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Abstract: Marine microbial secondary metabolites with diversified structures have been found as
promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chem-
ical structures, and pharmacological properties of anti-inflammatory natural products reported from
marine microorganisms in the past three years (2021–2023). Approximately 252 anti-inflammatory
compounds, including 129 new ones, were predominantly obtained from marine fungi and they
are structurally divided into polyketides (51.2%), terpenoids (21.0%), alkaloids (18.7%), amides or
peptides (4.8%), and steroids (4.3%). This review will shed light on the development of marine
microbial secondary metabolites as potential anti-inflammatory lead compounds with promising
clinical applications in human health.

Keywords: marine microorganisms; secondary metabolites; chemical structures; anti-inflammatory
compounds; structure–activity relationship

1. Introduction

Inflammation is a defense reaction caused when the organism is subjected to certain
stimuli, such as trauma and infection, which is characterized by malfunction, heat, redness,
swelling, and discomfort. Both the natural defense system and inflammatory response have
certain advantages for the body. Nevertheless, an excessive inflammatory response tends
to damage the tissues of the organism, leading to the development or rapid deterioration
of disease [1,2]. If untreated, this may lead to autoimmune or autoimmune inflammatory
diseases, neurodegenerative diseases, or even cancer. A series of studies have indicated
that inflammation alters the brain’s neurotransmitter systems, which in turn modifies
motivation-related behaviors and eventually results in a loss of pleasure [3–5]. Inflamma-
tion is a key barrier to the treatment of depression and other related mental diseases. It is
a typical symptom of mood and anxiety disorders in psychiatric and medical conditions.
Currently, the commonly used anti-inflammatory drugs in clinical practice are steroidal and
non-steroidal compounds, such as indomethacin, aspirin, prednisolone, dexamethasone,
and hydrocortisone [6–8]. Suppressing various related factors shows anti-inflammatory
effects, but long-term use can produce various side effects, such as edema and gastroin-
testinal ulcers [9]. Hence, there is an urgent need to search for structurally new and highly
effective anti-inflammatory drugs with low toxicity.

Marine microorganisms are exposed to special living environments of high pressure,
dark conditions, high salinity, and a low concentration of oxygen [10]. For better adapta-
tion to this special environment, marine microorganisms have evolved unique metabolic
pathways and can produce diverse bioactive metabolites [11]. Marine microorganisms,
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especially marine fungi, have elicited increasing interest from the marine natural product re-
search community [12–16]. Moreover, a series of structurally diverse secondary metabolites
with anti-inflammatory activity have been obtained from marine microorganisms, includ-
ing peptides, polyketides, phenols, lactones, alkaloids, steroids, and others [17–19]. Among
them, cacospongionolide B and petrosaspongiolide M are two representative examples
of anti-inflammatory compounds in experimental models of acute or chronic inflamma-
tion [20]. It is anticipated that marine microbial natural products would play a promising
role in the search for anti-inflammatory lead compounds [21].

In the previous literature, Xu et al. reviewed 133 marine fungi-derived anti-inflammatory
compounds in the period from 2000 to 2018, including alkaloids, terpenoids, polyketides,
peptides, and others [22]. Souza Cássio, R.M. et al. summarized 41 marine alkaloids
with anti-inflammatory activity and gave future perspectives for their investigation and
bioprospecting [23]. Since marine microorganisms have been continuously evidenced as
rich sources of anti-inflammatory compounds in recent years, this review summarizes the
sources, chemical structures, and pharmacological properties of anti-inflammatory natural
products recently reported from marine microorganisms during 2021–2023. A total of
252 compounds with anti-inflammatory activity were obtained from marine microorgan-
isms during 2021–2023, including 129 new ones (51.2%). They were mainly isolated from
marine fungi (82.9%), along with marine bacteria or marine actinomycetes (17.1%). The
structural types of these reviewed compounds are mainly divided into polyketides (51.2%),
terpenoids (21.0%), alkaloids (18.7%), amides or peptides (4.8%) and steroids (4.3%), while
8.5% of them are halogenated compounds.

2. Marine Microbial Anti-Inflammatory Compounds
2.1. Polyketides

In total, 129 polyketides with anti-inflammatory activity were obtained from marine
microorganisms during 2021–2023.

Four rare chromone derivatives, epiremisporines D (1), E (2), G (3), and H (4), were
isolated from marine-derived Penicillium citrinum, together with two known compounds,
epiremisporine B (5) and penicitrinone A (6) (Figure 1). They significantly decreased N-
Formyl-Met-Leu-Phe (fMLP)-induced superoxide anion generation by human neutrophils,
with IC50 values of 6.4 ± 0.4, 8.3 ± 0.3, 31.7 ± 2.5, 33.5 ± 0.4, 3.6 ± 0.6, and 2.7 ± 0.1 µM,
respectively [24,25].

Two known compounds, epitetrahydrotrichodimer ether (7) and tetrahydrotrichodimerol
(8), were isolated and identified from the rhizosphere soil of Hibiscus tiliaceus Linn.-derived
fungus Penicillium sp. DM 815. They inhibited the Gram-negative bacteria lipopolysaccha-
ride (LPS)-induced upregulation of the inducible nitric oxide (NO) synthase (iNOS) at a
concentration of 10 µM [26].

A new polyketide, 4-carboxy-5-((1Z,3E)-1,3-heptadien1-yl)-1,3-benzenediol (9), was
obtained from the hydrothermal vent-derived fungus Penicillium sp. TW58-16. It markedly
reduced the amount of NO released in RAW 264.7 cells upon exposure to LPS, which
was consistent with a decrease in the production of inducible NO synthase (iNOS) at a
concentration of 20 µM [27].

The chemical investigation of the fungus Fusarium decemcellulare SYSU-MS 6716 de-
rived from a solid medium yielded two new polypropionate derivatives, decempyrones
C (10) and J (11). Both demonstrated strong anti-inflammatory efficacy with IC50 values
of 22.4 ± 1.8 and 21.7 ± 1.1 µM, respectively, by preventing LPS-induced NO genera-
tion in RAW 264.7 cells. Primary structure-activity relationships (SAR) analysis revealed
that the alkyl side chain and pyrone functional groups are mainly responsible for the
anti-inflammatory properties [28].

Two new compounds, heterocornols T (12) and X (13), were produced by the sponge-
derived fungus Pestalotiopsis heterocornis XWS03F09 based on the one strain many com-
pounds (OSMAC) approach. Both could reduce the amount of NO produced in response to
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LPS, which further significantly and dose-dependently reduced the expression of the iNOS
protein in LPS-induced RAW 264.7 cells with 33 µM [29].
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A chemical investigation of the seawater-derived fungus Fusarium solani 7227 yielded
one new fusarin derivative, fusarin K (14). It exhibited strong anti-inflammatory activity
(IC50 = 21.9 ± 9.8 µM) by preventing the generation of NO in RAW 264.7 cells that had
been stimulated by LPS. The preliminary SAR study showed that the substituent group in
polyunsaturated chain is primarily responsible for the anti-inflammatory properties [30].

The chemical study of the sponge-derived fungus Penicillium sclerotiorum E23Y-1A
resulted in the isolation of two new azaphilones, penicilazaphilones F (15) and G (16),
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as well as two known analogs, hypocrellone A (17) and penicillazaphilone D (18). They
reduced the LPS-induced NO generation in BV2 cells with IC50 values of 31.7 ± 1.5,
34.5 ± 1.4, 25.3 ± 2.2, and 34.8 ± 1.9 µM, respectively [31].

One new compound, saccharothrixin G (19) (Figure 2), was obtained from the deep-sea
sediment-derived fungus Saccharothrix sp. D09, which revealed inhibition on the production
of NO with an IC50 value of 28 µM [32].

Two known metabolites, (+)-terrein (20) and butyrolactone I (21), were isolated and
identified from a mangrove plant Acanthus ilicifolius-derived fungus, Aspergillus flavipes
(MTCC 5220), which was collected from Goa, India. Both presented inhibitory activities
of interleukine-6 (IL-6) and tumor necrosis factor-α (TNF-α) with IC50 values of 8.5 ± 0.7,
15.8 ± 0.2, 12.0 ± 0.9, and 43.3 ± 0.8 µM, respectively, whereas 21 demonstrated low
toxicity to host cells in LPS-stimulated THP-1 cells [33]. Moreover, compound 21 showed
noteworthy activity by blocking the release of neutrophil elastase with an IC50 value of
2.3 ± 0.3 µM, which was isolated from the annelid Spirorbis sp.-derived fungus Aspergillus
terreus MT 273950 [34].

The chemical study of the alga-derived fungus Penicillium sclerotiorum Al-27 yielded
one new azaphilone, 8a-epi-hypocrellone A (22), as well as two known azaphilones, hypocre-
llone A (23) and isochromophilone IV (24). They inhibited the TNF-α-induced nuclear
factor-κB (NF-κB) phosphorylation but without changing the NF-κB activity at a concen-
tration of 20 µM [35]. Two known azaphilone derivatives, compounds 24 and WB (25),
were produced by co-culturing the mangrove endophytic fungus P. sclerotiorum THSH–4
with P. sclerotiorum ZJHJJ-18 in PDB medium. When compared to the positive control,
indomethacin (IC50 = 35.3 µM), both showed a stronger suppression of LPS-induced NO
release from RAW 264.7 with IC50 values of 17.6 and 4.7 µM, respectively, without clearly
deleterious effects within 50 µM [36].
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Three known metabolites, 5,9-dihydroxy-2,4,6,8,10-pentamethyldodeca-2,6,10-trienal
(26), (3R, 4S)-(−)-4-hydroxymellein (27), and (3R, 4R)-(−)-4-hydroxymellein (28), were
isolated from the alga Hypnea pannosa-derived fungus Aspergillus ochraceopetaliformis SCSIO
41020. They illustrated a dose-dependent inhibitory effect against the excessive generation
of NO and pro-inflammatory cytokines in LPS-treated RAW 264.7 macrophages without
cytotoxicity at a concentration of 10 µM. Moreover, compound 28 inhibited the release
of pro-inflammatory cytokines (IL-6, MCP-1, and TNF-α) when LPS was applied in both
in vitro and in vivo settings [37].

Six known xanthone dimeric analogs were obtained from the ascidian Styela plicata-
derived fungus Diaporthe sp. SYSU-MS 4722, which were 12-deacetylphomoxanthone A
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(29), phomoxanthones A (30) and B (31), dicerandrols B (32) and C (33), and deacetylpho-
moxanthone B (34) (Figure 3). They indicated anti-inflammatory activity with IC50 values
ranging from 6.3 to 8.0 µM, which suppressed toward NO generation in LPS-induced RAW
264.7 [38].
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The fungus Talaromyces helicus SCSIO 41311, which is derived from cold seeps in
the South China Sea, was shown to contain two distinct compounds, trypacidin (35) and
fumiquinone B (36) (Figure 4). They displayed NO inhibitions with IC50 values of 38.6 and
15.5 µM, respectively. Interestingly, compound 36 showed a greater inhibitory effect of NO
compared to the positive control, eicosapentaenoic acid (IC50 = 50.0 µM) [39].

The chemical investigation of marine sediment-derived actinomyces Streptomyces sp.
13G036 yielded six known butenolides, (4S)-4,10-dihydroxy-10-methyl-11-oxo-dodec-2-en-
1,4-olide (37), (4S)-4,10-dihydroxy-10-methyl-undec-2-en-1,4-olide (38), (4S)-4,10-dihydroxy-
10-methyl-dodec-2-en-1, 4-olide (39), (4S,10R,11S)-4,11-dihydroxy-10-methyl-dodec-2-en-
1,4-olide (40), (4S)-4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (41), and (4S,10S,11S)-
4,10,11-trihydroxy-10-methyl-dodec-2-en-1,4-olide (42). They showed anti-inflammatory
properties by preventing the generation of NO, TNF-α, and IL-6 in LPS-stimulated
macrophages at a concentration of 10 µM [40].

One new compound, aspulvinone V (43), together with two known compounds, (+)-
terrein (20) and butyrolactone I (21), were isolated and identified from a marine green
alga Ulva lactuca L.-derived fungus, Aspergillus terreus Thom (Trichocomaceae) strain NTU
243, that was collected from Taiwan’s northeast coast. By quantifying the quantity of NO
generation in LPS-induced BV2 cells, all isolates were evaluated for their anti-inflammatory
action. At a dosage of 10 µM, the isolates showed inhibition rates of 45.0%, 49.2%, and
34.5%, respectively [41].

Saadamysin (44) was characterized from the coral-associated Aspergillus flavus GXIMD
02503, which demonstrated moderate inhibitory actions of NF-κB activation with an IC50
value of 10.7 ± 1.3 µM [42]. The chemical investigation of the sponge-derived fungus
Pestalotiopsis sp. SWMU-WZ04-2 yielded two new compounds, pestaloketides A (45) and B
(46). Both reduced the activity of NO generation produced by LPS with IC50 values of 23.6
and 14.5 µM, respectively, without observed cytotoxicity [43].

Two known compounds, isorhodoptilometrin (47) and 5-hydroxy-7-(2′-hydroxypropyl)-
2-methyl-chromone (48), were discovered from the sponge-derived fungus Penicillium ox-
alicum CLC-MF 05. These compounds inhibited the overproduction of NO and prostaglandin
E2 (PGE2), as well as the overexpression of iNOS and cyclooxygenase-2 (COX-2) in both
LPS-stimulated BV2 and rat primary microglia [44].
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The soft coral-associated fungus Aspergillus sp. SCSIO 41036 was the source of one
known compound, penicillixanthone A (49) (Figure 5). It exhibited an inhibitory effect
against NO induced by LPS in RAW 264.7 cells at a dosage of 10 µM [45]. The chemical
investigation of Stratomyces specialis 208DD-067, an actinomycete obtained from sediment,
yielded four new streptoglycerides E–H (50–53) with a unique 6/5/5/-membered ring
structure. They demonstrated strong anti-inflammatory efficacy with IC50 values of 10.9,
5.9, 4.7, and 3.5 µM, respectively, in suppressing LPS-induced NO generation in RAW
264.7 cells [46].

A chemical investigation of the mangrove endophytic fungus Daldinia eschscholtzii
KBJYZ-1 yielded two new polyketides, eschscholin B (54) and daldilene A (55). They
exhibited noteworthy anti-inflammatory properties, with IC50 values of 19.3 and 12.9 µM,
respectively. Furthermore, compound 54 reduced the expression of COX-2 and iNOS in
RAW 264.7 cells that had been exposed to LPS. Further molecular biology study revealed
the potential mechanism of compound 54’s anti-inflammatory function by inactivating the
MAPK and NF-κB signaling pathways [47].

The chemical investigation of marine ascidian-derived fungus Amphichorda felina SYSU-
MS 7908 resulted in the isolation of two new α-pyrone derivatives, amphichopyrones A (56)
and B (57). Both displayed potent anti-inflammatory activity by inhibiting the production
of NO in RAW 264.7 cells with IC50 values 18.1 ± 4.8 and 7.2 ± 0.9 µM, respectively [48].

Two known polyketides, nectriapyrone (58) and monodictyphenone (59), were also
obtained from marine ascidian-derived Diaporthe sp. SYSU-MS 4722. Both indicated anti-
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inflammatory efficacy by preventing LPS-induced NO production with IC50 values of 35.4
and 40.8 µM, respectively (IC50 = 35.8 µM for the positive control, indomethacin) [49].
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The chemical investigation of the Beibu Gulf coral-derived fungus Aspergillus un-
guis GXIMD 02505 yielded a new depsidone derivative, aspergillusidone H (60), and six
known biosynthetically related chlorinated polyketides: aspergillus ethers J (61) and F (62),
nornidulin (63), aspergillusidone B (64), guisinol (65), and 1-(2,6-dihydroxy-4-methoxy-3,5-
dimethylphenyl)-2-methylbutan-1-one (66) (Figure 6). They demonstrated suppression of
LPS-induced NF-κB in RAW 264.7 macrophages at a concentration of 20 µM. Furthermore,
the two potent inhibitors (62 and 65) dose-dependently reduced the receptor activator of
NF-κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophage
cells (BMMs) without obvious cytotoxicity [50].

The chemical examination of the marine-derived fungal species Eutypella scoparia yielded
two known compounds, 4,8-dihydroxy-6-methoxy-4,5-dimethyl-3-methyleneisochroman-1-one
(67) and banksialactone A (68). Both illustrated anti-inflammatory properties by inhibiting
LPS-induced NO generation in RAW 264.7 macrophages, with inhibition rates of 49.0% and
54.9% at 50.0 µg/mL, respectively [51].

A new indanone derivative, streptinone (69), was isolated and identified from a marine
sediment-derived Streptomyces massiliensis 213DD-128, which suppressed the production of
NO, PGE2, and pro-inflammatory cytokines, such as TNF-α, IL-6, and interleukin-1 beta
(IL-1β), by inhibiting the TLR-mediated NF-κB signaling pathway at a concentration of
over 5 µM [52].

Secondary metabolites of a deep-sea sediment sample-derived fungus, Phomopsis litho-
carpus FS 508, were investigated, including three known compounds, lithocarol F (70),
isoprenylisobenzo-furan A (71), and anhydromevalonolactone (72). They showed significant
anti-inflammatory activities on LPS-induced NO production in RAW 264.7 macrophages,
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with IC50 values of 22.8, 27.2, and 24.1 µM, respectively, all of which were superior to the
positive control, indometacin (IC50 = 32.9 µM) [53].
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The chemical investigation of Stragonospora sp. SYSU-MS 7888, a fungus originat-
ing from sponges in the South China Sea, provided two new cyclopropane derivatives,
stagonospones A (73) and B (74), and two new α-pyrone derivatives, stapyrones E (75) and G
(76). They displayed considerable anti-inflammatory efficacy by suppressing LPS-induced
NO generation with IC50 values of 3.6 ± 1.0, 9.4 ± 1.8, 21.9 ± 3.5, and 22.8 ± 3.9 µM,
respectively, surpassing that of the positive control, indomethacin (IC50 = 26.5 ± 1.1 µM).
The double bond at C-3 in the family of cyclopropane diones may increase cytotoxicity and
thereby boost anti-inflammatory efficacy. Meanwhile, the anti-inflammatory properties of
pyrones were dependent on the side chain length and ketone position [54].

One new azaphilone, penicilazaphilone N (77), was produced by the sponge-derived
fungus Penicillium sclerotiorum E23Y-1A. It presented moderate anti-inflammatory efficacy
by preventing LPS-induced NO production with an IC50 value of 22.6 ± 3.0 µM [55].

One new propenylphenol derivate, chlomophenol A (78), together with six known
compounds, 7-chloro-3,4-dihydro-6,8-dihydroxy-3-methylisocoumarine (79), α-acetylorcinol
(80), (S)-5,7-dichloro-6-methoxy-2-methyl-2,3-dihydrobenzofuran-4-carboxylic acid (81),
5-chloro-6-hydroxymellein (82), 3-methyl-6-hydroxy-8-methoxy-3,4-dihydroisocoumarin
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(83), and kojic acid (84) (Figure 7), were obtained from a mangrove-endophytic fungus
Amorosia sp. SCSIO 41026. They showed inhibitory effects on the overproduction of NO and
pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages without cytotoxicity
at a concentration of 10 µM [56].

Two new chlorinated orsellinic aldehyde derivatives, orsaldechlorins A (85) and B
(86), as well as seven known analogs, ethyl orsellinate (87), 5-chloroorsellinic acid (88),
orcinol (89), O-methylorcinol (90), aryl bromide (91), ethyl 4-hydroxyphenylacetate (92), and
nectriatone C (93), were identified from the Beibu Gulf coral-derived fungus Acremonium
sclerotigenum GXIMD 02501. They displayed suppression of NF-κB activation triggered
by LPS in RAW 264.7 cells at the dosage of 20 µM. Additionally, the two new potent
inhibitors (85 and 86) inhibited RANKL-induced osteoclast differentiation in BMMs without
cytotoxicity [57].

The chemical investigation of the mangrove-derived fungus Diaporthe sp. XW12–1
resulted in the isolation of two new chromone compounds, diaporspchromanones B (94)
and C (95). Both demonstrated anti-inflammatory activity by inhibiting LPS-induced NO
production with IC50 values of 19.1 ± 3.6 and 9.6 ± 0.2 µM, respectively, which were
stronger than that of the positive control, indomethacin (IC50 = 70.3 ± 1.0 µM) [58].

Mar. Drugs 2024, 22, 424 9 of 27 
 

 

One new azaphilone, penicilazaphilone N (77), was produced by the sponge-derived 

fungus Penicillium sclerotiorum E23Y-1A. It presented moderate anti-inflammatory efficacy 

by preventing LPS-induced NO production with an IC50 value of 22.6 ± 3.0 µM [55]. 

One new propenylphenol derivate, chlomophenol A (78), together with six known 

compounds, 7-chloro-3,4-dihydro-6,8-dihydroxy-3-methylisocoumarine (79), α-acetylor-

cinol (80), (S)-5,7-dichloro-6-methoxy-2-methyl-2,3-dihydrobenzofuran-4-carboxylic acid 

(81), 5-chloro-6-hydroxymellein (82), 3-methyl-6-hydroxy-8-methoxy-3,4-dihydroisocou-

marin (83), and kojic acid (84) (Figure 7), were obtained from a mangrove-endophytic fun-

gus Amorosia sp. SCSIO 41026. They showed inhibitory effects on the overproduction of 

NO and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages without 

cytotoxicity at a concentration of 10 µM [56]. 

Two new chlorinated orsellinic aldehyde derivatives, orsaldechlorins A (85) and B 

(86), as well as seven known analogs, ethyl orsellinate (87), 5-chloroorsellinic acid (88), 

orcinol (89), O-methylorcinol (90), aryl bromide (91), ethyl 4-hydroxyphenylacetate (92), 

and nectriatone C (93), were identified from the Beibu Gulf coral-derived fungus Acremo-

nium sclerotigenum GXIMD 02501. They displayed suppression of NF-κB activation trig-

gered by LPS in RAW 264.7 cells at the dosage of 20 µM. Additionally, the two new potent 

inhibitors (85 and 86) inhibited RANKL-induced osteoclast differentiation in BMMs with-

out cytotoxicity [57]. 

The chemical investigation of the mangrove-derived fungus Diaporthe sp. XW12–1 

resulted in the isolation of two new chromone compounds, diaporspchromanones B (94) 

and C (95). Both demonstrated anti-inflammatory activity by inhibiting LPS-induced NO 

production with IC50 values of 19.1 ± 3.6 and 9.6 ± 0.2 µM, respectively, which were 

stronger than that of the positive control, indomethacin (IC50 = 70.3 ± 1.0 µM) [58]. 

 

Figure 7. Chemical structures of polyketides (78–95). 

The fungus Streptomyces sp. DS-27 was originated from the rhizosphere of marine 

cordgrass Spartina alterniflora. The chemical investigation of its cultures produced two 

new compounds, streptothiomycin E (96) and S-methyl (4R,5S)-2,3-dimethyl-4-hydroxy-

4-isopropyl-1-oxocyclopent-3-ene-5-carbothioate (97) (Figure 8). Both showed potential 

anti-inflammatory effects by reducing NO concentration levels in a dose-dependent man-

ner (ranging from 2.5 to 40 µM) [59]. 

Figure 7. Chemical structures of polyketides (78–95).

The fungus Streptomyces sp. DS-27 was originated from the rhizosphere of marine
cordgrass Spartina alterniflora. The chemical investigation of its cultures produced two
new compounds, streptothiomycin E (96) and S-methyl (4R,5S)-2,3-dimethyl-4-hydroxy-
4-isopropyl-1-oxocyclopent-3-ene-5-carbothioate (97) (Figure 8). Both showed potential
anti-inflammatory effects by reducing NO concentration levels in a dose-dependent manner
(ranging from 2.5 to 40 µM) [59].

The sediment-derived Streptomyces sp. ZSN 77 was found to contain four new com-
pounds, suncheonosides E (98), F (99), J (100), and S-methyl 4-hydroxy-6-isopropyl-2-
methoxy-3,5-dimethylbenzothioate (101), along with one known compound, S-methyl
2,4-dihydroxy-6-isopropyl-3,5-dimethylbenzothioate (102). They exhibited in vivo anti-
inflammatory activity through the suppression of NO generation. Compound pretreatment
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resulted in a dose-dependent (ranging from 2.5 to 10 µM) significant reduction in the
concentration of NO [60].

Neofusicoccum parvum Y2NBKZG 1016, a fungus derived from the fruits of man-
grove plant Sonneratia glauca, produced a new compound, (4S,5S,6S,7R)-4-(3-chloro-1,2-
dihydroxybutyl)-butyrolactone (103). It presented a minimal anti-inflammatory effect at
doses ≥6.3 µM, attaining a maximum inhibition rate of 28.9% without causing cytotoxicity
against RAW 264.7 cells [61].
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The chemical examination of the seaweed Caulerpa sp.-derived fungus Talaromyces
cyanescens yielded one new compound, talacyanol B (104), and one known polyene molecule,
eurothiocin A (105). Both reduced the generation of NO and the expression of COX-2 and
iNOS in BV2 cells that were triggered by LPS at concentrations of 50, 100, and 200 µM,
respectively [62].

Four new phenolic compounds, asperpropanols A–D (106–109), and two known con-
geners, 2,4-dihydroxy-6-((3E,5E)-nona-3,5-dien-1-yl)-benzoic acid (110) and 5-[(3E,5E)-3,5-
nonadienyl]-1,3-benzenediol (111), were discovered from the deep-sea sediment-derived
fungus Aspergillus puniceus SRRC 2155. They showed anti-inflammatory effect on LPS-
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induced RAW 264.7 cells by reducing the generation of NO, TNF-α, and IL-6 at a dosage of
20 µM [63].

The chemical investigation of the mangrove soil-derived Isoptericola chiayiensis BCRC
16888 yielded two new flavonoids, chiayiflavans D (112) and E (113). Both exhibited
stronger NO inhibitory activity than that of the positive control, quercetin (IC50 = 37.0 µM),
with IC50 values of 17.1 and 9.4 µM, respectively [64].

One new α-pyrone derivatives, diaporpyrone A (114), was isolated from cultures
of the mangrove endophytic fungus Diaporthe sp. QYM 12 (Figure 9). It inhibited the
production of NO in LPS-induced RAW 264.7 cells with an IC50 value of 12.5 µM [65]. The
chemical examination of the Antarctic fungi Pleosporales sp. SF-7343 revealed one known
fungal metabolite, alternariol (115). It inhibited the secretion of interleukin-8 and -6 in
TNF-α/interferon-γ-treated HaCaT cells at concentrations of 2.5 to 10.0 µM [66].

Three new compounds, guhypoxylonols A (116), C (117), and D (118), were isolated
from the mangrove endophytic fungus Aspergillus sp. GXNU-Y45, together with one
previously reported metabolite, hypoxylonol B (119). They presented inhibitory activity
against the production of NO, with IC50 values of 14.4 ± 0.1, 18.0 ± 0.1, 16.7 ± 0.2, and
21.1 ± 0.1 µM, respectively [67].
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The chemical investigation of the marine sponge-derived fungal strain Aspergillus sp.
IMBC-FP2.05 resulted in the isolation of three compounds, namely, homogentisic acid (120),
methyl (2,5-dihydroxyphenyl) acetate (121), and 3-chloro-2,5-dihydroxybenzyl alcohol
(122). They demonstrated the most inhibitory effects against NO overproduction, with
IC50 values of 28.2, 14.2, and 41.8 µM, respectively, which was comparable with that of the
positive control, NG-Monomethyl-L-arginine (L-NMMA) (IC50 = 44.5 µM) [68].

One new unique isocoumarin, penicillol B (123), was isolated from the mangrove
endophytic fungus Penicillium sp. BJR-P2. It inhibited LPS-induced NO production in
RAW 264.7 cells, with an IC50 value of 12.0 µM, which was more potent than that of the
positive control, indomethacin (IC50 = 35.8 ± 5.7 µM). A docking study revealed that it was
perfectly docking into the active site of murine inducible NO oxygenase (iNOS) by forming
multiple typical hydrogen bonds [69].

Guided by MS/MS-based molecular networking, bisorbicillchaetone B (124), a new
hybrid sorbicillinoid, was isolated from cultures of the sediment-derived fungus Penicillium
sp. SCSIO 06868. It exhibited inhibitory effect on NO production in LPS-activated RAW
264.7 cells with an IC50 value of 38.4 ± 3.3 µM, without cytotoxicity observed [70].

Ochrathinols A (125) and B (126), two new sulfur-containing racemates, were isolated
from an Antarctic soil-derived fungus, Aspergillus ochraceopetaliformis SCSIO 05702. They were
obtained as unprecedented sulfur natural products featuring a novel 3-methylhexahydro-2H-
cyclopenta [b]thiophene core, which suppressed the release of LPS-induced IL-1β, IL-6, and
TNF-α inflammatory cytokines at a concentration of 10.0 µM and alleviated the unbalanced
NAD+/NADH ratio caused by LPS in RAW 264.7 macrophages [71].

Three known compounds, (3R*,4S*)-6,8-dihydroxy-3,4,7-trimethylisocoumarin (127),
sclerotinin C (128), and asperbiphenyl (129), were isolated from the sediment-derived
Penicillium citrinum W 17. They exhibited significant inhibitory effects on LPS-stimulated
NO production in murine brain microglial BV2 cells in a dose-dependent manner under
concentrations of 2.5, 5.0, and 10.0 µM, respectively [72].

2.2. Terpenoids

In total, 53 terpenoids with anti-inflammatory activity were obtained from marine
microorganisms during 2021–2023, comprising 29 sesquiterpenes, 4 diterpene, 15 triter-
penoids, and 5 meroterpenoids.

2.2.1. Sesquiterpenes

The chemical investigation of the deep-sea sediment-derived fungus Spiromastix
sp. MCCC 3A00308 yielded three new sesquiterpenes, spiromaterpenes D–F (130–132)
(Figure 10). The NO production on LPS-induced microglia cells BV2 was significantly
inhibited by them, with IC50 values of 26 ± 2, 9 ± 1, and 20 ± 1 µM, respectively. The
preliminary SAR analyses demonstrated that compound 131 with a 2,11-diol significantly
increased the inhibitory effect [73].

A known sesquiterpene, decumbenone A (133), was obtained from the Indian Ocean
30 m deep water-derived fungus Aspergillus austroafricanus Y32-2, which was found to
exhibit a dose-dependent anti-inflammatory activity at concentrations of 30 to 120 µg/mL,
by using a zebrafish inflammation model caused by copper sulfate [74].

Five new sesquiterpenes, paraconulones B–E (134–137) and G (138), along with a
known sesquiterpene, 4-epi-microsphaeropsisin (139), were isolated and identified from
coastal sediment-derived from Paraconiothyrium sporulosum DL-16. They showed inhibitory
effects on LPS-induced NO production in BV2 cells with IC50 values of 6.9 ± 2.6, 7.7 ± 2.0,
2.8 ± 0.5, 8.1 ± 2.9, 8.1 ± 3.5, and 4.6 ± 3.5 µM, respectively, which were comparable to the
positive control, curcumin (IC50 = 8.6 ± 1.6 µM) [75].
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The chemical examination of the deep-sea sediment-derived fungus Eutypella sp.
MCCC 3A00281 resulted in the isolation of eight sesquiterpenes, including six new ones,
eutypeterpenes B (140) and C (141), eutypeterpene M (142), eutypeterpene N (143), and eu-
typeterpenes P (144) and Q (145), and two known ones, eudesma-3-en-11,15-diol (146)
and eudesma-4-en-11,15-diol (147) (Figure 11). They illustrated inhibitory effects on
LPS-induced NO production in RAW 264.7 macrophages with IC50 values of 13.4 ± 0.8,
16.8 ± 1.0, 11.8 ± 1.0, 8.6 ± 1.0, 14.3 ± 1.1, 11.5 ± 1.2, 18.3 ± 1.0, and 17.1 ± 1.0 µM,
respectively. In addition, compounds 140–145 demonstrated stronger activity than that of
quercetin (IC50 = 17 ± 1.5 µM) [76].
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Two new sesquiterpenoids, nigerin (148) and ochracene J (149), were obtained from
the South China Sea sponge Dysidea sp. symbiotic fungus Aspergillus niger. Both exhibited
strong inhibitory effects on the generation of NO in LPS-stimulated RAW 264.7 macrophages
with IC50 values of 8.5 and 4.6 µM, respectively [77].

Seven trichothecenes, including three new compounds, (2R,4R,5S,5aR,7R,9aS,10S)-10-
(hydroxymethyl)-5,5a,8-trimethyl-3,4,5,5a,6,7-hexahydro-2,5-methanobenzo[b]oxepine-
4,7,9a,10(2H)-tetraol (150), (2S,2′R,4′R,5′S,5a′R,9a′R)-8′-(hydroxymethyl)-5′,5a′-dimethyl-
2′,3′,4′,5′,5a′,6′,7′,9a′-octahydrospiro[oxirane-2,10′-[2,5] methanobenzo[b]oxepin]-4′-ol (151),
and (2S,2′R,4′R,5′S,5a′R,9a′R)-8′-(hydroxymethyl)-5′,5a′-dimethyldecahydrospiro[oxirane-
2,10′-[2,5]methanobenzo[b]oxepin]-4′-ol (152), and four known ones, trichoderminol (153),
trichodermarins A (154) and E (155), and trichodermol (156), were isolated from marine
alga Mastophora rosea-derived fungus Trichoderma brevicompactum NTU 439. Compounds
150–154 and 156 displayed minimal inhibitory effects against BV2 cells without cytotoxicity
at a dosage of 10 µM. Additionally, compound 159 showed a substantial inhibitory effect
on the generation of NO caused by LPS with an IC50 value of 5.2 ± 0.4 µM [78].

Meanwhile, two new drimane sesquiterpenes, ustusolates H (157) and I (158), were
isolated from a seagrass-derived fungus, Aspergillus insuetus SYSU 6925. Both exhibited a
potent inhibition of NO production in RAW 264.7 cells with IC50 values of 21.5 ± 1.1, and
32.6 ± 1.2 µM, respectively [79].

2.2.2. Diterpene

A known compound, hazianol J (159), was obtained from the deep-sea sediment-
derived fungus Trichoderma sp. SCSIOW 21, which showed anti-inflammatory activity at
100 µM with a NO inhibition rate of 81.8% [80].

The chemical examination of the fermentation broth of Eutypella sp. D-1, using the
OSMAC strategy of adding ethanol as a promoter in the culture medium, resulted in
the isolation of one new compound, libertellenone Z (160), and two known compounds,
libertellenones A (161) and C (162). They exhibited strong NO inhibition rates of 60.9%,
89.4%, and 84.2% at 10.0 µM, respectively, while the latter two were superior to the effect of
the positive drug dexamethasone with rates of 72.0% at 10.0 µM [81].

2.2.3. Triterpenoids

Three new compounds, peniscmeroterpenoids A (163), D (164), and L (165), were
isolated from the marine-derived fungus Penicillium sclerotiorum GZU-XW03-2 (Figure 12),
which inhibited the production of NO in RAW 264.7 cells with IC50 values of 26.6 ± 1.2,
8.8 ± 1.2, and 48.0 ± 2.5 µM, respectively. Moreover, compound 164 further significantly
suppressed the production of pro-inflammatory mediators, tumor necrosis COX-2, IL-1β,
and IL-6 and the protein expression of the enzyme iNOS [82,83].

Moreover, soyasapogenols B1–B11(166–176) were identified from marine actinomycete
Nonomuraea sp. MYH 522. These compounds presented anti-inflammatory effects in
DMXAA-stimulated RAW 264.7 cells by suppressing the STING/TBK1/NF-κB pathway at
a concentration of 20 µM [84].

The chemical investigation of the alga-derived fungus Turbinaria decurrens yielded one
new compound, decurrencyclic B (177). It showed superior attenuation properties against
COX-2 and 5-lipoxygenase with IC50 values of 14.0 and 3.0 µM, respectively [85].
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2.2.4. Meroterpenoids

The chemical investigation of marine-derived fungus Aspergillus terreus GZU-31-
1 yielded five new congeners, aspermeroterpenes D–H (178–182) (Figure 13). These
compounds prevented RAW 264.7 cells from producing NO in response to LPS. They
demonstrated notable anti-inflammatory activity with IC50 values of 6.7 ± 0.8, 29.6 ± 3.9,
22.2 ± 0.9, 25.9 ± 3.1, and 26.5 ± 1.0 µM, respectively [86].
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2.3. Alkaloids

In total, 47 alkaloids with anti-inflammatory activity were obtained from marine
microorganisms during 2021–2023.

Two new compounds, aspechinulins B (183) and C (184), together with four known
compounds, isoechinulins A (185) and B (186), neoechinulin B (187), and cryptoechinuline
G (188) (Figure 14), were isolated from the sediment-derived fungus Aspergillus sp. FS 445.
They illustrated inhibitory effects against NO production with IC50 values ranging from 20
to 90 µM [87].
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The chemical examination of co-cultures of Penicillium sclerotiorum THSH–4 and Peni-
cillium sclerotiorum ZJHJJ–18 produced one new azaphilone, peniazaphilone A (189), and
one known azaphilone, isochromophilone VI (190). Both revealed a strong suppression of
LPS-induced NO release from RAW 264.7 without cytotoxicity with IC50 values of 7.1 and
17.0 µM, respectively [36].

Eight known compounds, fumigaclavine C (191), isotryptoquivaline F (192), fumiquina-
zoline F (193), 12,13-dihydroxyfumitremorgin C (194), cyclotryprostatin B (195), azaspirofuran
A (196), 14-norpseurotin A (197), and 11-O-methylpseurotin A (198) (Figure 15), were isolated
from the fungus Talaromyces helicus SCSIO 41311. They showed moderate NO inhibitory
activity with IC50 values of 23.5, 26.5, 21.4, 25.0, 29.6, 9.7, 32.4, and 32.2 µM, respectively [39].

In addition to a new oxygenated tricyclic cyclopiazonic acid, asperorydine Q (199),
the chemical study of the fungus Aspergillus flavus GXIMD 02503 produced five known
compounds, asperorydines O (200) and J (201), speradine H (202), cyclopiamide A (203),
and pyrazinemethanol (204). They presented suppression of LPS-induced NF-κB activation
with IC50 values of 14.1 ± 1.5, 21.8 ± 1.9, 8.6 ± 1.3, 17.4 ± 1.7, 11.3 ± 2.0, and 6.5 ± 1.4 µM,
respectively [42].

The chemical investigation of a sponge-derived fungus, Aspergillus tamarii MCCF
102, resulted in the isolation of two new dipyrrolobenzoquinones, terreusinones B (205)
and C (206), along with one known analog, terreusinone (207) (Figure 16). They showed
anti-inflammatory activity by inhibiting NO production in a dose-dependent manner
(IC50 < 1 µM) without any cytotoxicity [88].

Furthermore, a strain of Cystobasidium laryngis obtained from deep-sea sediments of
the Indian Ocean Ridge produced phenazostatin J (208), a new diphenazine derivative. It
displayed significant anti-neuroinflammatory activity with an IC50 value of 0.3 µM, without
cytotoxicity at a concentration of over 1.0 µM [89].

Five new compounds, lecanicilliumins A (209), B (210), E (211), F (212), and G (213),
were obtained from the sediment-derived fungus Lecanicillium fusisporum GXIMD 00542.
They demonstrated moderate anti-inflammatory activity by reducing LPS-induced NF-κB
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activation in RAW 264.7 cells with inhibition rates of 50% at 18.5 ± 1.2, 25.8 ± 1.3, 23.1 ± 1.3,
24.7 ± 1.2, and 26.5 ± 1.1 µM, respectively [90].
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The chemical examination of marine sponge Phakellia fusca-associated fungus Actinoal-
loteichus cyanogriseus LHW 52806 produced one new β-carboline compound, marinacar-
boline glucuronide (214), as well as two known compounds, marinacarboline L (215) and
cyanogramide (216). They showed anti-inflammatory properties by significantly lowering
IL-6 expressions in vitro at 20 µM [91].

Two known compounds, benzomalvin E (217) and methylviridicatin (218) (Figure 17),
were produced by the seawater-derived fungus Metarhizium sp. P2100. Both indicated
anti-inflammatory activity against LPS-induced NO generation, with IC50 values of 37.1 µM
and 37.5 µM, respectively [92].

A new compound, sclerotiamide J (219), was identified from the coral-derived fungus
Aspergillus sclerotiorum LZDX-33-4. It prevented NLRP3 inflammasome-induced pyroptosis
through the mitigation of mitochondrial damage, and greatly decreased its activation at a
concentration of 10 µM [93].

The chemical investigation of the gorgonian coral-associated Aspergillus candidus CHNSCLM-
0393 provided a pyrrolinone-fused 6/7/5 benzoazepine compound, (+)-asperazepanone
B (220). It demonstrated strong anti-inflammatory activity by blocking the expression of
TNF-α and IL-6 induced by LPS at a concentration of 0.1 µM [94].

Three compounds, cyclopenol (221), cyclopenin (222), and viridicatol (223), were
isolated from the fungus Aspergillus austroafricanus Y32-2. They showed anti-inflammatory
action in an inflammation-induced zebrafish model (ranging from 30 to 120 µg/mL) [75].
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A chemical investigation of the fungus Aspergillus sp. YJ191021 yielded one new preny-
lated indole diketopiperazine, asperthrin A (224). It revealed strong anti-inflammatory
activity with an IC50 value of 1.5 ± 0.2 µM in the human monocyte cell line (THP-1)
generated by Propionibacterium acnes [95].
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A known metabolite, oxaline (225), was obtained from cultures of Penicillium oxalicum
CLC MF 05. It was found to suppress the overproduction of NO and PGE2, as well as the
overexpression of iNOS and COX-2, in both LPS-stimulated BV2 and rat primary microglia
with IC50 values between 8.8 ± 0.4 and 9.0 ± 0.5 µM [44].

Two compounds, epi-aszonalenin A (226) and aszonalenin (227), were obtained from
the coral-derived fungus Aspergillus terreus C23-3. Both inhibited the phosphorylation of
the MAPK and PI3K/AKT pathways, VEGF protein production, and LOX-1, triggered by
ox-LDL at concentrations of 1–10 µM. Moreover, compound 227 inhibited the inflammatory
factors (TNF-α, IL-1β, and IL-6) triggered by ox-LDL [96].

A known compound, cyclo (N8-(α, α-dimethylallyl)-L-Trp-L-Trp) (228), was isolated
from the hydrothermal vent sediment-derived fungus Penicillium sp. LSH-3-1. It decreased
the LPS-induced production of pro-inflammatory mediators, including NO, IL-6, and
TNF-α at concentrations of 20 to 50 µM [97].

The chemical investigation of the deep-sea sediment-derived fungus Penicillium chryso-
genum strain S003 yielded one known compound, meleag (229). It reduced the levels of
IL-6 and IFN-γ, downregulated the expressions of the TLR4, TNF-α, and NF-κB genes, and
controlled the Nrf-2/HO-1 cascade [98].
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2.4. Amides or Peptides

In total, 12 amides or peptides with anti-inflammatory activity were obtained from
marine microorganisms during 2021–2023.

Five known compounds, 3,5,7,9-undecatetraenoate (230), methyl (2E,3E,5E,7E,9E)-11-
((3aS,6S,6aR)-3a,6-dihydroxy-5-oxohexahydro-2H-furo [3,2-b] pyrrol-6-yl)-2-ethylidene-11-
hydroxy-4,10-dimethylundeca-3,5,7,9-tetraenoate (231), 4Z-lucilactaene (232), 8Z-lucilactaene
(233), and lucilactaene (234) (Figure 18), were isolated from the fungus Fusarium solani
7227. They presented strong anti-inflammatory activity by preventing the formation of
NO in RAW 264.7 cells stimulated by LPS, with IC50 values of 32.2 ± 5.7, 17.8 ± 4.9,
7.6 ± 2.0, 3.6 ± 2.2, and 8.4 ± 2.2 µM, respectively. Moreover, the polyunsaturated chain’s
substitution group increased the anti-inflammatory properties [30].

A new compound, variotin B (235), was identified from the ethyl acetate extract of the
shrimp-derived fungus Aspergillus unguis IV17-109. It indicated anti-inflammatory efficacy
by blocking NO generation as well as the expression of iNOS and IL-6 with an IC50 value
of 20.0 µM [99].
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Two new cerebroside metabolites, hortacerebrosides A (236) and B (237), were dis-
covered from the sponge-derived fungus Hortaea werneckii HN-YPG-2-5. Both showed a
notable suppressive impact on the amount of NO generated by RAW 264.7 macrophages
activated by LPS, with IC50 values of 5 and 7 µM, respectively [100].

One known compound, methyl acetyl-D-valyl-D-phenylalaninate (238), was isolated
from the fungus Penicillium sp. LSH-3-1, which reduced the production of pro-inflammatory
mediators, such as NO, IL-6, and TNF-α, at concentrations of 20 to 50 µM, when exposed to
LPS [97].

Anteiso-C13-surfactin (IA-1) (239) was identified from the marine sediment-derived
fungus Bacillus amyloliquefaciens strain IA-LB. It ameliorated the inflammatory damage to
lung tissue by decreasing neutrophil infiltration, reducing elastase release and oxidative
stress in endotoxemic mice at a concentration of 5 µM [101].

The chemical investigation of the sediment-derived fungus Penicillium islandicum
yielded one known compound, flavuside B (240), which significantly reduced LDH release
from LPS-induced HaCaT cells to the baseline NO level [102]. One known compound,
GKK1032 B (241), was isolated from the deep-sea-derived Penicillium citrinum W17. It
exhibited significant inhibitory effects on LPS-stimulated NO production in murine brain
microglial BV2 cells in a dose–response manner with an IC50 value of 4.7 µM [72].
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2.5. Steroids

In total, 11 steroids with anti-inflammatory activity were obtained from marine mi-
croorganisms during 2021–2023.

The fungus Simplicillium lanosoniveum SCSIO 41212 produced four new steroids deriva-
tives, arthriniumsteroids A–D (242–245), and two known compounds, penicildione B (246)
and ganodermaside D (247) (Figure 19). They displayed poor inhibitory abilities at a dosage
of 40 µg/mL, with inhibitory rates ranging from 21.4% to 44.6% [103].
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The chemical investigation of the seagrass Enhalus acoroides-associated fungus Penicil-
lium levitum N33.2 yielded one known compound, ergosterol peroxide (248). It indicated an
inhibitory effect on macrophages’ generation of NO, with an inhibition rate of 81.4 ± 1.4%
at 25 mg/mL [104].

Three new ergostane-type sterols, aspersterols B–D (249–251), were isolated and
identified from the shrimp-derived fungus Aspergillus unguis IV17-109. They inhibited
LPS-induced NO generation with IC50 values of 19.5 ± 1.2, 11.6 ± 1.6, and 14.5 ± 1.5 µM,
respectively [105].

One known compound, (22E, 24R)-ergosta-5,7,22-trien-3β-ol (252), was obtained from
the fungus Amorosia sp. SCSIO 41026. It showed inhibitory effects on the overproduction of
NO and pro-inflammatory cytokines in LPS-challenged RAW 264.7 macrophages without
cytotoxicity at a concentration of 10 µM [56].

3. Conclusions

This review summarizes the sources, chemical structures, and pharmacological prop-
erties of anti-inflammatory natural products reported from marine microorganisms in the
past three years. A total of 252 natural products with anti-inflammatory activity were re-
cently identified from marine microorganisms, while 51.2% of them were new compounds
(Table S1). In addition, 82.9% of them were derived from marine fungi, while 17.1% of them
were obtained from marine bacteria or marine actinomycetes (Figure 20). The reviewed
marine microorganisms are derived from sediments (31.3%), algae (18.3%), sponges (11.5%),
mangroves (9.1%), seawater (7.9%), corals (6.0%), and others (15.9%) (Figure 21). Moreover,
the summarized compounds are structurally divided into polyketides (51.2%), terpenoids
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(21.0%), alkaloids (18.7%), amides or peptides (4.8%), and steroids (4.3%) (Figure 22). Re-
lated anti-inflammatory factors include NO, iNOS, NF-κB, and PGE2. It is worth noting that
the chemical structures of compounds 245–252 with significant anti-inflammatory activity
show a high similarity to those of steroidal anti-inflammatory drugs like prednisone.
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Marine microbial natural products are promising sources of anti-inflammatory lead
compounds, especially those derived from marine fungi. New effective strategies for
dereplication and prioritization to search for minor metabolites should be envisaged for
the discovery of new natural compounds from marine microbial sources. Continuously
optimizing the fermentation, strengthening the development of extraction and isolation,
high-throughput screening, synthetic drug processes, and computer-assisted drug research
technologies in the future will promote the mass production as well as the development
of anti-inflammatory natural products into clinical agents. Through bioactivity-oriented
approaches, diverse natural products with potent anti-inflammatory activity will be found
and further structurally modified to improve their drug-forming properties, in order to
develop them into anti-inflammatory candidate drugs.

Marine microbial natural products present promising applications in anti-inflammatory
drug therapy. However, developing potential anti-inflammatory compounds into clinical
agents still faces great challenges owing to their toxicity and selectivity. This review pri-
marily elucidated the pharmacological mechanism of recently reported marine microbial
anti-inflammatory natural products, which have attracted great interest and attention in
marine microbial anti-inflammatory natural product research, and shed light on their value
in the development of clinical anti-inflammatory drugs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/md22090424/s1, Table S1: Recently reported marine microbial natural
products with anti-inflammatory activity (January 2021 through December 2023).
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