; Delage, L.; Weill, A.; Mazéas, L.; Hervé, C.; Burgaud, G.; Gunde-Cimerman, N.; et al. Heterologous expression and biochemical characterization of a new chloroperoxidase isolated from the deep-sea hydrothermal vent black yeast Hortaea werneckii UBOCC-A-208029. Mar. Biotechnol. 2023, 25, 519–536. [Google Scholar] [CrossRef]
- Wischang, D.; Radlow, M.; Schulz, H. Molecular cloning, structure, and reactivity of the second bromoperoxidase from Ascophyllum nodosum. Bioorg. Chem. 2012, 44, 25–34. [Google Scholar] [CrossRef]
- Mckinnie, S.M.K.; Miles, Z.D.; Moore, B.S. Characterization and biochemical assays of streptomyces vanadium dependent chloroperoxidases. Methods Enzymol. 2018, 604, 405–424. [Google Scholar] [PubMed]
- Studier, F.W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 2005, 41, 207–234. [Google Scholar]
- Wever, R.; Barnett, P. Vanadium chloroperoxidases: The missing link in the formation of chlorinated compounds and chloroform in the terrestrial environment? Chem. Asian J. 2017, 12, 1997–2007. [Google Scholar]
- Li, H.; Younes, S.H.H.; Chen, S.; Duan, P.; Cui, C.; Wever, R.; Zhang, W.; Hollmann, F. Chemoenzymatic Hunsdiecker-type decarboxylative bromination of cinnamic acids. ACS Catal. 2022, 12, 4554–4559. [Google Scholar] [CrossRef]
- Tao, X.; Huang, Y.; Wang, C.; Chen, F.; Yang, L.; Ling, L.; Che, Z.; Chen, X. Recent developments in molecular docking technology applied in food science: A review. Int. J. Food Sci. Tech. 2020, 55, 33–45. [Google Scholar] [CrossRef]
- Mirete, S.; Morgante, V.; Gonźalez-Pastor, J.E. Functional metagenomics of extreme environments. Curr. Opin. Biotechnol. 2016, 38, 143–149. [Google Scholar]
- Ferrer, M.; Golyshina, O.; Beloqui, A.; Golyshin, P.N. Mining enzymes from extreme environments. Curr. Opin. Microbiol. 2007, 10, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Parra-Cruz, R.; Jäger, C.M.; Lau, P.L.; Gomes, R.L.; Pordea, A. Rational design of thermostable carbonic anhydrase mutants using molecular dynamics simulations. J. Phys. Chem. B 2018, 122, 8526–8536. [Google Scholar]
- Du, J.; Dong, J.; Du, S.; Zhang, K.; Yu, J.; Hu, S.; Yin, H. Understanding thermostability factors of barley limit dextrinase by molecular dynamics simulations. Front. Mol. Biosci. 2020, 7, 51. [Google Scholar]
- Zabardasti, A.; Shangaie, S.A. Vanadium (IV) complexes with Schiff base ligands derived from 2, 3-diaminopyridine as catalyst for the oxidation of sulfides to sulfoxides with H2O2. J. Iran. Chem. Soc. 2019, 16, 57–64. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhao, Q.X.; Cheng, M.Y.; Xuan, W.M.; Liu, Y. Polyoxovanadate-based metal–organic frameworks consisted of open vanadium sites for selective catalytic oxidation of sulfides. Tungsten 2023, 5, 261–269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-H.; Zou, Y.-T.; Zeng, Y.-Y.; Liu, L.; Chen, B.-S. Enantioselectivity in Vanadium-Dependent Haloperoxidases of Different Marine Sources for Sulfide Oxidation to Sulfoxides. Mar. Drugs 2024, 22, 419. https://doi.org/10.3390/md22090419
Zhang Y-H, Zou Y-T, Zeng Y-Y, Liu L, Chen B-S. Enantioselectivity in Vanadium-Dependent Haloperoxidases of Different Marine Sources for Sulfide Oxidation to Sulfoxides. Marine Drugs. 2024; 22(9):419. https://doi.org/10.3390/md22090419
Chicago/Turabian StyleZhang, Yun-Han, Ya-Ting Zou, Yong-Yi Zeng, Lan Liu, and Bi-Shuang Chen. 2024. "Enantioselectivity in Vanadium-Dependent Haloperoxidases of Different Marine Sources for Sulfide Oxidation to Sulfoxides" Marine Drugs 22, no. 9: 419. https://doi.org/10.3390/md22090419
APA StyleZhang, Y. -H., Zou, Y. -T., Zeng, Y. -Y., Liu, L., & Chen, B. -S. (2024). Enantioselectivity in Vanadium-Dependent Haloperoxidases of Different Marine Sources for Sulfide Oxidation to Sulfoxides. Marine Drugs, 22(9), 419. https://doi.org/10.3390/md22090419